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Abstract—In this paper, we model an extended DC state
estimation (SE) in an electric power system as a factor graph
(FG) and solve it using belief propagation (BP) algorithm. The
DC model comprises bus voltage angles as state variables, while
the extended DC model includes bus voltage angles and bus
voltage magnitudes as state variables. By applying BP to solve
the SE problem in the extended DC model, we obtain a
Gaussian BP scenario for which we derive closed-form
expressions for BP messages exchanged along the FG. The
performance of the BP algorithm is demonstrated for the IEEE
14 bus test case. Finally, the application of BP algorithm on the
extended DC scenario provides significant insights into a
fundamental structure of BP equations in more complex models
such as the AC model - the topic we will investigate in our
follow up work. As a side-goal of this paper, we aim at
thorough and detailed presentation on applying BP on the SE
problem in order to make the powerful BP algorithm more
accessible and applicable within the power-engineering
community.

Index Terms—State Estimation, Electric Power System,
Factor Graph, Belief Propagation Algorithm, Gaussian Belief
Propagation

I. INTRODUCTION

The state estimation (SE) is an important function of
real-time energy management systems (EMS). Typically, SE
includes the following processes: network topology
processors, observability analysis, state estimation
algorithms, and bad data analysis [1]. The SE algorithm
provides an estimate of the state variables according to the
network topology and available measurements. The standard
approach to obtain the state estimator in electric power
systems, formulated as an overdetermined system of
non-linear equations, is to solve it as a non-linear weighted
least-squares problem [2].

In view of recent trends in smart grid evolution, there is a
growing need for redefining mature algorithms of SE, as
well as many other algorithms of EMS, towards distributed
and computationally more efficient implementations. In a
new, distributed and more dynamic power grid supporting
increased number of distributed power sources and
time-varying loads, tools emerging in distributed probabilistic
systems analysis could provide effective SE solutions.

Probabilistic graphical models seem to be a very good
candidate for a more realistic description of an electric
power system. In particular, the factor graphs (FGs) possess

a potential to bypass many problems of conventional SE.
The algorithm for exact inference on probabilistic graphical
models without loops is known as the belief propagation
(BP) algorithm [3], [4]. Using BP algorithm, it is possible to
efficiently calculate marginal distributions or a mode of the
joint distribution of the system of random variables. The BP
algorithm can be also applied to graphical models with loops
(loopy BP), although in that case, the solution is not
guaranteed to converge to correct marginals/modes of the
joint distribution.

To the best of our knowledge, there are only a couple of
papers that treat SE through probabilistic graphical models in
an electric power system. The work in [5] provides the first
demonstration of BP applied to the SE problem. Compared
to this work that treats the simplest DC model (thus ignoring
reactive power flows and currents), we set our work on more
involved extended DC model as an intermediate but insightful
step towards deriving BP solution for the AC SE model. The
latter is recently addressed in [6], where tree-reweighted BP
is applied using preprocessed weights obtained by randomly
sampling the space of spanning trees.

In this paper, we consider an extended DC SE model that
we cast into a FG representation and solve using FGs and
BP algorithm. The extended DC model is selected not as an
alternative for the AC model, but as a simple linear model
providing insight into the structure of BP equations. We
provide a step-by-step derivation and present a generic
format of BP messages in order to make the powerful BP
algorithm more accessible and applicable within the power
engineering community (which we find missing in [5], [6]).
We present numerical results that demonstrate the (loopy)
BP performance in simulated IEEE 14 and 30 test case
models and comment on the BP convergence.

II. ELECTRIC POWER SYSTEM STATE ESTIMATION

The SE problem reduces to solving the system of equations:

z = h(x) + u, (1)

where x = (x1, . . . , xn) is the vector of the state variables,
z = (z1, . . . , zk) is the vector of independent measurements
(where n ≤ k), and u = (u1, . . . , uk) is the vector of
measurement errors.
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The nature of measurement functions h(x) defines the
type of the SE: linear functions imply DC SE, while the
presence of both non-linear and linear functions imply AC
SE. In the electric power system, state variables are bus
voltage magnitudes and bus voltage angles, transformer
magnitudes of turns ratio and transformer angles of turns
ratio. Without loss of generality, in the rest of the paper, we
observe bus voltage magnitudes V = (V1, . . . , Vn) and bus
voltage angles θ = (θ1, . . . , θn) as state variables x. The
measurement errors u are assumed to have a zero-mean
Gaussian distribution.

