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Abstract—Wireless power transfer (WPT) is expected to be extended in[[5]) by reversed geometric programming (GP).
a technology reshaping the landscape of low-power applicains This work confirms the adopted model by circuit simulation.
such as the Intemet of Things, machine-to-machine CommuRi The pymerical results highlight the significant gains of the

cations and radio frequency identification networks. Althaugh timal f th f th b f
there has been some progress towards multi-antenna multivse optimal wavetorms over other waveltorms as the number o

WPT design, the large-scale design of WPT, reminiscent of Sinewaves increases. This sheds interest on a large-s=agmd

massive multiple-input multiple-output (MIMO) in communi - for WPT. Unfortunately, as reversed GP may take exponential
catipns, remains an open problem. Consi.delring. the nor]linafa time to compute the solutior][7], the approach is highly
rectifier model, a multiuser waveform optimization algorithm complex for large-scale designs, although it can be extnde

is derived based on successive convex approximation (SCA).t desi ith hiah der t fi del
A lower-complexity algorithm is derived based on asymptot 0 designs wi Igher-order truncation modeis.

analysis and sequential approximation (SA). It is shown thathe Reminiscent of massive multiple-input multiple-output in
difference between the average output voltage achieved blgg two communications, we investigate a multiuser large-scaléi-mu

algorithms can be negligible provided the number of antenna antenna multi-sine WPT. A§][4] and][6] have shown that the
is large enough. The performance gain of the nonlinear model 44 order truncation yields promising results, we also nhode

based design over the linear model based design can be large, - )
the presence of a large number of ton@s the rectifier as a power series truncated to the 4th order. To

Index Terms—Wireless power transfer’ nonlinear mode'y mas- a.VO'd reVersed GP, the mOde| |S f|na”y reformulated as ascal

sive MIMO, convex optimization. function of vector variables. Although the modeling method
is motivated by[[8] and different from the methods in [4] and
. INTRODUCTION [6], the obtained model is equivalent to those [ih [4] and [6]

Wireless power transfer (WPT) technology is expected yyith respect to (w.r.t.) optimization. To optimiz_e the wéoen,
be beneficial to the Internet of Things, machine-to-machid§ &!gorithm is proposed based on successive convex approx-
communications and radio frequency identification netwprdmation (SCA) [9]. Then, a lower-complexity algorithm is
thanks to the fully controlled power delivery. This papeProPosed based on sequential approximation (SA), motvate
focuses on the far-field WPT, where a rectenna is exploited ) the law of large numbers derived from the independent and
convert the electromagnetic radiation energy transmiteer identically distributed (i.i.d.) circularly symmetric ogplex
long distance into DC power which can be stored in batteri&aussian (CSCG) random frequency/spatial domain channel
[1]. Improving the energy transfer efficiency is a key issue.9ains. In the two algorithms, the approximate problem (AP)

It is recently found that the efficiency is a function of" €ach iteration yields a closed-form solution, which final
the input waveforms, and the efficiency can be significantiPNVerges to a stationary point of its own original problém.
improved by multi-sine signal$ [1]. The question then ariséS shown that as the number of antennas increases, the output
as how to optimally design multi-sine waveform for WPT. |Yoltage maximized by the SA-based algorithm can be close to
order to answer the question, the first issue to be tackled!fi@t offered by SCA. Itis also shown that the average output
the modeling of the nonlinear rectifying process. AlthoughPltege gain of the design based on the 4th order truncation
most off-the-shelf rectifier models in the context of micamg Mmodel over the design based on the conventional linear fhodel
theory provide insights into the accurate rectifying pss;e ¢@n be significantly high, because of the large number ofstone
the non-closed forms or highly complex structures in these Organizations: The system model is elaborated in Section
models [2], [3] make it hard to derive efficient algorithms folll SectionLTll proposes the waveform optimization alglonits.
wireless transmissions. In contrast, to balance the acyarad Section[IV discusses the simulation results. Conclusiors a
complexity in signal processing,1[4] constructs the model girawn in Sectior_V/ .Notations. Matrices anq vectors are in
truncating the Taylor expansion of the Shockley diode éqnat bo:ld ca*p|tal* andeoId lower cases, respectively. The raiati
to the 4th order, as the 4th order truncation can describe fe: ()" ()" ()™, Tr{-}, ||-||, and] - | represent the transpose,
basic rectifying process [2]/]5]. Based on this model, th@Ptimal solution, conjugate, conjugate transpose, trae,
waveform optimization problem is solved inl [4] (and further 2In the conventional linear model, the harvested energy iseai function

