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1
Abstract—The potential gains of multiple antennas in wireless

systems can be limited by channel state information imperfec-
tions. In this context, this paper tackles the limited feedback in
multiuser correlated multiple input single output (MU-MISO).
We propose a framework to feedback the minimum number of
bits with limited performance degradation. This framework is
based on decor relating the channel state information by com-
pression and then quantize the compressed (CSI) and feedback
it to the base station (BS). We characterize the rate loIEEss
resulting from the proposed framework. An upper bound on
the rate loss is derived in terms of the amount of feedback and
the statistics of the channel. Based on this characterization, we
propose an adaptive bit allocation algorithm that takes into the
account the channel statistics to reduce the rate loss induced by
the quantization. Moreover, in order to maintain a constant rate
loss with respect to perfect CSI, it is shown that the number of
feedback bits should scale linearly with the SNR (in dB) and to
the rank of the user transmit correlation matrix. We validate the
proposed framework by Monte-carlo simulations.

Index Terms—Multiuser MISO, CSI feedback, vector quanti-
zation, Karhunen-Leóve Transform (KLT), beamforming.

I. INTRODUCTION

The channel state information plays an important role in

designing the appropriate beamforming to serve multiple users

simultaneously without inducing harmful interference [1].The

CSI acquisition techniques can be classified into feedback

and reciprocity techniques. In the feedback systems (so-called

frequency devision duplexing (FDD)), a training sequence is

broadcasted by the BS, which is measured by users, and a

limited feedback link is considered from the users to the

base station. In [2]- [8], this mode is discussed for different

scenarios. In [2], the author shows that in order to achieve full

multiplexing gain in the MIMO downlink channel in the high

signal to noise ratio (SNR) regime, the required feedback rate

per user grows linearly with the SNR (in dB). The main result

in [3] is that the extent of CSI feedback can be reduced by

exploiting multi-user diversity. While in [4], it is shown that

non-random vector quantizers can significantly increase the

MIMO downlink throughput. Furthermore, the authors in [6]

study the impact of quantization on the sum rate performance

in the downlink of correlated multiple antennas single cell

systems.

The CSI is usually characterized by channel direction infor-

mation (CDI) and channel quality information (CQI). In the

literature, CDI is usually quantized while CQI is assumed to be
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available at the BS [2]. In this paper, we study the performance

of limited feedback scenarios assuming that the adopted CSI

acquisition model is FDD. The contribution of this paper can

be summarized as:

• A framework to feedback the CDI of the channel, which

is based on joint compression and quantization is pro-

posed. In this framework, a more generic characterization

can be formulated and derived. We exploit the corre-

lated channel characteristics and the capability of imple-

menting channels in lower dimensional vectors through

compression. We utilize the optimality of Karhunen-

Leóve Transform (KLT) and its capability to compress

the information in lower vector dimensions.

• The rate loss of the proposed feedback scheme is charac-

terized. Depending on this characterization, we suggest a

new feedback allocation strategy that exploits the benefits

of compression and hence finds the number of bits that

is required to feedback to information without severe

degradation.

The contributions of this paper are different from the previous

literature since it exploit the channel correlation to employ

compression before the quantization. However the work in

[2] characterized the rate loss resulted from the quantization

without introducing the compression concept since it tackles

the uncorrelated channels.

Notation: We use boldface upper and lower case letters

for matrices and column vectors, respectively. (·)H , (·)∗, and

(.)T stand for Hermitian transpose, conjugate , and transpose

of (·). E(·) and ‖ · ‖ denote the statistical expectation and the

Euclidean norm, we use bold upper and lower case letters for

matrices and column vectors, respectively.

II. SYSTEM MODEL

We consider a multiuser MISO channel, where a transmitter

equipped with M antennas communicates with K single-

antenna receivers. The received signal at kth user, denoted by

yk ∈ C can be written as

yk = hkx+ nk, (1)

where hk ∈ C
1×M represents the channel between the base

station and the kth user. In addition, x ∈ C
M×1 stands for

the transmit signal vector with tr(xxH) = P , and nk is the

additive Gaussian noise for user k with zero mean and unit



variance. Using x =
∑K

k=1 wksk, the received signal at kth

can be formulated as

yk =

√

P

M
hkwksk +

∑

j,j 6=k

√

P

M
hkwjsj + nk (2)

where P is the total transmit power from the base station, and

wk ∈ C
M×1, sk stand for linear beamforming vector and a

data symbol for user k satisfying E[|sk|
2] = 1.

