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Abstract—In this paper, we consider media-based modulation in the propagation environment will be augmented by many
(MBM), an attractive modulation scheme which is getting in- random reflections resulting in an independent channel. The
creased research attention recently, for the uplink of a masive RF mirrors create such perturbations by acting as controlle

MIMO system. Each user is equipped with one transmit antenna . . . -
with multiple radio frequency (RF) mirrors (parasitic elem ents) scatterers, which, in turn, create independent fade etidizs

placed near it. The base station (BS) is equipped with tens for different MAPs.

to hundreds of receive antennas. MBM withm,.; RF mirrors If m,s is the number of RF mirrors used, theys
and n, receive antennas over a multipath channel has been MAPs are possible. If the transmitted signal is received
shown to asymptotically (asm,; — oc) achieve the capacity iyroyghp, receive antennas, then the collection26fr n,.-

of n, parallel AWGN channels. This suggests that MBM can .
be attractive for use in massive MIMO systems which typicaly length complex channel gain vectors form the MBM channel

employ a large number of receive antennas at the BS. In this alphabet. This channel alphabet can conwey information
paper, we investigate the potential performance advantagef bits through MAP indexing. If the antenna transmits a symbol

multiuser MBM (MU-MBM) in a massive MIMO setting. Our  from a conventional modulation alphabet denotedibythen
results show that multiuser MBM (MU-MBM) can significantly spectral efficiency of MBM iy, = m,. +log, |A| bits

outperform other modulation schemes. For example, a bit eror h | b An imol tati fa MBM t
performance achieved using 500 receive antennas at the BS inP€r channe use (bpcu). An implementation of a system

a massive MIMO system using conventional modulation can consisting of 14 RF mirrors placed in a compact cylindrical
be achieved using just 128 antennas using MU-MBM. Even structure with a dipole transmit antenna element placeleat t

multiuser spatial modulation, and generalized spatial modlation  center of the cylindrical structure has been reported_in [3]
in the same massive MIMO settings require more than 200 g4y reporting of the idea of using parasitic elements for

antennas to achieve the same bit error performance. Also, ;e . d dulati in th ‘zerial dulation’
ognizing that the MU-MBM signal vectors are inherently sparse, ndex modulation purposes (in the name ‘aerial modulajion

we propose an efficient MU-MBM signal detection scheme can be found in[[6],[17].
that uses compressive sensing based reconstruction algbiins MBM has been shown to possess attractive performance

like orthogonal matching pursuit (OMP), compressive samphg  attributes, particularly when the number of receive antsnn
matching pursuit (CoSaMP), and subspace pursuit (SP). is large [1]- [5]. Specifically, MBM withm,; RF mirrors
Keywords — Media-based modulation, RF mirrors, massve andn, receive antennas over a multipath channel has been
MIMO, compressive sensing, sparse recovery, OMP, CoSaMP, sub-  Shown to asymptotically (as..; — oc) achieve the capacity
space pursuit. of n, parallel AWGN channelg [2]. This suggests that MBM
can be attractive for use in massive MIMO systems which
typically employ a large number of receive antennas at the BS
However, the literature on MBM so far has focused mainly
Media-based modulation (MBM), a promising modulatiomn single-user (point-to-point) communication settin@air
scheme for wireless communications in multipath fadinfirst contribution in this paper is that, we report MBM in
environments, is attracting recent research attention[Bl]] multiuser massive MIMO settings and demonstrate significan
The key features that make MBM different from conventionglerformance advantages of MBM compared to conventional
modulation are:) MBM uses digitally controlled parasitic modulation. For example, a bit error performance achieved
elements external to the transmit antenna that act as radfing 500 receive antennas at the BS in a massive MIMO
frequency (RF) mirrors to create different channel fadé-reaystem using conventional modulation can be achieved using
izations which are used as the channel modulation alphakjest 128 antennas with multiuser MBM. Even multiuser spatia
and i) it uses indexing of these RF mirrors to conveynodulation (SM) and generalized spatial modulation (GSM)
additional information bits. The basic idea behind MBM cafB]- [12] in the same massive MIMO settings require more
be explained as follows. than 200 antennas to achieve the same bit error performance.
Placing RF mirrors near a transmit antenna is equivalentThis suggests that multiuser MBM can be an attractive scheme
placing scatterers in the propagation environment clogkeo for use in the uplink of massive MIMO systems.
transmitter. The radiation characteristics of each ofdlesmt-  The second contribution relates to exploitation of the in-
terers (i.e., RF mirrors) can be changed by an ON/OFF contr@rent sparsity in multiuser MBM signal vectors for low-
signal applied to it. An RF mirror reflects back the incidentomplexity signal detection at the BS receiver. We resort to
wave originating from the transmit antenna or passes the wasompressive sensing (CS) based sparse recovery algorithms
depending on whether it is OFF or ON. The ON/OFF statdsr this purpose. Several efficient sparse recovery algost
of the mirrors is called as the mirror activation pattern (R)A are known in the literaturé [13]- [21]. We propose a multiuse
The positions of the ON mirrors and OFF mirrors change froMBM signal detection scheme that employs greedy sparse
one MAP to the other, i.e., the propagation environmenteclosecovery algorithms like orthogonal matching pursuit (OMP
to the transmitter changes from one MAP to the other MAPL3], compressive sampling matching pursuit (CoSaNP),[14]
Note that in a rich scattering environment, a small perttioba and subspace pursuit (SP) [15]. Simulation results showv tha
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the proposed detection scheme using SP achieves very good
performance (e.g., significantly better performance carxgba
to MMSE detection) at low complexity. This demonstrates R T_
that CS based sparse signal recovery approach is a natural 1
and efficient approach for multiuser MBM signal detection in ' T_
massive MIMO systems. 2
The rest of the paper is organized as follows. The multiuser User? I T_
MBM system model is introduced in Sé&d. Il. The performance -% 3
of multiuser MBM with maximum likelihood detection is
presented in Se¢_]ll. The proposed sparsity-exploiting de
tection scheme for multiuser MBM signal detection and its P
performance in massive MIMO systems are presented in Sec. . ’Tﬂ
Conclusions are presented in SEg. V. . ’

