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Abstract—This work focuses on large scale multi-user MIMO
systems in which the base station (BS) outfitted with M antennas
communicates with K single antenna user equipments (UEs). In
particular, we aim at designing the linear precoder and receiver
that maximizes the minimum signal-to-interference-plus-noise
ratio (SINR) subject to a given power constraint. To gain insights
into the structure of the optimal precoder and receiver as well as
to reduce the computational complexity for their implementation,
we analyze the asymptotic regime where M and K grow large
with a given ratio and make use of random matrix theory (RMT)
tools to compute accurate approximations. Although simpler, the
implementation of the asymptotic precoder and receiver requires
fast inversions of large matrices in every coherence period. To
overcome this issue, we apply the truncated polynomial expansion
(TPE) technique to the precoding and receiving vector of each
UE and make use of RMT to determine the optimal weighting
coefficients on a per-UE basis that asymptotically solve the max-
min SINR problem. Numerical results are used to show that the
proposed TPE-based precoder and receiver almost achieve the
same performance as the optimal ones while requiring a lower
complexity.

Index Terms—Massive MIMO systems, linear transceivers,
low complexity, truncated polynomial expansion, random matrix
theory.

I. INTRODUCTION

Large-scale multiple-input multiple-output (MIMO) sys-
tems, better known as massive MIMO systems, are considered
as a promising technique for next generation cellular networks
[1]–[4]. The massive MIMO technology aims at evolving
the conventional base stations (BSs) by using arrays with
a hundred or more small dipole antennas. This allows for
coherent multi-user MIMO transmission where tens of users
can be multiplexed in both the uplink (UL) and downlink
(DL) of each cell. The problem of designing precoder and
receiver techniques for massive MIMO systems is receiving
a lot of attention. Among the different optimization crite-
ria, we distinguish the transmit power minimization [5]–[8]
and the maximization of the minimum signal-to-interference-
plus-noise ratio (SINR) [9], [10]. The latter is the focus of
this work. In particular, we consider a single-cell large-scale
MIMO system in which the BS makes use of M antennas to
communicate with K single-antenna user equipments (UEs).
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Under the assumption of perfect channel state information
(CSI) at the BS, in [9] it is shown that the optimal linear
precoder (OLP) for the max-min SINR problem is closely
related to the optimal linear receiver (OLR) as it can be com-
puted exploiting the UL-DL duality principle. The latter allows
to convert the DL optimization problem into its equivalent
counterpart in the dual UL variables. The OLP is then found in
the form of a fixed-point problem whose solution corresponds
to the powers allocated to the UEs in the dual UL network.
Although numerically feasible, the above approach does not
provide any insight into the structure of both OLP and OLR.
Moreover, their implementation requires the computation of
the inverse of a matrix for any new realization of propagation
channels, which is too computationally cumbersome when the
network size becomes large (as envisioned in 5G networks).

To overcome this issue, we follow the same approach of
other recent works [11], [12] and consider the asymptotic
regime in which M and K grow large with a given ratio. This
allows to provide accurate approximations of the parameters
involved in the implementation of OLP and OLR, which turn
out to depend only on the long-term channel attenuations of
the UEs. This provides some insights on how these parameters
affect the design of OLP and OLR but does not solve the
issue concerning the computation of the matrix inverse. To
tackle this problem, we resort to the truncated polynomial
expansion (TPE) technique, which has been recently applied
to reduce the complexity of the RZF precoder in [6], [13] and
the MMSE filter in [14], [15]. However, in all these works the
TPE concept is applied using the same weighting coefficients
for all UEs. This limits the number of degrees of freedom
with an ensuing degradation of the system performance. In
light of this observation, we apply the TPE on a per-UE basis.
More specifically, this amounts to applying the TPE concept
to each vector of the precoding and receiving matrices rather
than to the whole matrices themselves. This leads to the so-
called user specific TPE (US-TPE) receiver and precoder for
which approximations of the resulting SINRs are computed
through the asymptotic analysis. These results are then used
to optimize the US-TPE parameters in order to maximize the
minimum SINR over all UEs in the DL and UL. Interestingly,
the optimization problem can be cast as the max-min problems
previously studied in [7], [9], [10]. Its solution leads to a
novel US-TPE precoder and receiver, which are shown by



simulations to achieve the same performances as OLP and
OLR.