A. Correlation model

Let us assume kth user channel is modeled as hk =
R

1/2
k hw,k where R

1/2
k = Uk∆

1/2
k UH

k is the square root

of the transmit correlation matrix Rk and hw,k is a vector

whose elements are i.d.d. complex Gaussian distributed with

variance equals to 1. Vectors hw,k are assumed to be mutually

independent. In this model, the eigenvalues Λk of the transmit

correlation matrices are independent from one user to another.

Additionally, let us assume that the eigenvalues of ∆
1/2
k ,

denoted as λk and ordered in decreasing order of magnitude,

can be written as

{λ1,k, . . . , λnt,k}
rk=1
= {λ1,k, 0, . . . , 0} (3)

rk=2
= {λ1,k, λ2,k, . . . , 0}

...
rk=nt
= {λ1,k, λ2,k, λ3,k, . . . , λnt,k}

where rk can be thought of as the rank of the transmit correla-

tion matrix. The channel covariance Rk must be estimated. It

is reasonable to assume that Rk changes slowly compared

to the coherence time of the channel hk. Rk, therefore,

can be obtained at the transmitter (or BS) by the uplink in

FDD systems, or by subspace tracking algorithm [12] using

the downlink training. In some scenarios, the eigenvalues of

Rk can have different values, some of them have significant

impact on the response (very large in comparison to others)

and the rest are insignificant but not necessary equal to

zero. Therefore, the insignificant ones can be approximated

to zero and truncated without influential impact on the system

performance.

B. CSI Feedback Model

We assume that each user has a perfect knowledge of its

channel hk. It is assumed that each user perfectly feeds back

the CQI to the BS. Moreover, it is assumed that CQI feedback

is not included in total feedback amount per user to simplify

the analysis2.

The quantization of a unit norm vector ĥk = hk

‖hk‖
is chosen

from distinct quantization codebook Ck = {ck1, . . . , ckNk
} of

size Nk = 2Bk . By using minimum chordal distance the indices

can be

ck,n = arg max
1≤n≤2Bi

|cHk,nĥk|
2. (4)

2This feedback model is exploited widely in the literature, see [2]- [9].

The codebook Ck is calculated offline and it is priori known

at the base station and kth user. Each user feedbacks only the

index n to the base station using B feedback bits per user.

C. Beamforming

The utilized transmission technique is zero forcing beam-

forming. This aims at canceling the interference between

the multiuser interference. The beamforming matrix can be

formulated as W = [w1, . . . ,wK ] = HH(HHH)−1. Due to

imperfect CSI, the received signal to interference noise ratio

can be expressed as:

ζk =
P
K |hkwk|

2

∑

j,j 6=k
P
K |hkwj |2 + σ2

n

. (5)

In ZFB, the CDI is the part of the CSI that is responsible

of designing the accurate beamforming vectors while CQI

accompanied by CDI is responsible for user selection and

power allocation strategies at the base station.

III. LOSSLESS COMPRESSION

In this section, we exploit the knowledge of the second

order statistics at the users’ terminal to employ lossless com-

pression strategy to simplify the vector quantization. The goal

of compression is to represent the data in a more compact

form; i.e a representation that requires fewer dimensions for

encoding the same data to simplify the quantization procedure.

Therefore, closed form expressions for the feedback allocation

can be formulated for any generic scenario. In [13], the

authors exploited the compression capability of discrete cosine

transform (DCT) to reduce the required amount of feedback

bits in massive MIMO scenario.

A. Karhunen-Leóve Transform (KLT)

The Karhunen-Leóve transform is defined as the linear

transformation whose basis vectors are the eigenvector of

the covariance information of the related data. The idea of

utilizing the eigenvector as the basis vectors ensures that the

first coefficient power is maximized while keeping the orthog-

onality among the basis and as consequence the subsequent

coefficients are maximized respectively. KLT has attractive

characteristics that motivates its utilization as compression

technique in our work. First, the KLT has the optimal energy

compaction, reducing the number of sufficient coefficients

that is required to reconstruct the data at a desired accuracy.