Base Station
(10s to 100s
of Rx antennas)

I
II. MULTIUSER MBM SYSTEM MODEL Re mimor ﬁ%ﬁ—%
control i P
Consider a massive MIMO system witR' uplink users
and a BS withn, receive antennas (see Figl 1), where o
K is in the tens (e.g..K = 16,32) and n, is in the o

hundredss#, = 128,256). The users employ MBM for signal _ _ ‘

transmission. Each user has a single transmit antennaapd Fi9- 1. Multiuser MBM in a massive MIMO system.

RF mirrors placed near it. In a given channel use, each user

selects one of the™ mirror activation patterns (MAPs) MAP of the kth user, wheren}® = [hy", hi - by \J7,
using m,.s information bits. A mapping is done betweerf!i, 1S the channel’ gain cprrespondmg to theh MAP of
the combinations ofn,.; information bits and the MAPs. the kth user to theith receive antenna, = 1,--- ,n,, k =
An example mapping between information bits and MAP%',’: K, and.m.: 1,---, M, and theh;s are assumed to
is shown in Tabléll form, ; = 2. The mapping between thebe i.i.d. and distributed a&\ (0, 1). T_he MBM channel a_llpha-
possible MAPs and information bits is made known a prioﬂet for thekth user, denoted by, is then the collection of

to both transmitter and receiver for encoding and decodif{fS€ channel gain vectors, i B, = {h;,h,--- hi'}. The
purposes, respectively. M channel alphabet of each_ user is estimated at the BS
receiver through pilot transmission before data transpriss
Information bits | Mirror 1 status | Mirror 2 status The number of pilot channel uses needed for the estimation of
00 ON ON each user's channel alphabet grows exponentially.in. It is
o1 ON OFF also noted that, while the MBM channel alphabet of each user
10 OFF ON needs to be known at the BS receiver for detection purposes,
11 OFF OFF the users’ transmitters need not know their channel alphabe
TABLE | B. Single-user MBM signal set

MAPPING BETWEEN INFORMATION BITS ANDMAPS FORm,.; = 2. . A . i
Define Ay = A U 0. The single-user MBM signal set,

Apart from the bits conveyed through the choice of a MAB€Noted bySs,yey, is the set ofM x 1-sized MBM signal
in a given channel use as described above, a symbol fronY&§tors given by
modulation alphabe (e.g., QAM, PSK) transmitted by the

= M M p— DY P DY
antenna conveys an additionilg, |A| bits. Therefore, the Ssuweu = {Sm=‘1 €Ay im=1 ’]TVL q=1 7|A|}
spectral efficiency of & -user MBM system is given by St Spmq=1[0,---,0, s, 0,---,0]",5, €A, )
Nvu-vem = K(mTf + 10g2 |A|) prU. (1) mth coordinate

F | i MBM T _s wherem is the index of the MAP. That is, an MBM signal
or example, a muitiuser system with = 4, m,.; = 2, vectors,, , in (@) means a complex symbel, € A being

and 4-QAM has a system spectral efficiency of 16 bpcu. Afansmitted on a channel with an associated channel gain

important point to note here is that the spectral efficieney Pyector h™. where h™ is the n, x 1 channel gain vector

user increases linearly with the number of RF mirrors use rresponding to theith MAP. Therefore, the,, x 1 received

at each user. To introduce the multiuser MBM signal set and, "\ «ctor corresponding to a transmitted MBM signal
the corresponding received signal vector at the BS, let sis ﬁ(/ectors can be written as
m,q

formally introduce the single-user MBM signal set.

