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Abstract—Wireless power transfer (WPT) is expected to be
a technology reshaping the landscape of low-power applications
such as the Internet of Things, machine-to-machine communi-
cations and radio frequency identification networks. Although
there has been some progress towards multi-antenna multi-sine
WPT design, the large-scale design of WPT, reminiscent of
massive multiple-input multiple-output (MIMO) in communi -
cations, remains an open problem. Considering the nonlinear
rectifier model, a multiuser waveform optimization algorithm
is derived based on successive convex approximation (SCA).
A lower-complexity algorithm is derived based on asymptotic
analysis and sequential approximation (SA). It is shown that the
difference between the average output voltage achieved by the two
algorithms can be negligible provided the number of antennas
is large enough. The performance gain of the nonlinear model
based design over the linear model based design can be large,in
the presence of a large number of tones1.

Index Terms—Wireless power transfer, nonlinear model, mas-
sive MIMO, convex optimization.

I. I NTRODUCTION

Wireless power transfer (WPT) technology is expected to
be beneficial to the Internet of Things, machine-to-machine
communications and radio frequency identification networks,
thanks to the fully controlled power delivery. This paper
focuses on the far-field WPT, where a rectenna is exploited to
convert the electromagnetic radiation energy transmittedover
long distance into DC power which can be stored in batteries
[1]. Improving the energy transfer efficiency is a key issue.

It is recently found that the efficiency is a function of
the input waveforms, and the efficiency can be significantly
improved by multi-sine signals [1]. The question then arises
as how to optimally design multi-sine waveform for WPT. In
order to answer the question, the first issue to be tackled is
the modeling of the nonlinear rectifying process. Although
most off-the-shelf rectifier models in the context of microwave
theory provide insights into the accurate rectifying process,
the non-closed forms or highly complex structures in these
models [2], [3] make it hard to derive efficient algorithms for
wireless transmissions. In contrast, to balance the accuracy and
complexity in signal processing, [4] constructs the model by
truncating the Taylor expansion of the Shockley diode equation
to the 4th order, as the 4th order truncation can describe the
basic rectifying process [2], [5]. Based on this model, the
waveform optimization problem is solved in [4] (and further

1The work of Y. Huang was supported by CSC Imperial Scholarship.

extended in [6]) by reversed geometric programming (GP).
This work confirms the adopted model by circuit simulation.
The numerical results highlight the significant gains of the
optimal waveforms over other waveforms as the number of
sinewaves increases. This sheds interest on a large-scale design
for WPT. Unfortunately, as reversed GP may take exponential
time to compute the solution [7], the approach is highly
complex for large-scale designs, although it can be extended
to designs with higher-order truncation models.

Reminiscent of massive multiple-input multiple-output in
communications, we investigate a multiuser large-scale multi-
antenna multi-sine WPT. As [4] and [6] have shown that the
4 th order truncation yields promising results, we also model
the rectifier as a power series truncated to the 4th order. To
avoid reversed GP, the model is finally reformulated as a scalar
function of vector variables. Although the modeling method
is motivated by [8] and different from the methods in [4] and
[6], the obtained model is equivalent to those in [4] and [6]
with respect to (w.r.t.) optimization. To optimize the waveform,
an algorithm is proposed based on successive convex approx-
imation (SCA) [9]. Then, a lower-complexity algorithm is
proposed based on sequential approximation (SA), motivated
by the law of large numbers derived from the independent and
identically distributed (i.i.d.) circularly symmetric complex
Gaussian (CSCG) random frequency/spatial domain channel
gains. In the two algorithms, the approximate problem (AP)
in each iteration yields a closed-form solution, which finally
converges to a stationary point of its own original problem.It
is shown that as the number of antennas increases, the output
voltage maximized by the SA-based algorithm can be close to
that offered by SCA. It is also shown that the average output
voltage gain of the design based on the 4th order truncation
model over the design based on the conventional linear model2

can be significantly high, because of the large number of tones.
Organizations: The system model is elaborated in Section

II. Section III proposes the waveform optimization algorithms.
Section IV discusses the simulation results. Conclusions are
drawn in Section V.Notations: Matrices and vectors are in
bold capital and bold lower cases, respectively. The notations
(·)T , (·)⋆, (·)∗, (·)H , Tr{·}, ‖ · ‖, and| · | represent the transpose,
optimal solution, conjugate, conjugate transpose, trace,2-

2In the conventional linear model, the harvested energy is a linear function
of the average input power to the rectifier, which essentially is a 2nd order
truncation model [10].
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Fig. 1. Simplified rectifier circuit for analysis. The capacitor C functions as
a low-pass filter, andRL is the load.