The functions h(x) ≡ h(V,θ) that connect measurements
z to state variables x are described below.

Active and reactive power flow at the branch that connects
buses i and j:

hPij
(·) = gijV

2
i − ViVj(gij cos θij + bij sin θij)

hQij
(·) = −(bij + bsi)V

2
i − ViVj(gij sin θij − bij cos θij),

(2)
where Vi and Vj are bus voltage magnitudes, while θij =
θi−θj is the bus voltage angle difference between buses i and
j. The parameters in above equations include the conductance
gij and susceptance bij of the branch, as well as its branch
shunt element bsi.

Active and reactive injection power into the bus i:

hPi
(·) = Vi

∑
j∈H

Vj(Gij cos θij +Bij sin θij)

hQi(·) = Vi
∑
j∈H

Vj(Gij sin θij −Bij cos θij),
(3)

where H is the set of buses incident to the bus i, including
the bus i. The parameters Gij and Bij are conductance and
susceptance of the complex bus matrix.

Current magnitude at the branch connecting buses i and
j:

hIij (·) = [aV 2
i + bV 2

j − 2ViVj(c cos θij − d sin θij)]
1/2

a = g2ij + (bij + bsi)
2, b = g2ij + b2ij

c = g2ij + bij(bij + bsi), d = gijbsi.

(4)

The equations (2) - (4) define functional dependencies of
the AC SE model. The AC model is usually approximated
(linearised) and, depending on the approximation, different DC
models are obtained. In this paper, we focus on the extended
DC model [7]. Similarly as the classical DC model, this model
adopts θi − θj ≈ 0, which implies cos θij ≈ 1 and sin θij ≈
θij . Unlike the classical DC model, conductance of a branch
gij is non-zero, and without loss of generality, bus voltage
magnitudes are Vi = 1 + ∆Vi and Vj = 1 + ∆Vj . Note that,
as compared to DC SE, the extended DC model takes into
account both reactive power flows and currents.

With these assumptions and neglecting all quadratic terms,
the active and reactive power flow equations (2) reduce to:

hPij
(·) = gij(Vi − Vj)− bijθij

hQij
(·) = −(bij + 2bsi)Vi + bijVj − gijθij + bsi.

(5)

The injection active and reactive power (3), reduces to:

hPi(·) =GiiVi +
∑
j∈H\i

Bijθi +
∑
j∈H\i

(GijVj −Bijθj)

hQi
(·) =− (2Bii +

∑
j∈H\i

Bij)Vi +
∑
j∈H\i

Gijθi

−
∑
j∈H\i

(BijVj +Gijθj) +
∑
j∈H

Bij ,

(6)

where H \ i is the set of buses incident to the bus i.
The relation for current magnitude (4) is transformed into

a linear equation conditioned that bsi = 0:

hIij (·) =
√

(g2ij + b2ij)|Vi − Vj |. (7)

The system of equations (5) - (7) defines a set of extended
DC model measurement functions. Note that, unlike classical
DC model where state variables include only bus voltage
angles, the extended DC model takes into account bus
voltage magnitudes.

Under the assumption that measurement errors follow zero-
mean Gaussian distribution, the probability density function
associated with the m-th measurement:

N (zm|x, σ2
m) =

1

σm
√

2π
exp

{
[zm − hm(x)]2

2σ2
m

}
, (8)

where zm is the value of the measurement, σ2
m is the

measurement variance, and the function hm(x) connects the
vector of state variables to the value of the m-th
measurement.

One can find the maximum a posteriori probability (MAP)
solution to the SE problem via maximization of the likelihood
function, which is defined via likelihoods of k independent
measurements:

arg max
x
L(z|x) =

k∏
h=1

N (zh|x, σ2
h). (9)

The conventional SE is using weighted least-squares to solve
the optimization problem defined in (9).