II. SYSTEM MODEL

We consider a single-cell massive MIMO system in which
the BS equipped with M antennas communicates with K
single antenna UEs, randomly selected from a large set of UEs
within the coverage area. It is assumed in massive MIMO that
M > K. We denote by hk ∈ CN the channel vector of UE k
and assume that

hk =
√
βkzk (1)

where zk ∈ CN is the small-scale fading channel assumed
to be Gaussian with zero mean and unit covariance and βk
accounts for the corresponding large-scale channel fading or
path loss. The matrix collecting all UEs channel vectors will
be denoted by H = [h1, · · · ,hK ].

A. Downlink

Denoting by gi ∈ CN the precoding vector associated to
UE i, the signal received at UE k can be written as

yk =
√
ρhHk gksk +

K∑
i=1,i6=k

√
ρhHk gisi + nk (2)

where si is the signal intended to user i, assumed independent
across i, with zero-mean and unit variance, nk ∼ CN (0, 1)
accounts for the additive Gaussian noise, and ρ is the effective
signal-to-noise ratio (SNR). The SINR at UE k is thus given
by:

SINRdl
k =

ρ
∣∣hHk gk

∣∣2∑K
i=1,i6=k ρ

∣∣hHk gi
∣∣2 + 1

(3)

and the average transmit power per UE is:

P = 1
K tr(GGH) (4)

where G = [g1, . . . ,gK ] denotes the precoding matrix. The
latter is chosen as the solution of the following max-min SINR
problem:

max
g1,...,gK

min
k

SINRdl
k

γk
s.t.

1

K
tr(GGH) ≤ Pmax (5)

where γk is a factor reflecting the priority assigned to UE k
and Pmax is the power constraint at the BS. In [9], the solution
g?k of the above problem is found to be g?k =

√
p?k/Ku?k with

u?k =

(
ρ
K

∑
i6=k q

?
i hih

H
i + IM

)−1

hk∥∥∥∥( ρ
K

∑
i6=k q

?
i hih

H
i + IM

)−1

hk

∥∥∥∥ (6)

where the scalars {q?` } are obtained as the unique positive
solution to the following fixed-point equations:

q?` =
γ`KPmax∑K

n=1

γnhH` ( ρK
∑
k 6=` q

?
khkh

H
k +IM)

−1
h`

hHn ( ρK
∑
k 6=n q

?
khkh

H
k +IM)

−1
hn

(7)

The optimal powers {p?k} are such that

SINRdl
1

γ1
= · · · = SINRdl

K

γK
. (8)

Letting τ? =
SINRdl

1

γ1
, it turns out that p? = [p?1, · · · , p?K ] is

given by:
p? = τ?

ρ (IK − τ?ΓF)
−1

Γ1K

where Γ = diag
(

Kγ1
|hH1 g1|2

, · · · , KγK
|hHKgK |2

)
and F ∈ CK×K has

entries given by

[F]k,i =

{
0 if k = i
1
K |h

H
k ui|2 if k 6= i.

(9)

B. Uplink

From the uplink-downlink duality shown in [9], it is known
that the vectors {u?k} and scalars {q?k} may be thought as the
solution of the following uplink max-min SINR problem:

max
u1,...,uK
q1,...,qK

min
k

SINRul
k

γk
s.t.

1

K

K∑
k=1

qk ≤ Pmax (10)

with SINRul
k being given by

SINRul
k =

ρ qkK |u
H
k hk|2∑K

i=1,i6=k ρ
qi
K |u

H
k hi|2 + ‖uk‖2

. (11)

From (6), it easily follows that the vector uk coincides with the
minimum-mean-square-error (MMSE) receiver that maximizes
SINRul

k .