Second, rotating the data makes all off-diagonal terms of the

covariance matrix equal zero ( i.e. the KLT decorrelates the

data). Using Rk = UkΛkU
H
k ., the uncorrelated representa-

tion of the channel vector hk, which is denoted by vk can be

written as

vk = UH
k hT

k . (6)

Lemma 1. KLT transformation does not change the channel

power (i.e. ‖vk‖
2 = ‖hk‖

2).

Proof. This rises from the fact that the transformation matrix

UH
k is a unitary matrix.



It should be noted that the channel covariance matrix for the

KLT transformed vector vT
k equals to Λk, which is different

from the original channel vector Rk.

B. Joint Lossless Compression and Vector Quantization

This enables the alternative data to be encoded with fewer

number of bits for a given distortion than the original data. The

KLT is the optimal transformation in terms of minimizing the

bit rate. Depending on the rank of the channel, the information

content in vector vk is condensed in the first few components

while the trailing components have zero power, hence, they

can be truncated without losing any information content. This

fact can be exploited efficiently to reduce the required number

of quantization bits to achieve certain distortion. Since the

information contents of the vk are condensed in the first rk
components, the vector vk can be truncated as:

v̂k = Tkvk, (7)

where T ∈ {0, 1}rk×M = [Irk×rk0rk×(M−rk)].

Theorem 1. The quantization distance d for quantizing the

truncated KLT compressed version of the channel vector v̂(k,i)

can be bounded as:

E[sin2(∠(v̂k, ṽk))] = 2Bkβ
(

2Bk ,
rk

rk − 1

)

≤ 2
−Bk
rk−1 ,(8)

where ∠(v̂k, ṽk) denotes the angle between the real channel

direction and quantized channel direction.

Proof. Truncating the trailing zero components of the com-

pressed vector does not affect the rest of the components

as long as the zeros can be retrieved at BS. The number of

zero components in each compressed channel vector equals to

M−rk, which leaves rk components to be quantized. The new

quantization distance can be evaluated as Theorem 1 [2].

C. Loss Characterization

To characterize the performance degradation, we use the

rate loss metric ∆Rk, which can be expressed as follows:

∆Rk = RP,k −RL,k (9)

where Rp,k denotes the rate assuming perfect CSI, and RL,k

denotes the rate assuming limited feedback. The rate under

full CSI assumption can be formulated as:

RP,k = Ehk
[log2(1 +

P |hkwk|
2

Kσ2
)], (10)

while the rate under limited CSI assumption can be expressed

as:

RP,L = Ehk
[log2(1 +

P
K |ĥkwk|

2

∑

j 6=k
P
K |ĥkwj |2 + σ2

)] (11)

Using the compress and quantize feedback strategy, the upper

bound on the rate can be formulated as the following theorem

Theorem 2. If compress and quantize-finite scheme is utilized,

the rate loss per user due to rate feedback is function of the

expected quantization error, δ, which is

∆Rk(P,K,hk, rk,M) ≤ log(1 + φCQ)

where φCQ = (M−1)P
M 2Biβ

(

2Bi , ri
ri−1

)

≤ (M−1)P
M 2

−
Bi

ri−1 .

Proof. The rate loss can be formulated as:

∆Rk ≈ Ehk
[log2(1 +

∑

i,i 6=k

P

M
|ĥkwi|

2)] (12)

≤ log2(1 +
∑

i,i 6=k

Ehk
[
P

M
|ĥkwi|

2]) (13)

≤ log2(1 +
∑

i,i 6=k

Evk
[
P

M
|ṽT

k U
T
kT

T
kwi|

2]), (14)

where ṽk is the quantized version of v̂k, and it can be

formulated as:

ṽk = v̂k cos(∠(v̂k, ṽk)) + qk sin(∠(v̂k, ṽk)). (15)

and qk stands for error vectors due to channel quanti-

zation. This makes the term Evk
[ṽT

k U
T
kT

T
kwi|

2] equal to

Evk
[
(

v̂k cos(∠(v̂k, ṽk)) + qk sin(∠(v̂k, ṽk))
)T

UT
kT

T
kwi|

2],
and finally it can be simplified to Evk

[sin2(∠(v̂k, ṽk))].