III. FACTOR GRAPHS AND BELIEF PROPAGATION
ALGORITHM

As in many fields, SE in an electric power system deals
with the problem of determining state variables x according
to the noisy observed data z and some prior knowledge:

p(x|z) =
p(z|x)p(x)

p(z)
. (10)

Assuming that the prior probability distribution p(x) is
uniform, and given that p(z) is a constant, the most probable
or MAP solution of (10) reduces to the maximum likelihood
solution, as given below [8]:

x̂ = arg max
x

p(x|z) = arg max
x

p(z|x) = arg max
x
L(z|x).

(11)
If L(z|x) can be factorized into factors affecting small subsets
of state variables x, which is the case as given in (9) due to



the localized nature of measurement functions, then the above
problem can be efficiently solved using probabilistic graphical
modelling approach. The solution involves defining the FG
corresponding to (9), and subsequently deriving expressions
for BP messages exchanged over the FG, as detailed next.

A. FG representation of bus/branch model

In order to transform the bus/branch model into the FG,
every state variable (bus voltage magnitudes and bus voltage
angles) is represented as a variable node while every
measurement is represented as a factor node. Links between
variable nodes and factor nodes are defined according to the
measurement functions, where each variable node is
connected to the factor node if the variable is an argument of
the measurement function.

Measurements that directly measure state variables are
referred to as direct measurements, and those include
zdir ∈ {zVi

, zθi}. Otherwise, we call indirect measurements
those that measure state variable indirectly such as
zind ∈ {zPij

, zQij
, zPi

, zQi
, zIij}. The corresponding factor

nodes in the FG are denoted as fdir ∈ {fVi , fθi} and
find ∈ {fPij , fQij , fPi , fQi , fIij}, respectively. Note that the
relationship between indirect measurements and state
variables is described using measurement functions.

Observe a part of the electric power grid that consists of
two buses with direct Mdir and indirect measurement device
Mind.

i j
M

dirM

ind

Fig. 1. Two buses part of an electric power grid

Input data for SE from these devices are Gaussian-type
functions:

Mdir : N (zdir|xi, σ2
dir) ∝ exp

{
(zdir − xi)2

2σ2
dir

}

Mind : N (zind|x, σ2
ind) ∝ exp

{
[zind − hind(x)]2

2σ2
ind

}
,

(12)

where measurement functions are defined as: xi ∈ {Vi, θi}
and hind(·) ∈ {hPij (·), hQij (·), hPi(·), hQi(·), hIij (·)}, while
variances σ2

dir and σ2
ind define errors of measurement devices.

The BP algorithm on FGs proceeds by passing two types
of messages along the edges of the FG: a variable node to a
factor node and the factor node to a variable node messages.
Both variable and factor nodes in a FG process the incoming
messages and calculate outgoing messages. As a general BP
rule, an output message on any edge can be computed only
upon reception of incoming messages from all other edges.

B. Message from a variable node to a factor node

As an example, let us consider calculation of the message
µVi→fPij

as illustrated in Fig. 2. The direct measurement
node fVi will initialize and send the Gaussian message
µfVi

→Vi
∝ N (zVi

|Vi, σ2
Vi

) represented by a pair (zVi
, σ2
Vi

) to
the variable node Vi. Let us assume, for the time being, that
the messages coming from the remaining edges of the graph
are also Gaussian and represented by their corresponding
mean-variance pairs. We generically denote such a message
as µfr→Vi

∝ N (zfr→Vi
|Vi, σ2

fr→Vi
) and consider only a

single such edge in Fig. 2. Note that this message carries the
belief about the variable node Vi as observed by its
neighbouring factor node fr.