III. LARGE SYSTEM ANALYSIS

As shown above, the optimal linear precoder (OLP) and
the optimal linear receiver (OLR) are parametrized by the
scalars {q?k} and {p?k} where {q?k} need to be evaluated by
an iterative procedure due to the fixed-point equations in (7).
This is a computationally demanding task when M and K
are large since the matrix inversion operation in (7) must
be recomputed at every iteration. Moreover, computing {q?k}
as the fixed point of (7) does not provide any insights into
the optimal structure of both {q?k} and {p?k}. In addition, the
parameter values depend directly on the channel vectors {hk}
and change at the same pace as the small-scale fading (i.e.,
at the order of milliseconds). To overcome these issues, we
exploit the statistical distribution of {hk} and the large values
of M,K to compute deterministic approximations of {q?k} and
{p?k}. A major result of this work is as follows:

Theorem 1. Let τ̄ be the unique positive solution to the
following fixed point equation:

τ̄ =
Pmaxρ

[
M
K −

1
K

∑K
i=1

γiτ̄
1+γiτ̄

]
1
K

∑K
i=1

γi
βi

. (12)

If M and K grow large with the same pace, then

τ? − τ̄ a.s.−→ 0 (13)



and

maxk |q∗k − qk|
a.s.−→ 0 (14)

maxk |p∗k − pk|
a.s.−→ 0 (15)

where qk and pk are given by

qk =
γk τ̄

ρβk

(
M
K −

1
K

∑K
i=1

γiτ̄
1+γiτ̄

) (16)

pk =
γkτ

(
ρβkPmax

(1+γk τ̄)2 + 1
)

ρβk

(
M
K −

1
K

∑K
i=1

(γiτ)2

(1+γiτ)2

) . (17)

Proof: The proof is omitted due to space limitations but
can be found in [16].

Theorem 1 states that the performance remains the same if
{q∗k} and {p∗k} are replaced by {qk} and {pk}. In doing so, we
obtain the so-called asymptotically OLP (A-OLP) for which
gk =

√
pk/Kuk and

uk =

(
ρ
K

∑
i6=k qihih

H
i + IM

)−1

hk∥∥∥∥( ρ
K

∑
i6=k qihih

H
i + IM

)−1

hk

∥∥∥∥ . (18)

The asymptotically OLR (A-OLR) easily follows. From a
practical standpoint, the use of {qk} and {pk} largely sim-
plifies the implementation of A-OLP and A-OLR as their
computation requires only the knowledge of the large scale
channel statistics and must be performed only once per coher-
ence period (rather than at the same pace as the small-scale
fading). Despite being simplified, the implementation of A-
OLP and A-OLR still requires the matrix inversion operation
in (18). This can be a task of a prohibitively high complexity
when M and K are large as envisioned in large-scale MIMO
systems. To address this issue, a TPE approach will be adopted
in the next section.

IV. TPE-BASED PRECODER AND RECEIVER

The common way to apply the TPE concept consists in
replacing the matrix inverse by a weighted matrix polynomial
with J terms [6], [13]. Differently from the traditional ap-
proach, we propose in this work to apply the truncation artifice
separately to each vector of the precoding and/or receiving
matrix. The TPE technique in a per-UE basis was recently used
in our work [17] to approximate the optimal linear precoding
that minimizes the transmit power. Applying the TPE on a per-
UE basis, the precoding vector associated with UE k writes
as:

gdl
k,TPE =

√
pk,TPE

K

vk,TPE

‖vk,TPE‖
(19)

with

vk,TPE =

J−1∑
`=0

wdl
`,k

(
HRHH

K

)̀
hk (20)

where 1
K pk,TPE is the power allocated to UE k, Rk =

diag(q1, . . . , qK). Plugging (19) into (3) and denoting by
wk,dl =

[
wdl

0,k, . . . , w
dl
J−1,k

]T ∈ CJ×1, the SINR of UE k can
be rewritten as:

SINRdl
k,TPE =

ρpk,TPE
wHk,dlaka

H
k wk,dl

wHk,dlEkwk,dl

ρ
K

∑
i 6=k pi,TPE

wHi,dlBk,iwi,dl

wHi,dlEiwi,dl
+ 1

(21)

where ak ∈ CJ×1, bk ∈ CJ×1, and Bi,k ∈ CJ×J are
computed as:

[ak]` =
1

K
hHk

(
HRHH

K

)`
hk (22)