D. Joint Lossy Compression and Vector Quantization

In practice, the channel can be rank deficient which means

that some eigen directions have dominant contribution to the

signal power. Therefore, the eigen directions with less power

can be neglected without influential impact on the acquired

channel information. If the eigenvalues λk,i for certain eigen

directions below a certain threshold , the corresponding com-

ponents in the KLT domain can be approximated to zero. The

vector of discarded components from the response zk can be

expressed as:

zk = vk − v̄k. (16)

The power of approximated vector v̄k can be bounded by [16]:

‖v̄k‖
2 ≤ ‖vk‖

2 =

r̂k
∑

i=1

λk,i. (17)

The mean square error (MSE) of approximating vk by v̄k can

be formulated as:

E[‖v̄k − vk‖
2] =

nt
∑

i=r̂k+1

λk,i, (18)

where r̂k is the number of the components that their corre-

sponding eigenvalues are higher than the predefined threshold.

The quantization distance d for the truncated lossy compres-

sion can be expressed as:

E[sin2(∠v̂k, ˆ̄vk)] = 2Bkβ
(

2Bk ,
r̂k

r̂k − 1

)

≤ 2
−Bk
r̂k−1 . (19)

where r̂k denotes the number of the significant components

(i.e. cannot be approximated to zero). The acquired hk after



the lossy compression and the vector quantization can be

formulated as:

ˆ̂
hk = ˆ̄v

T
kT

T
kU

T
k (20)

≈

(

√

√

√

√

(1− 2
−

Bk
r̂k−1 )

∑r̂k
i=1 λk,i

(hk −Ukzk)
T

)

TT
kU

T
k + eUk(21)

The means square error resulted the joint lossy KLT and vector

quantization can be expressed as:

E[‖ˆ̂hk − hk‖
2] ≈ (

1
∑r̂k

i=1 λk,i

− 1)(1− 2
−

Bk
r̂k−1 ) + 2

−
Bk

r̂k−1 . (22)

If we take limBk→∞ E[‖ˆ̂hk − hk‖
2] = 1

∑r̂k
i=1

λk,i

− 1 and

lim∑r̂k
i=1

λk,i→1
E[‖ˆ̂hk − hk‖

2] = 2
−

Bk
r̂k−1 , we can see the

effect of vector quantization and KLT lossy compression on

the performance of the system. Moreover, it can be concluded

that in the scenario
∑r̂k

i=1 λk,i ≥ 0.5, the vector quantization

effect is dominant over the compression effect.

IV. FEEDBACK BITS SCALING AND ALLOCATION

A. Optimal Bit Allocation

In many scenarios, we have limited number of total feed-

back bits that should be allocated to all users. An adaptive

feedback that exploits KLT with random vector quantization

is proposed to reduce the rate loss resulted from the limited

feedback. For
∑r̂k

i=1 λk,i > 0.5, the optimization problem to

find the optimal bit allocation can be expressed as:

min
Bi∈{0,Z+}

∑

i
P
M 2Bkβ

(

2Bk , r̂k
r̂k−1

)

+ uk(1− 2Bkβ
(

2Bk , r̂k
r̂k−1

)

)

s.t.
∑K

k=1 Bk ≤ Bt, (23)

where uk = 1
∑r̂k

i=1
λk,i

− 1. The optimization problem in

(23) is non-linear integer programing (NIP) one. Therefore,

the optimal solution of the NIP problems is obtained by an

exhaustive search method using combinatorial optimization.

B. Suboptimal Bit Allocation

Due to the high computational complexity of the prob-

lem (23), we propose a sub-optimal feedback bits allocation

scheme with explicit solution. By changing the problem using

the upper bound of the quantization error and applying a

continuous relaxation technique to the integer constraint, we

can relax the optimization problem and formulate it as:

min
Bk∈{0,R+}

∑

i

Pck

K
2
−

Bk
r̂k−1

s.t.