of the average input power to the rectifier, which essentislla 2nd order
1The work of Y. Huang was supported by CSC Imperial Scholatshi truncation model[[10].
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Uinﬁq(t) = yq(t)\/ Rant, SUCh thahjs,q(t) = 2yq (t)\/ Rant.
As shown in Fig.[dL(b), the input signal is rectified by a
0] Schottky diode and goes through a low pass filter. Motivated
by [8], we modelvo.4(t) as an approximate function of the
Fig. 1. Simplified rectifier circuit for analysis. The cagaciC' functions as input waveform by manipulating the Shockley diode equatio
a low-pass filter, and?_ is the load. ! . .
The Shockley equation shows that the diode output current
SRR S it My iaa(t) = is(exp(*55) 1), Where vaq(t) = vinq(t) — tou (1),
k=L 7> hgahy, [hgahps Boohiys , while is, Vr andn represent the saturation current, the thermal
M= Baahor otz SSRGS ‘ voltage and the ideality factor (set to 1 for simplicity),
respectively. Due to the low-power input and the high
impedance loadjq,(t) can be approximated as zerol [8].
Fig. 2. My,1 is the above matrix only maintaining the block diagonal (a0 Ref. [8] essentially achieves a 2nd order truncation model,
index isk = 1) in pink, while all the other blocks are set @5/ - while the 4th-order truncation is necessary for descritirey
norm, and absolute value, respectively. The notathorr 0 basic diode rectifying process][2],/[5]. Therefore, to fipal

I o ) matching network, the input voltage to the rectifier equals
> +
Vi) ¢ R,

< k=1

T T
hy by, by vhoy )< k=0

\

*
N

means thatA is positive-semidefinite. achieve the 4th order truncation model, the Taylor expansio
of e* for z = el jg applied to the Shockley equation.
nVt
: .”' SvSTEMMODEL Hence, vouq(t) = nVrln [1+’”‘”’q(” +ung) |y tng () | g
A. Sgnal Transmission 1o nVroo2n2VE D oenSVE L 24ty |

) where the Taylor series is truncated to the 4th order. By
_In the WPT system, al/-antenna base station (BS) deassuming an ideal low-pass filtet,,(¢) yields DC voltage,
livers multi-sine energy signals ovelN frequencies toK o Voutq(t) = vourq- NOt contributing to the DC voltage, the

single-antenna users. It is assumed that perfect charatel shqq order terms in the Taylor series can be omitted. Thus,

information (CSI) is available at the BS. All channel fre- w2 (t vl (¢
( ) . L . Wouq = nVrln [1 + fLP;(2‘f2( ) + fLP;4( 4"34(1 ))}! where fLPF(')
guency responses remain constant during the transmission, " nt vy

eeoresents the ideal IowIpass filtering process, which somit
The complex scalar frequency response of the channel & non-DC harmonics. Making use bf(1 + ) ~ = yields
tween themth antenna and the user (for ¢ = 1,...,K) ) 9 =Ty

at the nth frequency is designated as, (,_iyum (for %7 = B2fL§F(y3(t)3) ﬁﬁdw_m(yé(t.))’ wheref; = Han/(2nVr)
n =1,...,N andm = 1,..., M), which is collected into and fis = Ra”‘/(M” V7). Itis noticeable that multiplying the
h, € CVV*1, Henceh, — [h71,..., b7 y|7, whereh,.,, — abovevout, by zs/(nVT)Qacmeves noth|~ng b~ut the~moq?$c in
(hautn—1)ars1s- > hg(n_1ysar)” describes the spatial domain - In the termfier (yq (1)) = fier (Re{ga (1)5a(t)+ 7a(1)5: (1)}),
channel gains at theth frequency. Re{yq(t)yq(t)_} can be om|tte2d as it only c?nta|25 the non-
The complex version of the transmitted signal at théh DC hf];lvrmomcs. Hencefier (v (1)) = fL*PF(Re{yq(tByq ®}) =
BS antenna isin(t) = SN smonmpme’™t, Where the Re{ZNvﬁle:mynziWUM%ﬁ hq&n*l)Mml5<n71>M+m2hq,<§71>A_fl+mlz}
complex variables(, 1y, collects the magnitude and~ 2=t Sn Do nsa, Wheremi, ma € {1, M}. Similarly,
the initial phase of the radio-frequency (RF) complex siJEPF(yQ(t)) - Eznﬂ;;?j;f’g% Sns Bang Bgn, S 80 g By Sana,
nal at angular frequency,. Hence, the RF signal transWhereni,nz, ns,ng € {1,..., N}. Itis inferred that if higher
mitted by antennam is z.(t) 2 V2Re{#.(t)}. The vari- Order truncations were consi(.jeregut,q could not be written
able s(, 1)y m is collected intos € CM¥¥1, such that aS the above vector formulation, such that the output veltag