Fig. 2. Mq,1 is the above matrix only maintaining the block diagonal (whose
index isk = 1) in pink, while all the other blocks are set as0M×M .

norm, and absolute value, respectively. The notationA � 0

means thatA is positive-semidefinite.

II. SYSTEM MODEL

A. Signal Transmission

In the WPT system, aM -antenna base station (BS) de-
livers multi-sine energy signals overN frequencies toK
single-antenna users. It is assumed that perfect channel state
information (CSI) is available at the BS. All channel fre-
quency responses remain constant during the transmission.
The complex scalar frequency response of the channel be-
tween them th antenna and the userq (for q = 1, . . . ,K)
at the n th frequency is designated ashq,(n−1)M+m (for
n = 1, . . . , N and m = 1, . . . ,M), which is collected into
hq ∈ C

MN×1. Hence,hq = [hT
q,1, . . . , h

T
q,N ]T , wherehq,n =

[hq,(n−1)M+1, . . . , hq,(n−1)M+M ]T describes the spatial domain
channel gains at then th frequency.

The complex version of the transmitted signal at them th
BS antenna isx̃m(t) =

∑N
n=1 s(n−1)M+mejωnt, where the

complex variables(n−1)M+m collects the magnitude and
the initial phase of the radio-frequency (RF) complex sig-
nal at angular frequencyωn. Hence, the RF signal trans-
mitted by antennam is xm(t) ,

√
2Re{x̃m(t)}. The vari-

able s(n−1)M+m is collected intos ∈ C
MN×1, such that

s = [sT1 , . . . , s
T
N ]T and sn = [s(n−1)M+1, . . . , s(n−1)M+M ]T

describes all the signals transmitted at angular frequencyωn,
where ωn = ω1 + (n− 1)∆ω, for n = 1, . . . , N and ω1 >

(N−1)∆ω/2. Suppose the BS transmit power is constrained
by P , such that‖s‖2 =

∑N
n=1

∑M
m=1 |s(n−1)M+m|2 ≤ P .

The complex RF signal through the channel between the
m th transmit antenna and theq th user can be written as
ỹq,m(t) =

∑N
n=1 s(n−1)M+mhq,(n−1)M+mejωnt. Hence, the RF

signal transmitted from theM antennas and input into the
antenna at userq is given byyq(t) =

√
2Re

{
∑M

m=1 ỹq,m(t)
}

.

B. Modeling the Nonlinear Rectifying Process

As shown in Fig. 1(a), the antenna at userq is modeled
as a sourcevs,q(t) in series with an impedanceRant = 50Ω.
Assuming a lossless antenna, all the input power to the
rectenna can be absorbed by the rectifier’s input impedance
Rin, such thatE{|vin,q(t)|2}/Rin = E{|yq(t)|2}. Maximizing the
power dissipated inRin yields Rant = Rin. Assuming an ideal

matching network, the input voltage to the rectifier equals
vin,q(t) = yq(t)

√
Rant, such thatvs,q(t) = 2yq(t)

√
Rant.

As shown in Fig. 1(b), the input signal is rectified by a
Schottky diode and goes through a low pass filter. Motivated
by [8], we modelvout,q(t) as an approximate function of the
input waveform, by manipulating the Shockley diode equation.
The Shockley equation shows that the diode output current
id,q(t) = is(exp(

vd,q(t)

nVT
)− 1), where vd,q(t) = vin,q(t)− vout,q(t),

while is, VT andn represent the saturation current, the thermal
voltage and the ideality factor (set to 1 for simplicity),
respectively. Due to the low-power input and the high
impedance load,id,q(t) can be approximated as zero [8].
Ref. [8] essentially achieves a 2nd order truncation model,
while the 4th-order truncation is necessary for describingthe
basic diode rectifying process [2], [5]. Therefore, to finally
achieve the 4th order truncation model, the Taylor expansion
of ex for x =

vin,q(t)

nVT
is applied to the Shockley equation.