The message from a variable node to a factor node is equal
to the product of all incoming factor node to variable node
messages arriving at all the other incident edges. The resulting
message represents the Gaussian function with mean zVi→fPij

and variance σ2
Vi→fPij

:

µVi→fPij
= µfVi

→Vi · µfr→Vi ∝ N (zVi→fPij
|Vi, σ2

Vi→fPij
)

zVi→fPij
=
zViσ

2
fr→Vi

+ zfr→Viσ
2
Vi

σ2
Vi

+ σ2
fr→Vi

σ2
Vi→fPij

=
σ2
Vi
σ2
fr→Vi

σ2
Vi

+ σ2
fr→Vi

;

(13)

or in a more practical form:

iV→rfµ

iV→
iV

fµ

jθiθ

jViV

iVf

ijPf

ijPf→iVµ

Fig. 2. Message from variable node to factor node

1

σ2
Vi→fPij

=
1

σ2
Vi

+
1

σ2
fr→Vi

zVi→fPij
=

(
zVi

σ2
Vi

+
zfr→Vi

σ2
fr→Vi

)
σ2
Vi→fPij

.

(14)

To summarize, a general form of the message from a
variable node x to a factor node f is:

µx→f =
∏

fa∈F\f

µfa→x ∝ N (zx→f |x, σ2
x→f )

1

σ2
x→f

=
∑

fa∈F\f

1

σ2
fa→x

; zx→f =

( ∑
fa∈F\f

zfa→x

σ2
fa→x

)
σ2
x→f ,

(15)
where F \ f defines the set of factor nodes which are directly
connected to the variable node x excluding the factor node f .



C. Message from a factor node to a variable node

As an example, consider calculation of the message
µfPij

→Vj , as shown in Fig. 3. The message can be computed
only when all other incoming messages (variable to factor
node messages) are known. As indicated, these messages are
Gaussian functions, denoted as:

µVi→fPij
∝ N (zVi→fPij

|Vi, σ2
Vi→fPij

)

µθi→fPij
∝ N (zθi→fPij

|θi, σ2
θi→fPij

)

µθj→fPij
∝ N (zθj→fPij

|θj , σ2
θj→fPij

).

(16)

jθiθ

jViV

iVf

ijPf

ijPf→iVµ

ijPf→iθµ

jV→
ijPfµ

ijPf→jθµ

Fig. 3. Message from factor node to variable node

The message from a factor node to a variable node is
defined as a product of all incoming messages of the factor
node multiplied by the Gaussian function associated to the
factor node and marginalized over all of the variables
associated with the incoming messages:

µfPij
→Vj =

∫
Vi

∫
θi

∫
θj

N (zPij |Vi, θi, Vj , θj , σ2
Pij

)

· µVi→fPij
· µθi→fPij

· µθj→fPij
dVidθidθj

∝ N (zfPij
→Vj
|Vj , σ2

fPij
→Vj

).

(17)

The result is the Gaussian function with mean zfPij
→Vj and

variance σ2
fPij
→Vj

:

zfPij
→Vj =

zPij − gijzVi→fPij
+ bijzθi→fPij

− bijzθj→fPij

−gij

σ2
fPij

→Vj
=
σ2
Pij

+ g2ijσ
2
Vi→fPij

+ b2ijσ
2
θi→fPij

+ b2ijσ
2
θj→fPij

g2ij
.

(18)
The parameters gij and bij are defined according to the
indirect measurement function hPij (·). Given that the input
initialization messages to the BP algorithm are Gaussians,
and that both variable and factor node processing preserve
Gaussian form of messages, the presented BP for extended
DC model is an instance of Gaussian BP [9].

To summarize, a general form of the message from a factor

node f to a variable node x is:

µf→x =

∫
x1

. . .

∫
xp

N (zf |x, x1 . . . xp, σ2
f )

∏
xb∈X\x

µxb→f · dxb ∝ N (zf→x|x, σ2
f→x)

zf→x =
zf − C1zx1→f − · · · − Cpzxp→f −K

C

σ2
f→x =

σ2
f + C2

1σ
2
x1→f + · · ·+ C2

pσ
2
xp→f

C2
,

(19)

where X \ x = {x1, . . . , xp} are the set of variable nodes
incident to the factor node f , excluding the variable node x.
The coefficients C,C1, ..., Cp,K are defined according to the
measurement function associated with the factor node with
mean zf and variance σ2

f :

f(x, x1 . . . xp) = Cx+ C1x1 · · ·+ Cpxp +K. (20)

D. Marginals

The marginals of each state variable are obtained as the
product of all incoming messages into the variable node. Thus
the resulting marginals are Gaussians with mean and variance
calculated as in (15), except that the product includes all terms
fa ∈ F .

