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Abstract—This paper investigates resource allocation for si-
multaneous wireless information and power transfer (SWIPT)
downlink systems based on a non-linear energy harvesting model.
The resource allocation algorithm design is formulated as a non-
convex optimization problem for the maximization of the total
harvested power. The proposed problem formulation not only takes
into account imperfect channel state information (CSI) but also
guarantees the quality-of-service (QoS) of information transfer.
A novel iterative algorithm is proposed to obtain the globally
optimal solution of the considered non-convex optimization prob-
lem. In each iteration, a rank-constrained semidefinite program
(SDP) is solved optimally by SDP relaxation. Simulation results
demonstrate the significant gains in harvested power and the
robustness against CSI imperfection for the proposed optimal
resource allocation, compared to a baseline scheme designed for
perfect CSI and the conventional linear energy harvesting model.

I. INTRODUCTION

The development of the Internet of Things (IoT) has triggered
an exponential growth in the number of wireless communica-
tion devices worldwide for applications such as environmental
monitoring, energy management, and safety management, etc.
[1]. In particular, battery powered wireless sensor modules will
be unobtrusively and invisibly integrated into clothing, walls,
and vehicles, at locations which are inaccessible for wired
recharging. The limited lifetime of wireless nodes creates a
bottleneck for communication networks. As a result, wireless
powered communication was proposed in the literature [2]–[9].
Specifically, wireless communication devices harvest energy
from ambient propagating electromagnetic (EM) waves in radio
frequency (RF) for extending their lifetimes and supporting the
energy consumption required for future information transmis-
sion. Besides, wireless channels are broadcast channels which
facilitates the possibility of simultaneous wireless information
and power transfer (SWIPT) leading to a new paradigm in
wireless communication system design.

Recently, the literature has focused on resource allocation
algorithm designs that improve the efficiency of various SWIPT
systems [4]–[9]. In [4] and [5], resource allocation algorithms
were studied for the maximization of the achievable energy
efficiency of single-carrier and multi-carrier SWIPT networks,
respectively. In [6], by exploiting the extra degrees of freedom
offered by multiple antennas, beamforming was proposed to
maximize the total transferred wireless power. However, the re-
sults in [4]–[6] were based on the overly optimistic assumption
of perfect channel state information (CSI). On the other hand,
beamforming designs for secure SWIPT networks with the
consideration of imperfect CSI were investigated in [7] and [8]
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for different system settings. However, in most of the literature
[2]–[8], resource allocation algorithms were designed based on
the assumption of a linear energy harvesting model which was
recently shown to be inaccurate and not capable of capturing
the non-linear behaviour of RF energy harvesting circuits [9].
Unfortunately, resource allocation algorithms designed for the
over simplified linear energy harvesting model may lead to
resource allocation mismatches resulting in severe performance
degradation. Motivated by the aforementioned prior works, this
paper studies the optimal resource allocation algorithm design
for SWIPT systems based on a non-linear energy harvesting
model, which provides efficient SWIPT despite the imperfect
CSI knowledge.

Notation: In this paper, we adopt the following notations.
AH , Tr(A), and Rank(A) represent the Hermitian transpose,
trace, and rank of matrix A; A � 0 indicates that A is a positive
semidefinite matrix; matrix IN denotes an N × N identity
matrix. vec(A) denotes the vectorization of matrix A. A⊗B
denotes the Kronecker product of matrices A and B. [B]a:b,c:d

returns a submatrix of B including the a-th to the b-th rows
and the c-th to the d-th columns of B. [q]m:n returns a vector
with the m-th to the n-th elements of vector q. A complex
Gaussian random vector with mean vector µ and covariance
matrix Σ is denoted by CN (µ,Σ), and ∼ means “distributed
as”. CN×M denotes the space of all N × M matrices with
complex entries. HN represents the set of all N -by-N complex
Hermitian matrices. E{·} denotes statistical expectation. |·|, ‖·‖,
and ‖·‖F denote the absolute value of a complex scalar, the
Euclidean norm, and the Frobenius norm of a vector/matrix,
respectively; Re{·} denotes the real part of an input complex
number.

II. SYSTEM MODEL

In this section, we define the channel and energy harvesting
models adopted for resource allocation algorithm design.