Hence,vout,q(t) = nVTln
[

1+
vin,q(t)

nVT
+

v2
in,q(t)

2n2V 2
T
+

v3
in,q(t)

6n3V 3
T
+

v4
in,q(t)

24n4V 4
T

]

,
where the Taylor series is truncated to the 4th order. By
assuming an ideal low-pass filter,vout,q(t) yields DC voltage,
i.e. vout,q(t) = vout,q. Not contributing to the DC voltage, the
odd order terms in the Taylor series can be omitted. Thus,
vout,q = nVT ln

[

1 +
fLPF(v

2
in,q(t))

2n2V 2
T

+
fLPF(v

4
in,q(t))

24n4V 4
T

]

, where fLPF(·)
represents the ideal low-pass filtering process, which omits
the non-DC harmonics. Making use ofln(1 + x) ≃ x yields
vout,q = β2fLPF

(

y2
q(t)

)

+ β4fLPF
(

y4
q (t)

)

, whereβ2 = Rant/(2nVT)

andβ4 = R2
ant/(24n

3V 3
T ). It is noticeable that multiplying the

abovevout,q by is/(nVT) achieves nothing but the modelzDC in
[4]. In the termfLPF

(

y2
q(t)

)

= fLPF
(

Re{ỹq(t)ỹq(t)+ ỹq(t)ỹ
∗
q (t)}

)

,
Re{ỹq(t)ỹq(t)} can be omitted as it only contains the non-
DC harmonics. Hence,fLPF

(

y2
q (t)

)

= fLPF
(

Re{ỹq(t)ỹ∗
q (t)}

)

=

Re
{
∑N

n=1

∑

m1,m2
s(n−1)M+m1

hq,(n−1)M+m1
s∗(n−1)M+m2

h∗
q,(n−1)M+m2

}

=
∑N

n=1 s
H
n h∗

q,nh
T
q,nsn, wherem1,m2 ∈ {1, . . . ,M}. Similarly,

fLPF
(

y4
q(t)

)

= 3
2

∑

n1,n2,n3,n4
n1−n3=−(n2−n4)

sHn3
h∗
q,n3

hT
q,n1

sn1s
H
n4

h∗
q,n4

hT
n2

sq,n2 ,

wheren1, n2, n3, n4 ∈ {1, . . . , N}. It is inferred that if higher
order truncations were considered,vout,q could not be written
as the above vector formulation, such that the output voltage
maximization problem in a form of polynomials has to be
solved by the complex reversed GP algorithm in [4].

So far, it has been shown thatvout,q can be modeled
as a function of vector variables{sn}Nn=1. Fortunately, this
function can be homogenized, by introducingMN-by-MN

matricesMq , h∗
qh

T
q and Mq,k. As shown in Fig. 2,k ∈

{1, . . . , N−1} is the index of thek th block diagonal above
the main block diagonal (whose indexk = 0) of Mq, while
k∈{−(N−1), . . . ,−1} is the index of the|k| th block diagonal
below the main block diagonal. Given a certaink, Mq,k is
generated by retaining thek th block diagonal ofMq but
setting all the other blocks as0M×M . For k ≥ 1, the non-
Hermitian matrixMq,−k = MH

q,k, while Mq,0 � 0. Hence,
vout,q is finally formulated as

vout,q = β2s
HMq,0s+

3

2
β4s

HMq,0s
(

sHMq,0s
)H

+

3β4

∑N−1
k=1 sHMq,ks

(

sHMq,ks
)H

. (1)



III. WAVEFORM OPTIMIZATION ALGORITHM

A. Waveform Optimization Based on SCA

In order to address the waveform design problem of aK-
user system, this section proposes an efficient algorithm based
on solving the weighted-sum output voltage maximization
problem given bymaxs

{
∑K

q=1 wq · vout,q
(

s
)

: ‖s‖2 ≤ P
}

,
wherewq ≥ 0 ∀q represent the users’ weights. The problem
can be equivalently formulated in its epigraph form:

min
γ1, s

γ1 (2a)

s.t. −∑K

q=1wq · vout,q (s)− γ1 ≤ 0 , (2b)

sHs ≤ P . (2c)