K
∑

k=1

Bk ≤ Bt, (24)

where ck = 1 − uk = (2 − 1
∑r̂k

i=1
λk,i

). Using the fact that

the objective function is logarithmically convex, we apply a

convex optimization technique to solve the problem in (23).

The related Lagrange function can be expressed as follows:

L(Bk) =
∑

i

Pck

K
2
−

Bk
rk−1 + λ(

K
∑

k=1

Bk −Bt). (25)

To solve the optimization problem, we need to find the

derivative of the Lagrange function with respect to all variables

Bi, λ, i.e. Karush-Kuhun Tucker (KKT) conditions as:

∂L(Bk)
∂Bk

= −
Pck

K loge 2(r̂k − 1)
2
−

Bi
r̂k−1 + λ (26)

∂L(Bk)
∂λ =

K
∑

k=1

Bk −Bt. (27)

Using (26)-(27), the final bit allocation can be expressed as:

Bk = min

{

Bt,

[ Bt(r̂k − 1)
∑K

k=1
r̂k −K

+ (r̂k − 1) log2

(
∏

k ĉ

r̂k−1
∑

r̂k−K

k

ĉk

)

]+

}

, (28)

where ĉk = Pck
K loge 2(rk−1) and [x]+ = max(x, 0). It can be

noted that the bit allocation depends on the number of the

significant components in the KLT response and their total

power. Assuming no lossy compression ck = 1, the final

bit allocation in the scenario of lossless compression can be

formulated as:

Bk = min

{

Bt,

[ Bt(rk − 1)
∑K

k=1
rk −K

+ (rk − 1) log2

(
∏

k(rk − 1)
rk−1

∑
rk−K

(rk − 1)

)

]+

}

.

It can be noted that the bit allocation depends on the rank of

each user as well as the sum of all users’ channel rank.

C. Proposed Compress and Quantize Feedback Algorithm

We exploit the lossless compression capability of KLT

in FDD setup in multiuser single cell MISO system. The

compress and quantize (CQ) feedback algorithm can be sum-

marized as follows:

• Initialization (at each receiver); find the correlation matrix

rank rk, or the number of significant components r̂k.

• Data compression (at each receiver). Acquire the com-

pressed version in KLT domain vk = UH
k hk.

• Data truncation (at each receiver). The KLT reduces the

information representation in fewer useful elements and

the rest are zeros. So the zeros can be removed from

the data representation v̂k ∈ C
rk = Tkvk, where Tk ∈

{0, 1}rk×M = [Irk×rk0rk×(M−rk)]
• Data quantization (at each receiver). Find the relevant

quantization codebook size based on solving the opti-

mization (28). Find the closest qunatization codeword

ṽk = cD,ni
, ni = arg max

1≤j≤2Bi

|cHD,ni
v̂k|

2

• Data feedback (at each receiver). The receiver feedbacks

the quantized channels to transmitter.

• Data recovery (at the transmitter). The transmitter regen-

erate the M × 1 channel vector by appending the vector

ṽk by M − rk zeros to get the vector v̂k = TT ṽk. A

further step is required to get the CSI data on their domain

h̃k = Ukṽk.



D. Feedback scaling

In this section, we derive the scaling law of feedback bits

per user for maintaining a constant rate loss. By using the

proposed CQ feedback bit allocation strategy, we can propose

the following lemma as:

Lemma 2. For ZFB and lossless compression, if user’s

channel has the rank rk, the bit scaling that can achieve a

constant rate loss δk can be written as

Bk ≤ (rk − 1) log2

(

P (K − 1)

K(2δk − 1)

)

. (29)

To have a total rate loss
∑

k δk, the total numbers of

feedback bits should scale as:

Bt ≤

(

(

∑

k

rk −K

)

log2

(

P (K − 1)

K

)

−

∑

k

(

rk − 1

)

log2
(

2δk − 1
)

)

(30)

For the full rank transmit correlation, the number of zero

components equals to zero. The advantage of employing

lossless compression lies in decorrelating the channel vector

hk, which simplifies the bit allocation in the previous sections.