A. Channel Model

We consider a flat fading channel for downlink SWIPT
systems. The system consists of a transmitter, an information
receiver, and J energy harvesting receivers, cf. Figure 1. The
transmitter is equipped with NT ≥ 1 antennas. The information
receiver is a single-antenna device and each energy harvesting
receiver is equipped with NR ≥ 1 receive antennas to facilitate
energy harvesting. In each time slot, the received signals at
the information receiver and energy harvesting receiver j ∈
{1, . . . , J} are given by

y = hH(ws+ v) + n, and (1)
yERj

= GH
j (ws+ v) + nERj

, ∀j ∈ {1, . . . , J}, (2)
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Fig. 1. A downlink SWIPT communication system with an information
receiver and J = 2 energy harvesting receivers (ERs).

respectively, where s ∈ C and w ∈ CNT×1 are the data symbol
and the information beamforming vector, respectively. Without
loss of generality, we assume that E{|s|2} = 1. v ∈ CNT×1 is
an energy signal vector generated by the transmitter to facilitate
efficient wireless power transfer. v is modeled as a complex
Gaussian random vector with v ∼ CN (0,V). The channel
vector between the transmitter and the information receiver
is denoted by h ∈ CNT×1 and the channel matrix between
the transmitter and energy harvesting receiver j is denoted by
Gj ∈ CNT×NR . n ∼ CN (0, σ2

s ) and nERj ∼ CN (0, σ2
s INR)

are the additive white Gaussian noises (AWGN) at the infor-
mation receiver and energy harvesting receiver j, respectively,
where σ2

s denotes the noise power at the receiver.

B. Non-linear Energy Harvesting Model

The total received RF power at energy harvesting receiver j
is given by

PERj
= Tr

(
(wwH + V)GjG

H
j

)
. (3)

In practice, an energy harvesting circuit [11]–[13] is equipped
at the energy harvesting receiver which is used to convert the
received RF power into direct current (DC) power for future use.
Yet, practical energy harvesting circuits introduce various non-
linearities into the end-to-end wireless power transfer. In this
paper, we adopt a newly proposed non-linear parametric energy
harvesting model from [9] for resource allocation algorithm
design. In particular, based on experimental results, it has been
verified that the parametric non-linear model proposed in [9]
is able to accurately capture the dynamics of the RF energy
conversion efficiency for different input power levels and the
joint effects of the non-linear phenomena caused by hardware
imperfections. The total harvested power at energy harvesting
receiver j, ΦERj

, is modelled as:

ΦERj =
[ΨERj

−MjΩj ]

1− Ωj
, Ωj =

1

1 + exp(ajbj)
, (4)

where ΨERj
=

Mj

1 + exp
(
− aj(PERj −bj)

) (5)

is a logistic function which has the received RF power, PERj
,

as the input. Mj is a constant denoting the maximum harvested
power at energy harvesting receiver j when the energy har-
vesting circuit is saturated because of exceedingly large input
power. Parameters aj and bj are constants which capture the
joint effects of resistance, capacitance, and circuit sensitivity.

Specifically, aj reflects the non-linear charging rate with respect
to the input power and bj is related to the minimum turn-on
voltage of an energy harvesting circuit. In practice, parameters
aj , bj , and Mj of the proposed model in (4) can be easily
found using a standard curve fitting algorithm for a given energy
harvesting hardware circuit.

C. Channel State Information

In this paper, we assume that the transmitter has imperfect
CSI. To capture the impact of the CSI imperfection on resource
allocation design, a deterministic model [14], [15] is adopted.
The CSI of the links between the transmitter and the information
receiver as well as energy harvesting receiver j can be modelled
as:

h = ĥ + ∆h, and (6)

Λ ,
{

∆h ∈ CNT×1 : ‖∆h‖22 ≤ ρ2
}
, (7)

Gj = Ĝj + ∆Gj , ∀j ∈ {1, . . . , J}, (8)

Ξj ,
{

∆Gj ∈ CNT×NR : ‖∆Gj‖2F ≤ υ2
j

}
,∀j, (9)

respectively, where ĥ and Ĝj are the estimates of channel vector
h and matrix Gj , respectively. ∆h and ∆Gj represent the
channel uncertainty due to channel estimation errors. In (7) and
(9), sets Λ and Ξj define continuous spaces spanned by all
possible channel uncertainties, respectively. Constants ρ and υj
denote the maximum value of the norm of the CSI estimation
error vector ∆h and matrix ∆Gj , respectively.