In order to make the above problem tractable, auxiliary vari-
ables tq,k (for k = 0, . . . , N − 1) are introduced, such that
sHMq,ks = Tr{Mq,kss

H} = Tr{Mq,kX} = tq,k. Therefore, the
problem can be equivalently reformulated as

min
γ1, {tq}K

q=1,X�0
γ1 (3a)

s.t.
∑K

q=1wq

(

−β2tq,0 + tHq A0tq
)

−γ1≤0,(3b)

Tr{Mq,kX} = tq,k , ∀q, k , (3c)

Tr{MH
q,kX} = t∗q,k , ∀q, k 6= 0 , (3d)

Tr{X} ≤ P , (3e)

rank{X} = 1 , (3f)

where A0 = diag{− 3
2β4,−3β4, . . . ,−3β4} � 0 and

tq = [tq,0, . . . , tq,N−1]
T , such thatgq(tq) , tHq A0tq =

− 3
2β4tq,0t

∗
q,0−3β4

∑N−1
k=1 tq,kt

∗
q,k. To make problem (3) more

tractable, relaxing the nonconvex rank constraint (3f) yields

min
γ1, {tq}K

q=1,X�0
{γ1 : (3b), (3c), (3d), and (3e)} . (4)

Problem (4) is still nonconvex, due to the nonconvex quadratic
function gq(tq) in (3b). Thus, SCA can be exploited to
solve (4). However, the solution of (4) may be an infeasible
solution of the original problem (3), due to the rank relaxation.
Fortunately, it is then shown that the solution of (4) can satisfy
the rank-1 constraint in (3).

1) Successive Convex Approximation: Problem (4) is then
approximated iteratively by SCA. The nonconvexgq(tq) is
approximated (at a certain point̂tq) as a linear function
by its first-order Taylor expansioñgq(tq; t̂q) , t̂Hq A0tq +

t̂TqA
T
0t

∗
q − t̂Hq A0̂tq = 2Re{t̂Hq A0tq} − t̂Hq A0t̂q. Note that

gq(tq) ≤ g̃q(tq; t̂q), as−gq(tq) is convex. Supposet(l−1)
q as

the optimalt⋆q approximated at iteration(l− 1). Then,t(l−1)
q

can be involved in the approximation in the next iterationl,
by approximatinggq(tq) as g̃q(tq; t

(l−1)
q ). Therefore, thel th

convex AP can be formulated as

min
γ1,{tq}K

q=1,X�0
γ1 (5a)

s.t.
∑K

q=1wq

(

−β2tq,0+g̃q(tq; t
(l−1)
q )

)

−γ1≤0,(5b)

(3c), (3d), and (3e),

Algorithm 1 SCA-based weighted sum maximization
1: Initialize Set l = 0, and generate feasible initial points

X(0), {t(0)q }Kq=1 andγ(0)
1 ;

2: repeat
3: l = l+ 1;
4: ComputeA1;
5: if A1 � 0 or A1 ≻ 0 then x⋆ = 0; X⋆ = x⋆[x⋆]H ;
6: elsex⋆ =

√
P [UA1 ]min; X⋆ = x⋆[x⋆]H ;

7: UpdateX(l) = X⋆; Updatet(l)q,k ∀q, k by (3c);
8: until ‖X(l) −X(l−1)‖F /‖X(l)‖F ≤ ǫ

2) Solving the Approximate Convex Problem: The follow-
ing Theorem 1 shows that the semidefinite problem (SDP) (5)
can yield an optimalX⋆ of rank 1, which means that when the
solution of (5) converges over iterations and remains rank-1,
the final solution can be the solution of (3).

Theorem 1: Problem (5) has, among others, an optimal
solution with a rank-1X⋆.

Proof: Substituting (3c) and (3d) into (5b) shows that
problem (5) essentially is an equivalent form of

min
X�0

{Tr{A1X} : Tr{X} ≤ P} , (6)

whereA1 , C1 + CH
1 is Hermitian, andC1 =

∑K
q=1wq

(

−
β2+3β4t

(l−1)
q,0

2
Mq,0−3β4

∑N−1
k=1[t

(l−1)
q,k ]∗Mq,k

)

. Proposition 3.5 in [11]
shows that problem (6) has, among others, a rank-1 solution.
Because of the equivalence, the optimal solution of (6) also
satisfies the KKT conditions of (5). As (5) is convex, the
solution is the global optimum of (5).