E. Convergence

It is well known that loopy BP does not always converge
to correct marginals. Our numerical studies show that the
convergence of BP algorithm strongly depends on
measurement data, where specific inputs may lead to
oscillatory behaviour of messages. After extensive numerical
analysis, the following heuristic solution is adopted to
improve the convergence of the BP algorithm [10]. We
modify updates of factor to variable node messages µkf→x in
the current (k-th) iteration as follows:

µkf→x = [1− δ(p)] · µkf→x + δ(p) · α · [µk−1f→x + µkf→x],
(21)

where δ(p) ∈ {0, 1} is Bernoulli random variable with
parameter p, independently sampled for each message µkf→x,
and α is weighting coefficient. For the values of
p ∈ [0.4, 0.6] and α = 0.5, our numerical studies show that
the BP algorithm always converges successfully to the
correct solution.

IV. NUMERICAL EXAMPLE

Fig. 4 shows the IEEE 14 bus test case. The available
measurement devices are: active MPij and reactive MQij

power flow, injection active MPi and reactive MQi power,
voltage magnitude MVi

and angle Mθi . Measurement
devices have readings zPij

, zQij
, zPi

, zQi
, zVi

and zθi with
variances σ2

Pij
, σ2

Qij
, σ2

Pi
, σ2

Qi
, σ2

Vi
and σ2

θi
, respectively.

The set of measurements is generated using extended DC
power flow analysis, additionally corrupted by Gaussian
white noise. Using Monte Carlo approach, we generate 1000
random sets of measurement values for different values of
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Fig. 4. The IEEE 14 bus test case

measurement variances from the set σ2 = {σ2
1 , σ2

2 , σ2
3}

= {0.012, 0.0012, 0.00012} [p.u.], and fed them to the
proposed BP-based SE algorithm in order to obtain the
average performance results. The parameter which is used to
evaluate convergence behaviour is root mean square error
(RMSE) defined as RMSE = 1

2n ||x̂− x||2, where x̂ is
weighted least-squares solution, while x represents the
solution of the BP algorithm.

The iterative BP algorithm is applied as follows:
1) all factor nodes associated to direct measurements send

messages to corresponding variable nodes;
2) all variable nodes send messages along incidence edges

(except to an edge towards a factor node associated to
direct measurement) the form of the messages is:

a) messages are equal to the message from step 1, if
variable nodes have direct measurements;

b) messages take the form of the ”flat start” given
by distribution with means Vi = 1 or θi = 0 and
variances σ2

Vi
→∞ or σ2

θi
→∞, if variable nodes

do not have direct measurements;
3) all factor nodes compute messages to incident variable

nodes according to (19);
4) all variable variable nodes compute messages to incident

factor nodes according to (15);
5) all variable nodes compute corresponding marginal

distributions;
6) repeat steps 3, 4, 5 until BP converges.
Fig. 5 shows the convergence of the proposed BP towards

the weighted least-squares solution for IEEE 14 bus case
presented in Fig. 4. We note that the BP solution converges
to the weighted least-squares solution for a range of noise
variances within several hundreds of iterations. We obtained
similar curves for IEEE 30 bus test case. In fact, comparing
our results with the results presented in [11], the BP
algorithm has comparable number of iterations with the best
performing distributed algorithms analysed therein. Note that
[11] analyses multi-area SE problem with four areas defined

on the IEEE 14 network, while we are dealing here with
fully distributed case which is expected to have slower
convergence.

Fig. 5. The IEEE 14 convergence performance for variances σ2

V. CONCLUSION

In this paper, we provided FG representation and applied
the BP algorithm to efficiently evaluate the SE solution for
the extended DC model. The generic format of BP messages
is presented that will be preserved (albeit somewhat extended)
for the non-linear AC model; as demonstrated in our follow
up work.
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