A. Sngle-user MBM channel alphabet y = s¢h™ +m, ®)

The MBM channel alphabet of a single user is the set of allhere n € C"~ is the AWGN noise vector withn ~
channel gain vectors corresponding to the various MAPs 6V (0, o%I). The size of the single-user MBM signal set is
that user. Let us defing/ £ 27, where M is the number |Sewen| = M|A|. For example, ifm,; = 2 and |A] = 2
of possible MAPs corresponding ta,  RF mirrors. Leth]* (i.e., BPSK), thenSs,veu| = 8, and the corresponding MBM
denote the:,. x 1 channel gain vector corresponding to théh  signal set is given by



wherez; ; andxq; arelth entries ofx; andxs, respectively,

17 [-17 0] 07 0] 07 [0]T[O and h; is the /th column of H. The argument ofQ(-)
Seunay — ol | o 1| [=1] (o] O] |o] [O @ in (I0) has the centrak2-distribution with 2n,. degrees of
8 ’ 8 ’ 8 ’ 8 ’ é ’ *01 ’ (1) ’ 01 freedom. The computation of the unconditional PEPs require

the expectation ofQ(-) with respect toH, which can be
obtained as follows [22]:
C. Multiuser MBM received signal
With the above definitions of single-user MBM channdl (X1 = X2) = En [P(x1 T *2[H)]
alphabet and signal set, the multiuser MBM signal set with R R i
K users is given byuen = SE o LELX), € Seuyen denote f(a) Z i (1= fl)), (11)

the transmit MBM signal vector from thkth user. Letx = =0

[x] xI - x?(]T € Swasy denote the vector comprisingwheref(a) al {1 a Z 0 ando
of the transmit MBM signal vectors from all th& users. 2 1+« 402 =1 b L

Let H € C"*KM denote the channel gain matrix given byz; ;—z2,|?. Now, an upper bound on the bit error probability
H = [H; Hy --- Hg], whereH;, = [hi h? --- h}] € using union bound can be obtained as

Cr*M _andh}" is the channel gain vector of theth user 1 dit (%1, %2)
corresponding tanth MAP as defined before. The, x 1 P < ——— Y~ > Plxi - xg)

€ = 9nuu-vem

multiuser received signal vector at the BS is then given by X1 ESMU-MBM X2 ESmu-vem \X1 Thau-ve

(12)
(5) wheredy (x1,x2) is the Hamming distance between the bit
where n is the n, x 1 AWGN noise vector withn ~ Mmappings corresponding to; andx;.
CN(0,0°1).

y =Hx +n,

B. Numerical results

Ill. PERFORMANCE OF MULTIUSERMBM We evaluated the BER performance of multiuser MBM
In this section, we analyze the BER performance of muMU-MBM) using the BER upper bound derived above as
tiuser MBM under maximum likelihood (ML) detection. Wewell as simulations. For the purpose of initial comparisons
obtain an upper bound on the BER which is tight at moderatgth other systems, we consider a MU-MBM system with
to high SNRs. We also present a comparison between the= 2, n, = 8, m,y = 3, BPSK, and 4 bpcu per user. Let
BER performance of multiuser MBM and those of other mulandn,.; denote the number transmit antennas and transmit RF
tiuser schemes that employ conventional modulation, @pat¢hains, respectively, at each user. Note that in the coreside
modulation, and generalized spatial modulation. MU-MBM system, each user uses one transmit antenna and
one transmit RF chain, i.en; = n,r = 1. We compare
A. Upper bound on BER the performance of the above MU-hJ;IBM system Witr|1o those
The ML detection rule for the multiuser MBM systemgf three other multiuser systems which ugeconventional

model in [B) is given by modulation (CM),ii) spatial modulation (SM), andi) gener-
% = argmin ||y — Hx||?, (6) alized s!oatial modulat_ion (GSM). The multiuser system with
X ESmu-mBMm conventional modulation (MU-CM) uses, = n,y = 1 at
which can be written as each user and employs 16-QAM to achieve the same spectral
. , efficiency of 4 bpcu per user. The multiuser system with SM
% = argmin (|Hx|* — 2y" Hx). (7) -
S (MU-SM) usesn; = 2, n,y = 1, and 8-QAM, achieving a

spectral efficiency ofog, n: + log, |A| = log, 2+ log, 8 = 4
bpcu per user. The multiuser system with GSM (MU-GSM)
usesn, = 4, n,y = 2, and BPSK, achieving a spectral
efficiency of | log, ("’ )] +log, |A| = [log, ( )] +log,2 =4
PEP = P(x; — x2/H) bpcu per user.