In order to obtain a rank-1 solutionX⋆ in (5), if we solve
the SDP (6) by CVX with the interior point method [12] and
obtain the rank-1 solution by rank reduction [11], the complex-
ity of solving the SDP isO(1)(2+2MN)1/2(MN)2

(

5(MN)4+

8(MN)3+(MN)2+1
)

[13]. Fortunately, the following method
yields a closed-form solution, with reduced complexity.

Given that problem (6) yields a rank-1 solutionX⋆ =
x⋆[x⋆]H , (6) is equivalent to a nonconvex quadratically con-
strained quadratic problem (QCQP) given by

min
x

{

xHA1x : ‖x‖2 ≤ P
}

. (7)

Analyzing the KKT conditions shows that ifA1 � 0 orA1 ≻ 0,
the optimalx⋆ = 0MN×1. Otherwise, given the eigenvectors
UA1 of A1, the optimalx⋆ =

√
P [UA1 ]min, where[UA1 ]min is

the eigenvector corresponding to the minimum eigenvalue of
A1. Performing eigenvalue decomposition (EVD) forA1 by
the QR algorithm yields complexity ofO

(

(MN)3
)

[14].
The overall algorithm is summarized in Algorithm 1. Since

g̃q(t
(l)
q ; t

(l)
q ) = gq(t

(l)
q ) ≤ g̃q(t

(l)
q ; t

(l−1)
q ), the optimal solution

X(l−1) of the (l−1) th AP (5) is a feasible point of thel th
AP (5). As the AP (5) is convex, the objective function (5a)
converges. Then, it can be shown that{X(l)}∞l=0 is a convergent
sequence. As∇gq(t

(l)
q ) = ∇g̃q(t

(l)
q ; t

(l)
q ), the solution of (5)

finally converges to a stationary point of (4). The rank-1
solution of (4) is also the stationary point of (3). Thus,
Algorithm 1 converges to a stationary point of problem (3).
The detailed proof is omitted due to space constraint.



Algorithm 2 SA-based weighted sum maximization
1: Initialize Set l = 0, and generate feasible initial points

{p(0)
q }Kq=1. Then, compute{t(0)q }Kq=1 by (11c).

2: repeat
3: l = l + 1;
4: Compute{C′

q,1(t
(l−1)
q )}Kq=1 and{A′

q,1(t
(l−1)
q )}Kq=1;

5: ComputeA′
1, p̄⋆ = b

[

UΛ̄

]

min
and{p⋆

q}Kq=1;

6: Updatep̄(l) = p̄⋆ andp(l)
q = p⋆

q , ∀q; Updatet(l)q,k;
7: until ‖p̄(l) − p̄(l−1)‖/‖p̄(l)‖ ≤ ǫ

B. Algorithm Based on Large-Scale Systems

We assume that the channel of a given user is sufficiently
frequency-selective such that channel gains can be i.i.d. in
space and frequency, and each channel gainhq,(n−1)M+1 ∼
CN (0,Λq), whereΛ1/2

q is the large-scale fading. Channels of
different users are also assumed fully uncorrelated. Therefore,
the law of large numbers can be applied. Namely, asM→∞,
hT
q,nh

∗
q,n/M=Λq andhT

q,nh
∗
q′,n′/M=0 for q′ 6=q or n′ 6=n.

The normalized asymptotically optimals (defined in Section
II-A) is designated as̄s = [̄sT1 , . . . , s̄

T
N ]T , such that̄sn is subject

to
∑N

n=1 ‖s̄n‖2 = 1. Then, the optimal structure of̄sn can be
s̄n =

∑K

q=1 ξq,nh
∗
q,n/

√
M , whereξq,n is a complex weight.