[Bk,i]`,m =
1

K
hHk

(
HRHH

K

)̀
hih

H
i

(
HRHH

K

)m
hk (23)

whereas the entries of Ek ∈ CJ×J are given by

[Ek]`,m =
1

K
hk

(
HRHH

K

)`+m
hk. (24)

The TPE concept is now applied to OLR. To this end, let
{ qk,TPE

K } be the UL transmit powers. The receive vector
associated to UE k is thus given by:

gul
k,TPE =

J−1∑
`=0

wul
`,k

(
HRHH

K

)
hk√
K
. (25)

Plugging (25) into (11) yields:

SINRul
k,TPE =

ρqk,TPEwH
k,ulaka

H
k wk,ul∑

i 6=k
ρ
K qi,TPEwH

k,ulBi,kwk,ul + wH
k,ulEkwk,ul

(26)
where wk,ul = [wul

0,k, · · · , wul
J−1,k]T and ak, Bk,i and Ek

are given by (22), (23) and (24), respectively. As for OLP
and OLR, results from random matrix theory can be used
to compute deterministic equivalents ak, Bk,i and Ek of ak,
Bk,i and Ek in the asymptotic regime in which M,K grow
large with the same pace. The details are omitted for space
limitations but can be found in [16].

V. OPTIMAL DESIGN OF THE TPE BASED PRECODER AND
RECEIVER

In the sequel, we compute the optimal weighting vectors
wk,dl and wk,ul and the optimal transmit powers, in both
uplink and downlink, that maximizes the minimum SINRs
over all UEs. To begin with, we let

ck,dl =
E

1
2

kwk,dl

‖E
1
2

kwk,dl‖
ck,ul =

E
1
2

kwk,ul

‖E
1
2

kwk,ul‖
(29)

such that the SINR expressions in (21) and (26) reduce to:

SINR
dl

k,TPE =
ρpk,TPE cHk,dlE

− 1
2

k aka
H
k E
− 1

2

k ck,dl∑
i 6=k

ρ
K pi,TPE cHi,dlE

− 1
2

i Bk,iE
− 1

2

i ci,dl + 1

(30)



q?k,TPE =
γkKPmax

K∑̀
=1

γ`aTkE
− 1

2
k

(∑
i6=k

ρ
K q

?
i,TPEE

− 1
2

k Bi,kE
− 1

2
k +IJ

)−1

E
− 1

2
k ak

aT` E
− 1

2
`

(∑
j 6=`

ρ
K q

?
j,TPEE

− 1
2

` Bj,`E
− 1

2
` +IJ

)−1

E
− 1

2
` ã`

(27)

c?k,ul = c?k,dl =

(∑
i 6=k

ρ
K q

?
i,TPEE

− 1
2

k Bi,kE
− 1

2

k + IJ

)−1

E
− 1

2

k ak∥∥∥∥(∑i 6=k
ρ
K q

?
i,TPEE

− 1
2

k Bi,kE
− 1

2

k + IJ

)−1

E
− 1

2

k ak

∥∥∥∥ (28)

and

SINR
ul

k,TPE =
ρqk,TPEcHk,ulE

− 1
2

k aka
H
k E
− 1

2

k ck,ul∑
i 6=k

ρ
K qi,TPEcHk,ulE

− 1
2

k Bi,kE
− 1

2

k ck,ul + 1

(31)

after replacing ak, Bk,i and Ek with ak, Bk,i and Ek. The
parameters {ck,dl}, {ck,ul}, {pk,TPE} and {qk,TPE} are com-
puted as the solution of the following optimization problems:

max
{ck,dl},{pk,TPE}

min
k

SINR
dl

k,TPE

γk
s.t

1

K

K∑
k=1

pk,TPE = Pmax

(32)

and

max
{ck,ul},{qk,TPE}

min
k

SINR
ul

k,TPE

γk
s.t.