_ p (2yTH(X2 Cx1) > (HHX2H2 _ HHX1H2)|H) Figure[2 shows the BER performance of the_ MU-MBM,

T 9 MU-CM, MU-SM, and MU-GSM systems described above.

= P(2n"H(x; —x1) > |[H(xe = x1)[P[H) . (8) First, it can be observed that the analytical upper boundrig v

Defining z £ 2n"H(x, — x;), we observe that: ~ tight at moderate to high SNRs. Next, in terms of performance

The pairwise error probability (PEP) that the receiver desi
in favor of the signal vectoxs when x; was transmitted,
given the channel matrifl can be written as

N (0,20?%||H(x2 — x1)||?). Therefore, we can write comparison between the considered systems, the following
IH(xs — )| inferences can be drawn from FIg. 2.
P(x; —» x2H) =Q (%) , 9) « The MU-MBM system achieves the best performance
g

, among all the four systems considered. For example,
whereQ(r) = \/% f;o ez dt. The conditional PEP expres- MU-MBM performs better by about 5 dB, 4 dB, 2.5 dB
sion in [) can be written as compared to MU-CM, MU-SM, and MU-GSM systems,

respectively, at a BER of0~°.

2

1 ||EM « The better performance of MU-MBM can be attributed
P(x; —x2|H) = Q 552 Z(l’u — x9,1)hy . (10) to more bits being conveyed through mirror indexing,
=1 which allows MU-MBM to use lower-order modulation



23):

100~ O MU-CM, n; =1, ng =1, 16-QAM (sim.) . .
: OMU-CM, 1, =1, n,j:l.lﬁ-QAM (ana.) min ||x||o subject toy = ®x + n, (13)
3 FMU-SM, m =2, = 1, 8-QAM (sim.) x
-l, N VMU—SM. ne =2, =1, 8QAM (ana.) ) )
10 BN = b =2 B Esim.; where® € C™*" is called the measurement matrix,c C”
£ MU-GSM, ny =4d,n,p =2, ana. . . . . .
2 ~,gMU.MBn.”,:1.,,;,/:1,,,,,,,:3.31»5;;(sim.> is the complex input signal vectoy; € C™ is the noisy
£ 102 QU g ey = Lt =3, P e observation corresponding to the input signal, ang C™
8 * is the complex noise vector. The MU-MBM signal detection
B el problem at the BS il {5) can be modeled as a sparse recovery
i K:d2> n =8, 4 bpeu per user problem in [IB), with the measurement matrix being the
) ML detgotion channel matrixH € C">*XM the noisy observation being
107 the received signal vectoy € C"-, and the input being
the MU-MBM transmit signal vectok € Syyven. The noise
10° w w w w vector is additive complex Gaussian with~ CA/(0, o°T).
0 2 4 6 8 0 12 14 16

Greedy algorithms achieve sparse reconstruction in an
iterative manner. They decompose the problem of sparse
Fig. 2. BER performance of MU-MBM, MU-CM, MU-SM, and MU-GSM recovery into a two step process; recover the support of the
with K = 2, n, = 8, 4 bpcu per user, and ML detection. Analysis andsparse vector first, and then obtain the non-zero values over
simulations. this support. For example, OMP starts with an initial empty

alphabets (BPSK) compared to other systems whi@b’pport set, an initial solutior® = 0, and an initial residue
v 0 — .
may need higher-order alphabets (8-QAM, 16-QAM) th, =Y Hx" = y. In each step, OMP_updates one coordinate
achieve the same spectral efficiency. of the vectorx based on the correlation values between the
« MU-MBM performs better than MU-GSM though bc)thresidue vector and the columns of the matrix. In thekth
use BPSK in this example. This can be attributed to theeratlon, an elemeny, given by
good distance properties of the MBM signal sét [2]. hT k-1