s=[sT,....s%]7 ands, = [s(u1)nre1s-- s Snonynmrinr]” maximization problem in a form of polynomials has to be
describes all the signals transmitted at angular frequengy Solved by the complex reversed GP algorithmLin [4].
where w, = w1+ (n—1)A,, for n = 1,...,N and w; > So far, it has been shown that,, can be modeled

(N —1)A./2. Suppose the BS transmit power is constraine®s & function of vector variablegs, }, ;. Fortunately, this
by P, such that|s|®> = SN SM  [sonaiml? < P function can be homogenized, by introducingN-by-M N
The complex RF signal through the channel between tReatricesM, = hihg and M, . As shown in Fig[R.k €
mth transmit antenna and theth user can be written as{l,...,N—1} is the index of thekth block diagonal above
Jaml(t) = SN Sttymimha m-naime™t. Hence, the RF the main block diagonal (whose indéx= 0) of M,, while
signal transmitted from thé/ antennas and input into thek € {~(N—1),..., 1} is the index of thek|th block diagonal

antenna at usey is given byuy, (t) = vV2Re{ = _| Go.m(t)}. below the main block diagonal. Given a certdin M, is
generated by retaining thgth block diagonal ofM, but

B. Modeling the Nonlinear Rectifying Process setting all the other blocks a@yxa. For k > 1, the non-
As shown in Fig[L(a), the antenna at ugeis modeled Hermitian matrix M, _, = M, while M., = 0. Hence,

as a sourcess,(t) in series with an impedancBa = 50Q. voutq is finally formulated as

Assuming a lossless antenna, all the input power to the 3 .

rectenna can be absorbed by the rectifier's input impedance vou, = B257 M, s+ §ﬂ4SHMqﬂos(sHquos) +

Rin, such thate{|vin 4 ()|*}/Rin = E{|y4(t)|?}. Maximizing the B

power dissipatgd iri%n)|y¥Ids Ram{i }én).| g\ssuming an ideal 3542?:115HMq,kS(SHMq,kS)H : )



111. WAVEFORM OPTIMIZATION ALGORITHM Algorlthm 1 SCA-based Welghted sum maximization

A Waveform Obtimization Based on SCA 1: Initialize Set! = 0, and generate feasible initial points
' P XO), {6}, andy\”;

In order to address the waveform design problem dfa . repeat
user system, this section proposes an efficient algorittsada . =141
on solvmg_ the We|ghted-SL;(m output voltage rr;aX|m|zat|on4: ComputeA;:
problem given bymax { 2., wg - vouq(s) : [Isl|* < P},

> : if A; =0orA;>0thenx*=0; X* = x*[x*];
wherew, > 0 Vq represent the users’ weights. The problem_.. elsex* = VP [Ua,] X* = x*[x*);
. 1 1

min?’

5
. e _ 6
can be equivalently formulated in its epigraph form: 7. UpdateX(® = X*; Updateté{)k Vg, k by @3);
min (2a) & until |X® - X5/ XO||p < e
71,8
st _Zf: Wq *Voutq (8) =71 <0, (2b) 2) Solving the Approximate Convex Problem: The follow-
He< P (2¢) ing Theorenti L shows that the semidefinite problem (SDP) (5)

can yield an optimaK* of rank 1, which means that when the
In order to make the above problem tractable, auxiliary-vagolution of [) converges over iterations and remains rank-
ablest, . (for k = 0,...,N —1) are introduced, such thatthe final solution can be the solution &f (3).