III. PROBLEM FORMULATION AND SOLUTION

The considered system design objective is to maximize the
total harvested power while providing QoS for reliable commu-
nication with the consideration of imperfect CSI. The resource
allocation algorithm design is formulated as the following
optimization problem1:

maximize
V∈HNT ,w

J∑
j=1

min
∆Gj∈Ξj

ΨERj (10)

subject to C1 : ‖w‖22 + Tr(V) ≤ Pmax,

C2 : min
∆h∈Λ

wHHw

Tr(VH) + σ2
s

≥ Γreq, C3 : V � 0,

where H = hhH . Constants Pmax and Γreq in constraints C1
and C2 are the maximum transmit power and the minimum
required signal-to-interference-plus-noise ratio (SINR) at the
information receiver, respectively. C3 and V ∈ HNT constrain
matrix V to be a positive semidefinite Hermitian matrix. It can
be observed that the objective function in (10) is a non-convex
function and there are infinitely many inequality constraints in
C2. In order to obtain a tractable solution, we first transform
the non-convex objective function into an equivalent objective
function in subtractive form via the following theorem.

Theorem 1: Suppose {w∗,V∗} is the optimal solution to
(10), then there exist two vectors µ∗ = [µ∗1, . . . , µ

∗
J ] and

1In the sequel, since Ωj does not affect the design of the optimal resource
allocation policy, with a slight abuse of notation, we will directly use ΨERj

to represent the harvested power at ER j for simplicity of presentation.



TABLE I

Algorithm Iterative Resource Allocation Algorithm
1: Initialize the maximum number of iterations Lmax, iteration index n = 0,

µ, and β
2: repeat {Outer Loop}
3: Solve the inner loop problem in (14) via SDP relaxation for given

(µn,βn) and obtain the intermediate beamformer w′ and energy signal
covariance matrix V′

4: if (22) is satisfied then
5: return Optimal beamformer w∗ = w′ and energy signal covariance

matrix V∗ = V′

6: else
7: Update µ and β according to (20) and n = n+ 1
8: end if
9: until (22) is satisfied or n = Lmax

β∗ = [β∗1 , . . . , β
∗
J ] such that {w∗,V∗} is an optimal solution

to the following optimization problem

maximize
V∗∈HNT ,w∗∈F

J∑
j=1

µ∗j

[
Mj−β∗j

(
1 + exp

(
−aj(PERj

−bj)
))]

,

(11)
where F is the feasible solution set of (10). Besides, {w∗,V∗}
also satisfies the following system of equations:

β∗j

(
1 + exp

(
−aj(P ∗ERj

−bj)
))
−Mj = 0, (12)

µ∗j

(
1 + exp

(
−aj(P ∗ERj

−bj)
))
− 1 = 0, (13)

and P ∗ERj
= Tr

(
(w∗(w∗)H + V∗)GjG

H
j

)
.

Proof: Please refer to [16] for a proof of Theorem 1.
As a result, for the maximization problem in (10), there exists

an equivalent parametric optimization problem with an objective
function in subtractive form and both problems have the same
optimal solution {w∗,V∗}. More importantly, the optimization
problem with an objective function in subtractive form can be
solved by an iterative algorithm consisting of two nested loops
[16]. In the inner loop, we solve the optimization in (11) for
given (µ,β). Then, in the outer loop, we find the optimal
(µ∗,β∗) satisfying the system of equations in (12) and (13),
cf. algorithm in Table I.

A. Solution of the Inner Loop Problem

In each iteration, i.e., line 3 of the algorithm in Table I,
we solve the following inner loop non-convex optimization
problem:

maximize
W,V∈HNT ,τ

J∑
j=1

µ∗j

[
Mj−β∗j

(
1 + exp

(
−aj(τj−bj)

))]
subject to C1 : Tr(W + V) ≤ Pmax,

C2 : min
∆h∈Λ

Tr(WH)

Tr(VH) + σ2
s

≥ Γreq,

C4 : min
∆Gj∈Ξj

Tr
(

(W + V)GjG
H
j

)
≥ τj ,∀j,

C3 : V � 0, C5 : Rank(W) = 1, C6 : W � 0, (14)

where W = wwH is a new optimization variables matrix
and τ = [τ1, τ2, . . . , τJ ] is a vector of auxiliary optimization
variables. To further facilitate the solution, we transform con-
straints C2 and C4 into linear matrix inequalities (LMIs) using
the following lemma:

Lemma 1 (S-Procedure [17]): Let a function fm(x),m ∈
{1, 2},x ∈ CN×1, be defined as

fm(x) = xHAmx + 2Re{bHmx}+ cm, (15)

where Am ∈ HN , bm ∈ CN×1, and cm ∈ R. Then, the
implication f1(x) ≤ 0 ⇒ f2(x) ≤ 0 holds if and only if there
exists a δ ≥ 0 such that

δ

[
A1 b1

bH1 c1

]
−
[
A2 b2

bH2 c2

]
� 0, (16)

provided that there exists a point x̂ such that fm(x̂) < 0.
Exploiting Lemma 1, the original constraint C2 holds if and

only if there exists a δ ≥ 0, such that the following LMI
constraint holds:

C2: SC2

(
W,V, δ

)
(17)

=

[
δINT 0

0 −δρ2 − Γreqσ
2
s

]
+UH

ĥ
(W − ΓreqV)Uĥ � 0,

where Uĥ =
[
INT

ĥ
]
. Similarly, constraint C4 can be

equivalently written as

C4: SC4j

(
W,V,ν, τ

)
(18)

=

[
νjINTNR 0

0 −τj − νjυ2
j

]
+ UH

g̃j
(W + V)Ug̃j

� 0,∀j,

for νj ≥ 0, j ∈ {1, . . . ,M}, W = INR
⊗W, V = INR

⊗V,
Ug̃j

= [INTNR
g̃j ], and g̃j = vec(Ĝj) . Then, the optimiza-

tion problem can be equivalently written as

maximize
W,V∈HNT ,δ,

τ,ν

J∑
j=1

µ∗j

[
Mj−β∗j

(
1 + exp

(
−aj(τj−bj)

))]
subject to C1,C3,C6,

C2 : SC2

(
W,V, δ

)
� 0, C4 : SC4j

(
W,V,ν, τ

)
� 0,∀j,

C5 : Rank(W) = 1, C7 : νj , δ ≥ 0, (19)

where δ and ν = {ν1, . . . , νj , . . . , νJ} are the non-negative
auxiliary optimization variables introduced by Lemma 1 for
handling constraints C2 and C4, respectively. We note that con-
straints C2 and C4 involve only a finite number of constraints
which facilitates the resource allocation algorithm design. The
remaining obstacle in solving the considered optimization
problem is the combinatorial rank constraint C5. We adopt
the semidefinite programming (SDP) relaxation by removing
constraint C5 from the problem formulation. As a result, the
rank constraint relaxed problem becomes a standard convex
optimization problem and can be solved efficiently by numerical
solvers such as CVX [18]. Yet, the constraint relaxation may
not be tight if Rank(W) > 1 occurs. Therefore, we reveal the
tightness of the adopted SDP relaxation in (10) in the following
theorem.

Theorem 2: Assuming the considered problem is feasible for
Γreq > 0, a rank-one solution of (10) can always be constructed.

Proof: Please refer to the Appendix.
In other words, (14) can be solved optimally. Hence, informa-

tion beamforming is optimal for the maximization of the total
harvested power, despite the existence of imperfect CSI.

B. Solution of the Outer Loop Problem

Now, we present an iterative algorithm to update (µ,β)
for the outer loop problem via the damped iterative New-
ton method. For notational simplicity, we define functions
ϕj(βj) = βj

(
1+exp

(
−aj(PERj−bj)

))
−Mj and ϕJ+i(µi) =

µi

(
1 + exp

(
−ai(PERi−bi)

))
− 1, i ∈ {1, . . . , J}. It is shown



TABLE II
SIMULATION PARAMETERS

Carrier center frequency 915 MHz
Bandwidth 200 kHz
Transceiver antenna gain 12 dBi
Noise power σ2 = −95 dBm
Transmitter-to-energy harvesting
receiver fading distribution Rician with Rician factor 3 dB

in [16] that the unique optimal solution (µ∗,β∗) is obtained if
and only if ϕ(µ,β) = [ϕ1, ϕ2, . . . , ϕ2J ] = 0. Therefore, in the
n-th iteration of the iterative algorithm, µn+1 and βn+1 can be
updated as, respectively,