With such a s̄n, by definingE , PM , the asymptotically
optimals can be written assasym,

√

E/M s̄. The optimality of
s̄n can be shown by contradiction as in [15]. Substitutingsasym

into (1) and applying the law of large numbers, the asymptotic
output voltage at userq can be written as

v′out,q = β2EΛ2
qp

H
q pq+

3

2
β4E

2Λ4
q

(

pH
q M′

0pq

)(

pH
q M′

0pq

)H

+ 3β4E
2Λ4

q

∑N−1
k=1

(

pH
q M′

kpq

)(

pH
q M′

kpq

)H
, (8)

where pq = [ξq,1, . . ., ξq,N ]T . In (8), M′
k returns aN-by-N

matrix whosek th diagonal is made of ones, while all the
other entries are zero. Here, fork > 0, k is the index of the
k th diagonal above the main diagonal (whose indexk = 0);
for k < 0, k is the index of the|k| th diagonal below the
main diagonal. For instance,M′

0 = IN×N . Given K = 1 and
p1 = 1√

NΛ1
1N×1 (i.e. power is uniformly allocated across the

frequency domain channels), (8) becomes

v′out,q=β2EΛ1+3β4E
2Λ2

1/2+β4E
2Λ2

1N(N−1)(2N−1)/(2N2) .
(9)

This equation indicates that whenN is sufficiently large,v′out,q

can almost scales withN linearly. With the weighted-sum
criterion, the asymptotically optimal waveform design problem
can be formulated as

max
{pq}K

q=1

{

∑K

q=1wq · v′out,q :
∑K

q=1 Λq‖pq‖2 = 1
}

. (10)

Similarly to Section III-A, (10) is reformulated as

min
γ′

1,{pq}K
q=1,{tq}

K
q=1

γ′
1 (11a)

s.t.
∑K

q=1wq

(

E2Λ4
qt

H
q A0tq−β2EΛ2

qtq,0
)

≤γ′
1, (11b)

pH
q M′

kpq = tq,k , ∀q, k (11c)

pH
q [M′

k]
H
pq = t∗q,k , ∀q, k 6= 0 (11d)

∑K

q=1Λq‖pq‖2 = 1 , (11e)

wherek=0, . . . , N−1 and q = 1, . . . ,K. Then, the nonconvex
problem (11) is solved by SA. To this end, similarly to (4),
the nonconvex constraint (11b) is linearized by its first-order
Taylor approximation. The AP of (11) at iterationl can be
formulated as

min
γ′

1,{pq}K
q=1,{tq}

K
q=1

γ′
1 (12a)

s.t.
K
∑

q=1

wq

(

−β2EΛ
2
qtq,0+E2Λ4

q g̃q(tq; t
(l−1)
q )

)

−γ′
1≤0,(12b)

(11c), (11d) and (11e).

Recall that SCA establishes convergence by solving the convex
AP (5). However, the above AP is nonconvex. Fortunately,
the global optimum of (12) can be achieved by solving an

equivalent problem. DefineC′
q,1 , −β2EΛ2

q+3E2Λ4
qβ4t

(l−1)
q,0

2
M′

0−
3β4E

2Λ4
q

∑N−1
k=1 [t

(l−1)
q,k ]∗M′

k andA′
q,1 , C′

q,1 + [C′
q,1]

H . Substi-
tuting (11c) and (11d) into (11b), an equivalent form of (12)
can be finally written as

min
p̄

{

p̄HA′
1p̄ : p̄HΛp̄ = 1

}

, (13)

where p̄ , [pT
1 , . . . ,p

T
K ]T , A′

1 , diag{w1A
′
1,1, . . . , wKA′

K,1},
and Λ , diag{Λ1, . . . ,ΛK}, where all the main diagonal
entries of theN -by-N diagonal matrixΛq are equal to
Λq. Define UΛ̄ as the matrix made of the eigenvectors of
Λ̄ , Λ−1A′

1. By analyzing the KKT conditions, the optimal
p̄⋆ = b

[

UΛ̄

]

min
, where b =

[

1/
([

UΛ̄

]H

min
Λ
[

UΛ̄

]

min

)]1/2. For

Λq = Λ ∀q, p̄⋆ =
√

1
Λ

[

UA′

1

]

min
, where UA′

1
collects the

eigenvectors ofA′
1. Note that the EVD ofΛ̄ (or A′

1) yields
complexity ofO

(

(KN)3
)

.
The algorithm is summarized in Algorithm 2. As (13)

yields the global optimum of (12) and̃gq(t(l)q ; t
(l)
q )=gq(t

(l)
q )≤

g̃q(t
(l)
q ; t

(l−1)
q ), the objective function of (12) decreases over

iterations. Then, it can be shown that the solution finally
converges to a stationary point of the original problem (11).
The detailed proof is omitted due to space constraint.