s"M, s = Tr{M, xss’} = Tr{M, X} = t,.». Therefore, the  Theorem 1. Problem [(5) has, among others, an optimal

problem can be equivalently reformulated as solution with a rank-IX*.
. 3 Proof: Substituting [(3c) and(3d) intd_(bb) shows that
a . . .
. {tfﬁlg,xzo% (3a) problem [) essentially is an equivalent form of
s.t. Soot 1wy (= Batgo + 8 Agty) — 1 <0(3D) min {Tr{A X} TH{X} < P}, (6)
Tr{M?fX} - tZ’k’ o ks (3¢) where A; £ C; 4+ C{ is Hermitian, andC; = -5 w,(—
TF{M(L,CX} = tq,k N Vq, k 7é 0, (3d) 62+364tgl?)1) N, (-1) . A
TH{X} < P (3¢) ——— My 0—-3B4Y o ylty ') My,x) . Proposition 3.5 in[[11] _
=70 shows that probleni{6) has, among others, a rank-1 solution.
ranX} =1, (3f)  Because of the equivalence, the optimal solution[®f (6) also
where Ay = diag{—38s, ~3f4....,~36} < 0 and satisfies the KKT conditions of §5). A$1(5) is convex, the

_ T A L H ~ solution is the global optimum oEX5). ]
tq3 N [tq’i’ o ’tq’NQ\l,],l' suc*h thatg,(ty) = € Aoty = In order to obtain a rank-1 solutioK* in (5), if we solve
—50tq0tg 0 =313 =1 ta ity TO make probleni(3) more v, gpp [(6) by CVX with the interior point method [12] and
tractable, relaxing the nonconvex rank constrdink (3fjdde obtain the rank-1 solution by rank reduction|[11], the cosxpl

min {v : @), [30), (3#), and(38). (4) Ity of solving the SDP i(1)(2+2MN)"?(MN)?(5(MN)* +
71, {tg sy, X220 8(MN)?+(MN)*+1) [A3]. Fortunately, the following method

Problem is still nonconvex, due to the nonconvex uadrayielqs a closed-form SOIUtiO”.’ with reduced comp!exity.
) g Given that problem[{6) yields a rank-1 soluticXi* =

function g4(t,) in (3H). Thus, SCA can be exploited to " : . .
solve [3). quqvvever, the solution ofl(4) may be an infeasibf® [x*]", @ is equivalent to a nonconvex quadratically con-

solution of the original probleni{3), due to the rank reléomat strained quadratic problem (QCQP) given by

Fortunately, it is then shown that the solution[0f (4) cams$at min  {x"A;x:|x||* < P}. (7

the rank-1 constraint i {3). . * - .

approximated iteratively by SCA. The nonconvext,) is (e optimalx” = Ouyx.. Otherwise, given the eigenvectors

approximated (at a certain poirii,) as a linear function Ua: Of A, the optimalx* = VP [Ua, ]y, Where[Ua, ]y, is

by its first-order Taylor expansion,(ty;t,) 2 tHA%, + the eigenvector corresponding to the minimum eigenvalue of

-~ -~ -~ -~ A’ -~ q 1 1 1t

tTATE: — tHAR, = 2Re{tl Agt,} — t1 Aot . Note that *?]1- Perfolfm”?% e'g?f:(\j/ame delcompggltlon (EVD) far by
(tq) < Gq(tq:ty), as—g,(t,) is convex Supposegl_l) as the QR algorithm yielas comp exn;_/ (.(MN) ).[14]' .

Ya\ta) = 9 e e T L (i-1) The overall algorithm is summarized in AlgoritHmh 1. Since

the optlmaltq approxmated at _|ter§tlod —1). Then:tq G0 60) = 4. 6Dy < 5, (690D, the optimal solution

can be involved in the approximation in the next iteratipn XU~ of the (I—1)th AP (B) is a feasible point of théth

by approximatingy, (t,) as g,(t,;t; ). Therefore, theth  Ap @). As the AP[(b) is convex, the objective functignl(5a)
convex AP can be formulated as converges. Then, it can be shown that" 1%, is a convergent
min v (5a) Seduence. Avg,(t) = Vi, t;tY), the solution of [(b)
T fta} K, X0 finally converges to a stationary point dfl (4). The rank-1
K N (=) solution of [4) is also the stationary point df] (3). Thus,
St D=ty (_ﬁth’OJrg‘I(tq’tq )) —71 = 0(5b) Algorithm [1 converges to a stationary point of problem (3).
(3d), (3d), and[(3e) The detailed proof is omitted due to space constraint.