In the scenario of rank deficient correlation matrices, the

gains of proposed algorithms are anticipated to be higher due

the compression capability of KLT. Moreover, the proposed

techniques can be used for CSI acquisition in Massive MIMO

scenarios [13]- [17], where the channel has high probability

to be spatially correlated or rank deficient.

V. NUMERICAL RESULTS

In this section, numerical results are provided to demon-

strate and get more insights of results derived in the pre-

vious sections. The assumed secenario for the first two fig-

ures: E[hk] = 1∀k ∈ K, the users’ channel ranks equal

to [4 2 4 3], Λ1 = diag[0.45, 0.25, 0.25, 0.05], Λ2 =
diag[0.71, 0.29, 0, 0], Λ3 = diag[0.42, 0.28, 0.15, 0.15], Λ2 =
diag[0.44, 0.39, 0.17, 0].

Fig. 1 depicts the comparison of the sum rate under limited

and full CSI scenarios. For limited CSI scenarios, we study the

performance of our proposed algorithm (CQ) and compare it to

the uniform bit allocation, in which all the users are allocated

the same amount of bits. It can be concluded that at low

SNR regime the sum rate performance is not influenced by the

limited feedback whether it is done uniformly or by using CQ.

This is due to the fact that the dominant factor in this regime is

the noise, which makes the interference terms resulted from the

quantization insignificant. However, this trend changes at high

SNR regime, where the interference is the dominant factor.

It can be deduced that CQ achieves higher sum rates than

the uniform quantization at Bt = 10, Bt = 20. This can be

explained by the higher resolution provided by the quantization

for the compressed channel components. This means that if a

certain user has a higher rank, it is better to allocate it more

bits than the other users. Finally, it can be noted the gain of
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CQ over uniform quantization reaches to 4,5 dB at high SNR

regime.

Fig. 2 depicts the number of the required average feedback

bits per users Bavg (the total number of feedback bits KBavg)

using CQ to achieve the sum rate under full CSI scenario. It is

clear that the CQ curve keeps following the one obtained with

perfect CSIT, suggesting that the trend predicted by Lemma 2

is correct. It should be noted that Lemma 2 overestimates the

required number of bit since the calculation tackles the upper

bound of the rate loss.
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Fig. (3) depicts the sum rate performance with respect the

compression value ρ, i.e. r̂k is selected to satisfy
∑r̂k

i=1 λk,i ≤
ρ for each user. The eigenvalues for the assumed scenario in

Fig. (3) can be illustrated as

Λ1 = diag[0.2439, 0.2439, 0.2439, 0.1463, 0.0732, 0.0488]

Λ2 = diag[0.2439, 0.2439, 0.2195, 0.1220, 0.1220, 0.0488]

Λ3 = diag[0.55, 0.45, 0, 0, 0, 0]

Λ4 = diag[0.2381, 0.2143, 0.1905, 0.1667, 0.1667, 0.0238]

Λ5 = diag[0.2759, 0.2759, 0.2414, 0.1379, 0.0690, 0]

Λ6 = diag[0.75, 0.25, 0, 0, 0, 0].

For lossless compression ρ = 0, the number of truncated

components equal to 0, 0, 4, 0, 1, 4 respectively It can be noted

the increasing compression factor ρ decreases the total sum

rate due to the fact that lossy compression truncates the

information that cannot be retrieved at the base station and the

increased interference resulted from the increased inaccuracy

of the acquired CSI.

VI. CONCLUSION

In this work, we proposed a new feedback algorithm based

on jointly using KLT and random vector quantization of cor-

related multiuser MISO channel. Users have the capability of

adapting their codebook as a function of their spatial channel

statistics to assign the suitable number of bits to quantize the

channel direction information under a total number of bits

constraints. We exploit the KLT capability of compression to

represent the CDI in lower dimension to enable more efficient

vector quantization. An analytical upper bound of the rate loss

induced by quantization is derived. Based on this derivation,

we proposed a closed form feedback bits allocation scheme

which minimizes the expected quantization error by adaptively

distributing given feedback bits per user according to the users’

channel rank. It can be concluded that the proposed scheme

can minimize the rate loss induced by the quantization and it

can achieve better performance in comparison with uniform

bit allocation.
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