IV. SIMULATION RESULTS

In the simulations, we consider a typical large open space
indoor or outdoor wireless channel at a central frequency
of 5.18GHz with 10 MHz bandwidth. Therefore, the channel
model D [16] for ETSI HiperLAN/2 simulation is exploited
on account of i.i.d. spatial domain channel gains. The pass
loss (i.e. large-scale fading) is set as61dB [17], and EIRP at
the BS is fixed as36dBm, i.e.PM = 3.9811 W.

Fig. 3 studies the averagevout as a function ofN , with
M ∈{1, 4, 20} andK=1. In the simulation, the adaptive single
sinewave (ASS) scheme [6] is considered as a baseline. ASS
performs matched beamforming and allocates all power to
the sinewave corresponding to the strongest frequency domain
channel. Hence, ASS is optimal for the maximization of the
2nd order truncation model (i.e. the term containingβ2 in
(1)), which essentially is the conventional linear model [8],
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[10]. It is shown that givenM , the performance gain achieved
with Algorithm 1 (i.e. the SCA-based algorithm) over ASS
scales withN and becomes significantly large. This comes
from the fact that with a fixed bandwidth, asN increases,
the frequency domain channel power gains are distributed
within a narrower range. Hence, allocating all the power to the
strongest frequency domain channel can be strictly suboptimal.
Additionally, (9) implies that asN increases, the value of the
4th order term can be sufficiently large, such that this term
may not be neglected during optimization. Therefore, it is
also observed in Fig. 3 that whenN is small (e.g.N = 8),
increasingM cannot significantly enlarge the performance
gain of Algorithm 1 over ASS.

Fig. 3 also illustrates that givenN , although the channel
gains are not i.i.d. across frequencies, the performance gap
between Algorithm 1 and Algorithm 2 (i.e. the SA-based
algorithm) decreases, asM increases. This indicates thatM
is large enough and the channel is frequency-selective enough
to makevout independent fromM , as shown in (8).

Fig. 4 studies the achievablevout region with K = 2 and
Λ1=Λ2=61dB. The regions of the weighted sum algorithms
are achieved by averagingvout over 300 channel realizations,
across various user weight pairs(w1, w2). In SCA-TDMA
(or SA-TDMA), the two users are served in a time division
manner, and the optimal waveform for each user is computed
by Algorithm 1 (or 2). It is shown that the achievable region
of Algorithm 1 is larger than that of SCA-TDMA. That is,
by generating optimal waveforms, Algorithm 1 can perform a
better tradeoff between thevout of the two users. As the small-
scale fading CSI is not exploited in the optimization for SA-
TDMA, the achievable region of SA-TDMA is significantly
smaller than that of SCA-TDMA. For the same reason, Algo-
rithm 2 is outperformed by Algorithm 1. It is also observed
that Algorithm 2 only achieves three averagevout pairs. This
is due to Algorithm 2 being only a function ofΛq andwq but
not the small-scale fading channels. Further, withΛ1 = Λ2,
the solution produced by Algorithm 2 only relies on(w1, w2).
Specifically, whenw1 6=w2, all the power is always allocated

to p⋆
q with q⋆ = argmaxq wq. This is equivalent to the TDMA

scenario where only one user is served. Whenw1 = w2, all
the power is randomly allocated to eitherp1 or p2, with equal
probabilities. This is equivalent to the TDMA scenario where
the two users equally share the time resources.

V. CONCLUSIONS

In this paper, we have proposed efficient waveform opti-
mization algorithms for the multiuser large-scale multi-antenna
multi-sine WPT. It is shown that given a moderately large
number of antennas, the low-complexity SA-based algorithm
can yield solutions close to that of the SCA-based algorithm.
Moreover, in the presence of a sufficiently large number of
tones, the average output voltage achieved by the nonlinear-
model-based waveform design can be significantly higher than
that offered by the linear-model-based design. In contrast, in
the presence of a small number of tones, the linear and non-
linear-based designs lead to similar performance.
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