µn+1 = µn + ζnqnJ+1:2J andβn+1 = βn + ζnqn1:J ,(20)
where qn= [ϕ′(µ,β)]−1ϕ(µ,β) (21)

and ϕ′(µ,β) is the Jacobian matrix of ϕ(µ,β). ζn is the largest
εl satisfying

‖ϕ
(
µn+εlqnJ+1:2J ,β

n+εlqn1:J

)
‖ ≤ (1− ηεl)‖ϕ(µ,β)‖, (22)

where l ∈ {1, 2, . . .}, εl ∈ (0, 1), and η ∈ (0, 1). The damped
Newton method converges to the unique solution (µ∗,β∗)
satisfying the system of equations (12) and (13), cf. [16].

IV. RESULTS

In this section, we evaluate the system performance of
the proposed optimal resource allocation via simulations. The
important simulation parameters are listed in Table II. We
assume that the information receiver and the J = 10 energy
harvesting receivers are located at 50 meters and 10 meters from
the transmitter, respectively. The information receiver requires a
minimum SINR of 10 dB. In the sequel, we define the normal-
ized maximum channel estimation errors of energy harvesting
receiver j and the information receiver as σ2

estG =
υ2
j

‖Gj‖2F
,∀j,

and σ2
esth

= ρ2

‖h‖22
= 5%. For the non-linear EH circuits,

we set Mj = 20 mW which corresponds to the maximum
harvested power per energy harvesting receiver. Besides, we
adopt aj = 6400 and bj = 0.003. We solve the optimization
problem in (10) and obtain the average system performance by
averaging over different channel realizations.

In Figure 2, we study the average total harvested power
versus the maximum channel estimation error σ2

estG , for dif-
ferent numbers of transmit antennas and resource allocation
schemes. The maximum transmit power is Pmax = 30 dBm
and NR = 2. As can be observed, the total harvested power
decreases with increasing σ2

estG , since the CSI quality degrades
with increasing σ2

estG . In particular, for a larger value of σ2
estG ,

it is more difficult for the transmitter to steer the transmission
towards the energy harvesting receivers accurately to improve
the efficiency of wireless power transfer. On the other hand, the
total harvested power in the system improves with increasing
number of transmit antennas. This is because the extra degrees
of freedom introduced by additional transmit antennas can be
exploited for a more efficient resource allocation. Furthermore,
the proposed optimal scheme is able to fulfill the minimum
required receive SINR in all considered scenarios, despite the
imperfect CSI knowledge.

For comparison, we also show the performance of a baseline
scheme. For the baseline scheme, the resource allocation algo-
rithm is designed for the conventional linear energy harvesting
model [2]–[8]. Besides, the transmitter of the baseline scheme
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treats the estimated channel matrices Ĝj ,∀j, as perfect CSI
for resource allocation. Then, we optimize the power of w,V
subject to the constraints in (10). It can be observed that the
proposed optimal algorithm provides a substantial performance
gain compared to the baseline scheme, particularly when the
estimation errors are comparatively large. In fact, the baseline
scheme may cause mismatches in resource allocation since
it does not account for the non-linear nature of the energy
harvesting circuits.

Figure 3 illustrates the average total harvested power versus
the maximum transmit power for different number of receive
antennas NR. The normalized maximum channel estimation er-
ror is σ2

estG = 0.1 and NT = 4. As can be observed, the average
total harvested power increases with the maximum transmit
power non-linearly. In particular, when the maximum transmit
power is small, e.g. Pmax ≤ 21 dBm, the total harvested power
increases slowly with the transmit power. In fact, most of the
time, the received power at the energy harvesting receivers is
insufficient for switching on the energy harvesting circuits. For
a moderate transmit power level, e.g. 21 ≤ Pmax ≤ 27 dBm, the
total harvested power increases rapidly respect to the transmit
power. However, when the transmit power is sufficiently large,
e.g. Pmax ≥ 27 dBm, the total harvested power increases with
the maximum transmit power with diminishing return. This is
due to the fact that an exceedingly large transmit power causes
saturation in some energy harvesting receivers. On the other
hand, when the number of antenna equipped at the energy
harvesting receivers increases, a significant energy harvesting
gain can be achieved by the proposed optimal scheme. In fact,



the extra receiver antennas act as additional energy collectors
which enables a more efficient energy transfer.