1

K

K∑
k=1

qk,TPE = Pmax

(33)

which have the same structure of (5) and (10). Following
similar arguments, it turns out that the solution is such that all
the weighted asymptotic SINRs are equal to the same value
τ?TPE:

τ?TPE =
SINR

ul

k,TPE

γk
=

SINR
dl

k,TPE

γk
∀k. (34)

The optimal values q?k,TPE are obtained as the unique
solution of the set of equations given by (27) whereas the
weighting vectors take the form in (28). The computation of
q?k,TPE requires matrix inversions whose complexity depends
on J . However, J is small and does not need to scale with the
values of M and K. Thus, the computation of q?k,TPE is not
very computationally demanding. The optimal power vector
p?TPE is such that the weighted SINRs in the uplink are all
equal to τ?TPE. This yields:

p?TPE =
τ?TPE

ρ
(IK − τ?TPEΓTPEFTPE)

−1
ΓTPE1K (35)

where

ΓTPE = diag

{(
cHk,dlE

− 1
2

k aka
H
k E
− 1

2

k ck,dl

)−1
}K
k=1

(36)

and

[FTPE]i,k =

{
0 if k = i
1
K cHi,dlE

− 1
2

k Bk,iE
− 1

2

k ci,dl if k 6= i.
(37)

From the above results, it follows that the TPE-based schemes
have the same structure as OLP and OLR. However, the
former have the following main advantages: (i) the optimal
parameters depend only on the large scale channel statistics
and can be thus computed beforehand, or at least be updated
at the rate of the change of the channel statistics; (ii) they
allow a considerable complexity reduction since they do not
require the computation of a matrix inverse. This results into
only about O(KM) arithmetic operations to be compared with
the O(K2M) operations required by OLP and OLR. For more
details about complexity analysis, we refer the reader to [13]
where the complexity of the RZF precoding is computed and
compared with the complexity of the TPE precoding.

VI. SIMULATION RESULTS

Numerical results are now used to compare OLP and OLR
with the corresponding TPE-based schemes and to validate the
asymptotic analysis. The UEs are assumed to be uniformly
distributed in a cell with radius 250 m. The path loss βk is
modelled as βk = (1 + (dk/d0)

δ
)−1 where dk denotes the

distance of UE k from the BS whereas δ = 3.8 and d0 = 30 m.
The analysis is conducted in terms of the average achievable
rate per UE given by:

r =
1

K

K∑
k=1

E [log2(1 + SINRk)] (38)

where the expectation is taken with respect to the different
channel realization. We set ρ = 20 dB and assume that the
UEs priorities {γk} are randomly chosen from the interval
[1, 2]. Markers are used to represent the asymptotic results
whereas the error bars indicate the standard deviation of the
Monte Carlo results.

Fig. 1 reports the downlink average rate per UE as a function
of the power constraint Pmax when K = 32 and M = 128.
Note that when J = 1, the US-TPE precoder coincide with
the maximum ratio transmission (MRT) precoding. The results
show that J = 2 is sufficient to achieve the same performance
of OLP when Pmax is relatively small. Larger values are
needed when Pmax increases. This is due to the fact that when
Pmax gets higher, the SINR of the OLP increases. A higher
number of degrees of freedom is thus required in order to
approximate the performance of the OLP.

Fig. 2 illustrates the uplink average rate per UE vs. M
for different values of the power constraint Pmax. As seen,
with J = 2 the TPE-based receiver provides interesting
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performance compared OLR for all the values of M . Besides,
as in downlink, the gap is getting larger when Pmax is getting
higher. However, we can increase the truncation order J to
enhance the performance of the proposed receiver and get
closer to the OLR. Also, it is important to notice from this
figure that the gap between the proposed receiver and the OLR
becomes constant for large values of M .

VII. CONCLUSION

In this work, we focused on the design of the linear
TPE precoder and receiver in order to achieve the same
performance as the optimal linear precoder (OLP) and the
optimal linear receiver (OLR) that maximizes the minimum
SINR. Differently from the traditional approach, the TPE
concept is applied on a per-UE basis. In order to facilitate the
design of the TPE transceivers, we considered the asymptotic
regime in which the number of antennas at the BS and
that of users grow simultaneously large with the same pace.
The use of this assumption allowed us to approximate the

SINRs by deterministic quantities that depend only on the
channel statistics. The TPE weights are then optimized in
order to maximize the asymptotic minimum SINRs over all
users. Numerical results are presented in order to illustrate
the efficiency of TPE based schemes in achieving close-to
performances to the optimal schemes.
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