Algorithm 2 SA-based weighted sum maximization Z;ilAq”quQ =1, (11e)
1: Initialize Set! = 0, and generate feasible initial points

(OVK  Then. computdt“1X b (I12). wherek=0,...,N—1andq =1,..., K. Then, the nonconvex
> gge;tqzl ' putety "Y1 by ) problem [11) is solved by SA. To this end, similarly {d (4),
3 l=1+1: the nonconvex constraint_(11b) is linearized by its firsteor
A Compute{C’qyl(tff’l)) K and {A;_rl(tle*l)) K ;cl'aylorI e:pgroxmatlon. The AP of(11) at iteratidncan be
5. ComputeA’, p* = b[Uz]| . and{p;}x; ormulated as
6 Updatep® = p* andp = p;. Vg Updatetgl,)k; . min (12a)
7 until 5O — p /B0 < e WP
K

B. Algorithm Based on Large-Scale Systems St w, (—BQEAgt%O—i-EQA‘q‘gq(tq; thH))) —7; <0(12b)
We assume that the channel of a given user is sufficiently =1 ,

frequency-selective such that channel gains can be ind. i (119), (118) and(1le)

space and freque?/c2y,_ and each channel %j@fl)Mﬂ ~  Recall that SCA establishes convergence by solving thesconv
CN(0,A,), whereA,”™ is the large-scale fading. Channels ohp (§). However, the above AP is nonconvex. Fortunately,

flriﬁelrent L;slers are alzo assumgd fullﬁlugccl)\lrrelatled. TORTE (he global optimum of[12) can be achieved by solving an
e law of large numbers can be applied. Namely)as: oo, _ : 2 ap2 iy, (-1
Y PP yrasee equivalent problem. Defing;, , & — 25003 RaPlan gy

hy .h; . /M=A, andhg b, ., /M=0 for ¢ #q or n' #n. 1t (1) 1mn rs , . 2, .
thé ni)rmali;ed asqupt%ticglly optima(defined in Section 354_E2A3 kN:ll[tt(Il’kl)] M; andA;, = G, * [C5.1]". Substi-
[I=A) is designated as = [s7,...,5%]%, such thag,, is subject tuting ) andd) intd (11b), an equivalent form [ofl(12)

to SV [s.]? = 1. Then, the optimal structure &, can be C¢an be finally written as

S, = Zf:l &qnh /v M, whereg, , is a complex weight. min  {p”A\p:p AP =1}, (13)

With such as,, by definingE £ PM, the asymptotically p

optimals can be written asa.sym= /E/Ms. The optimality of where p 2 [p7,...,p%]", A} 2 diag{un ALy, ... wikAk. .},

S, can be shown by contradiction as in [15]. Substitu8agm and A 2 diag{A:,...,Ax}, where all the main diagonal

into (I) and applying the law of large numbers, the asymptoténtries of the N-by-N diagonal matrix A, are equal to

output voltage at usey can be written as A,. Define Uz as the matrix made of the eigenvectors of

A &£ A7'A}. By analyzing the KKT conditions, the optimal

oy = B2EAZDE By 3 BP0 MiD) (I MIB) " 5] whete b = [1/([Ux) T A[UL] )]~ For

min min

min
F3EP A My, (0 Myp) " . (8) Av = Ava, B = \/£[Un,,, Where Uy, collects the
where p, = [¢ cn]™. In @), M, returns an-by-N eigenvectors ofA]. Note that the EVD ofA (or A}) yields
P = b s SONT T Pk Lt complexity of O((KN)?).

matrix whosekth diagonal is made of ones, while all the Thpe alg)]/orithr(rf is )Sl)Jmmarized in Algorithil 2. A§(13)
other entries are zero. Here, for> 0, k is the index of the . : '
kth diagonal above the main diagonal (whose index 0); y|eldls tr:iglobal opt!mu_m 0[(12) angl (6 ;") = o () <
for k < 0, k is the index of the|k|th diagonal below tr,le d(ts sty ), the objective function of[{12) decreases over

in di ' | For inst ;o Gg - d iterations. Then, it can be shown that the solution finally
main diagonal. For instancé, = Inxy. GiVen K =1 an converges to a stationary point of the original probléml (11)

— 1 1 i i . . : .
P1 = Jxar v (_|.e. power is uniformly allocated across the"I’he detailed proof is omitted due to space constraint.
frequency domain channels]] (8) becomes