V. CONCLUSIONS

In this paper, we studied the resource allocation algorithm de-
sign for SWIPT based on a non-linear energy harvesting model
and imperfect CSI. The algorithm design was formulated as a
non-convex optimization problem for the maximization of the
total power transferred to the energy harvesting receivers. The
non-convex optimization problem was solved optimally with an
iterative algorithm. Numerical results showed the potential gains
in harvested power enabled by the proposed optimization.

APPENDIX-PROOF OF THEOREM 2
If Rank(W) > 1 is obtained from (14), we can construct an

optimal rank-one solution as follows. For a given optimal τ ∗

from the solution of the SDP relaxed version of (14), we solve
the following optimization problem:

minimize
W,V∈HNT ,δ,ν

Tr(W) (23)

subject to C1− C3,C6,C7,

C4 : SC4j

(
W,V,ν, τ ∗

)
� 0,∀j.

We note that the optimal resource allocation policy obtained
from (23) is also an optimal resource allocation policy for
the SDP relaxed version of (14), since both problems have an
identical feasible solution set. Now, we aim to show that (23)
admits a rank-one beamforming matrix. To this end, we first
need the Lagrangian of problem (23) which is given by:

L = Tr(W) + λ(Tr(W + V)− Pmax)− Tr(WY)

−
J∑
j=1

Tr(SC4j

(
W,V,ν, τ ∗

)
DC4j

)

− Tr(SC2

(
W,V, δ

)
DC2

)− Tr(VZ) + ∆, (24)

where λ ≥ 0, DC2
� 0, Z � 0, DC4j

� 0,∀j ∈ {1, . . . , J},
Y � 0, are the dual variables for constraints C1–C4, and C6,
respectively. ∆ is a collection of variables and constants that
are not relevant to the proof.

Now, we focus on those Karush-Kuhn-Tucker (KKT) condi-
tions which are needed for the proof:

Y∗,V∗,D∗C2
,D∗C4j

� 0, λ∗ ≥ 0, (25)

Y∗W∗ = 0, Q∗V∗ = 0, (26)
Y∗=(1+λ∗)INT

−UĥDC2
UH

ĥ
−Ξ (27)

Q∗ = λ∗INT
+ ΓreqUĥDC2

UH
ĥ
−Ξ, (28)

SC2

(
W,V, δ

)
DC2 = 0, (29)

where Ξ =
∑J
j=1

∑NR

l=1

[
Ug̃j

DC4j
UH

g̃j

]
a:b,c:d

, a = (l−1)NT +

1, b = lNT, c = (l−1)NT+1, and d = lNT. The optimal primal
and dual variables of the SDP relaxed version are denoted by
the corresponding variables with an asterisk superscript.

Then, we follow a similar approach as [7] to show that
Rank(W∗) = 1. Subtracting (28) from (27) yields:

Y∗ + (1 + Γreq)UĥDC2U
H
ĥ

= Q∗ + INT . (30)

Next, we multiply the both sides of (30) by W∗ leading to

W∗(1 + Γreq)UĥDC2U
H
ĥ

= W∗(Q∗ + INT). (31)

From (31), we can deduce that

Rank(W∗)= Rank(W∗(1 + Γreq)UĥDC2
UH

ĥ
) (32)

≤ min{Rank(W∗),Rank((1+Γreq)UĥDC2
UH

ĥ
)}.

Therefore, if Rank(UĥDC2
UH

ĥ
) ≤ 1, then Rank(W∗) ≤ 1.

To show Rank(UĥDC2
UH

ĥ
) ≤ 1, we pre-multiply and post-

multiply (29) by [INT 0] and UH
g̃j

, respectively. After some
mathematical manipulations, we have the following equality:

(δINT +(W∗−(1+Γreq)V∗))UĥDC2U
H
ĥ

= δ[0 ĥ]DC2U
H
ĥ
. (33)

Besides, it can be shown that (δINT
+(W∗−(1+Γreq)V∗)) � 0

and δ > 0 hold at the optimal solution such that the dual optimal
solution is bounded from above. Therefore, we have

Rank(UĥDC2
UH

ĥ
) (34)

= Rank(δ[0 ĥ]DC2
UH

ĥ
) ≤ Rank([0 ĥ]) ≤ 1.

By combining (32) and (34), we can conclude that
Rank(W∗) ≤ 1. On the other hand, since Γreq > 0, W∗ 6= 0
holds and Rank(W∗) = 1. �
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