Vourq = B2 EA3B4E* AT /248, E* AT N (N-1)(2N—1)/(2N?) .
9) In the simulations, we consider a typical large open space
This equation indicates that whenis sufficiently largeps,, indoor or outdoor wireless channel at a central frequency
can almost scales witlv linearly. With the weighted-sum of 5.18 GHz with 10 MHz bandwidth. Therefore, the channel
criterion, the asymptotically optimal waveform designigean model D [16] for ETSI HiperLAN/2 simulation is exploited
can be formulated as on account of i.i.d. spatial domain channel gains. The pass
loss (i.e. large-scale fading) is set @sdB [17], and EIRP at
K / . K 2
{;I;?ziil {Zq:lwfi “outg * 2og=1 Aal|Pall” = 1} -(10)  the BS is fixed as6dBm, i.e. PM = 3.9811 W.
L , _ Fig. [3 studies the average. as a function ofn, with
Similarly to SectiorLTII-A, {I0) is reformulated as Me{1,4,20} andK =1. In the simulation, the adaptive single
min v (11a) sinewave (ASS) schemg][6] is considered as a baseline. ASS
QAT T AR (P ) performs matched beamforming and allocates all power to
st Zf:ﬂlfq (E2AStH A t,— B2 EA2t,0) <7;, (11b) the sinewave correspopdmg to the strongest f.regue_ncy itloma
HM o — 2 Yo k (11¢) channel. Hence, ASS is optimal for the maximization of the
Py MkPq =tk » V4, 2nd order truncation model (i.e. the term containifig in
pf [M;]Hpq =ty,Y¢,k #0 (11d) (@), which essentially is the conventional linear modé], [8

IV. SIMULATION RESULTS
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out
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SCA weighted sum, Algorithm 1

to p; with ¢* = arg max, w,. This is equivalent to the TDMA
scenario where only one user is served. When= w2, all
the power is randomly allocated to either or p», with equal
probabilities. This is equivalent to the TDMA scenario wéer
the two users equally share the time resources.

V. CONCLUSIONS

In this paper, we have proposed efficient waveform opti-
mization algorithms for the multiuser large-scale mutitenna
multi-sine WPT. It is shown that given a moderately large
number of antennas, the low-complexity SA-based algorithm
can yield solutions close to that of the SCA-based algorithm
Moreover, in the presence of a sufficiently large number of
tones, the average output voltage achieved by the nordinear

k N <
BN oW oS

Red square:
SA weighted sum, Algorithm 2

Average Vv

1 1.5 2 25 3 35 4
Average v of user 2 [mV]

Fig. 4. Achievablevoyt region, with A/ = 20 and N = 10.

[10Q]. It is shown that given\s, the performance gain achieved
with Algorithm 1 (i.e. the SCA-based algorithm) over ASS
scales withN and becomes significantly large. This comeél]
from the fact that with a fixed bandwidth, @ increases,
the frequency domain channel power gains are distributddl
within a narrower range. Hence, allocating all the poweht® t
strongest frequency domain channel can be strictly sulmabti [3]
Additionally, (3) implies that asv increases, the value of the
4th order term can be sufficiently large, such that this term
may not be neglected during optimization. Therefore, it ig4]
also observed in Fid.] 3 that whe¥ is small (e.g.N = 8),
increasing M cannot significantly enlarge the performance[5]
gain of Algorithm 1 over ASS.

Fig. [3 also illustrates that giverv, although the channel
gains are not i.i.d. across frequencies, the performanpe g
between Algorithm 1 and Algorithm 2 (i.e. the SA-based[7]
algorithm) decreases, ag increases. This indicates that
is large enough and the channel is frequency-selectiveg:tnou[s]
to makewo independent froms, as shown in[(8).

Fig. [4 studies the achievablg, region with K = 2 and
A1 =A>=61dB. The regions of the weighted sum algorithms
are achieved by averaging,: over 300 channel realizations,
across various user weight paitsn,w:). In SCA-TDMA [10]
(or SA-TDMA), the two users are served in a time division
manner, and the optimal waveform for each user is computed|
by Algorithm 1 (or 2). It is shown that the achievable region
of Algorithm 1 is larger than that of SCA-TDMA. That is,[ 5
by generating optimal waveforms, Algorithm 1 can perform a
better tradeoff between the, of the two users. As the small-[13]
scale fading CSl is not exploited in the optimization for SA-
TDMA, the achievable region of SA-TDMA is significantly[14]
smaller than that of SCA-TDMA. For the same reason, Algo-
rithm 2 is outperformed by Algorithm 1. It is also observe
that Algorithm 2 only achieves three averagg pairs. This
is due to Algorithm 2 being only a function af, andw, but
not the small-scale fading channels. Further, with= A,
the solution produced by Algorithm 2 only relies ¢#1, w2).
Specifically, whenw; # w-, all the power is always allocated

[9]

[16]

[17]

model-based waveform design can be significantly higher tha
that offered by the linear-model-based design. In contiast
the presence of a small number of tones, the linear and non-
linear-based designs lead to similar performance.
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