Note that though the results in Figl 2 illustrate the per- Jo= a;%';l?" H]hj”%
formance superiority of MU-MBM over MU-CM, MU-SM, !
and MU-GSM, they are presented only for a small systel added to the support set, wheig is the jth column of
with K = 2 andn, = 8. This is because ML detection ish. andS*~! andr*~! are the support set and residue after
prohibitively complex for systems with largk’ andn, (ML k — 1 iterations, respectively. The entries wfcorresponding
detection is exponentially complex ). However, massive 0 the obtained support set are computed using least squares
MIMO systems are characterized b in the tens andh,. in This process is iterated till the stopping criteria is meteT
the hundreds. Therefore, low-complexity detection screm@0PPINg criteria can be either a specified error thresholl o
which scale well for such large-scale MU-MBM system§Pecified level of sparsity.
are needed. To address this need, we resort to exploiting® the SP algorithm, instead of updating one coordinate
the inherent sparse nature of the MBM signal vectors, affl x at a time as in OMPK coordinates are updated at

devise a compressive sensing based detection algorithmPfif€. The major difference between OMP and SP is the
the following section. following. In OMP, the support set is generated sequeptiall

It starts with an empty set and adds one element in every
iteration to the existing support set. An element added ¢o th
support set can not be removed until the algorithm termgate
In contrast, SP provides flexibility of refining the support
It is evident from the example signal set {0 (4) that thget in every iteration. CoSaMP is similar to SP except that
MBM signal vectors are inherently sparse. An MBM signat updates2K coordinates in each iteration to the support
vector has only one non-zero element out/df elements, set instead of updatindgd coordinates as in SP. CoSaMP
leading to a sparsity factor af/A. For example, consider and SP have superior reconstruction capability compatable
an MBM signal set withm,; = 4 and M = 2™/ = 16. convex relaxation methods [14], [15)gorithm 1 shows the
Out of 16 elements in a signal vector, only one element Ii‘éting of the pseudo-code of the proposed sparsity-efiptpi
non-zero resulting in a sparsity factor bf16. Exploitation of detection algorithm for MU-MBM signals.
this inherent sparsity to devise detection algorithms ead to SR in Algorithm 1 denotes the sparse recovery algorithm,
efficient signal detection at low complexities. Accordngle \which can be any one of OMP, CoSaMP, and SP. The
propose a low-complexity MU-MBM signal detection schemgignal vector reconstructed by the sparse recovery atgoiig
that employs compressive sensing based sparse recomsirugenoted byk, . Detecting the MU-MBM signal vector involves
algorithms like OMP, CoSaMP, and SP. detecting the MBM signal vector transmitted by each user.
An MBM signal vector from a user has exactly one non-zero
entry out of M entries as observed in the example MBM
We first model the MU-MBM signal detection problem as aignal set in[(4). Hence, SR is expected to reconstruct a MU-
sparse reconstruction problem and then employ greedy al®BM signal vector such that the MBM signal sub-vector
rithms for signal detection. Sparse reconstruction is eamed corresponding to a given user has only one non-zero entry.
with finding an approximate solution to the following profie But this constraint on the expected support set is not huilt i

SNR in dB

IV. SPARSITY-EXPLOITING DETECTION OF MULTIUSER
MBM SIGNALS

A. Proposed sparsity-exploiting detection algorithm



Algorithm 1 Proposed sparsity-exploiting algorithm for MU-

MBM signal detection
1 Inputs:y, H, K 10tk !
2: Initialize: j =0
3: repeat _ 10° 6 MMSE
4: %, = SR(y,H, K +j) > Sparse Recovery algorithm ¢ |5Prop. Det. (OMP)
5. w = UAP(%,) > Extract User Activity Pattern - " l@Prop. Det. (CoSaMP)
6. if |ullo=K £ [$Prop. Det. (SP)
7: fork=1t0 K S K =16,m=1n =128 ;
8: %% = argmin ||x* — s||? > Nearest MBM signal 10°kmy = 6, 4-QAM
9: SESsu-mMBM mapping 8 bpcu per user
10: end for 10%
11: break;
12. elsej=j+1 oy 2 © s 5 10 12
13: end |f SNR in dB
14: until j < K(M - 1) ) Fig. 3. BER performance of MU-MBM in a massive MIMO system fwit
15: Output: The estimated MU-MBM signal vector K =16, n, = 128, ny = 1, n,.y = 1, m,y = 6, 4-QAM, 8bpcu per
user, using the proposed detection algorithm. MMSE detegberformance
. ~1T AoT ~KT:T . .
X = [x X“ X ] is also shown for comparison.

3 )

mance achieved by MU-MBM. The proposddgorithm 1

. is_also used for the detection of MU-SM and MU-GSM. It
the general sparse recovery algorithms. In general, a espars

. IS noted that the MU-SM and MU-GSM signal vectors are
recovery algorithm can output’ non-zero elements at any of

the K M locations ofx,.. To overcome this issue, we definealso sparse to some extent; the sparsity factors in MU-SM

user activity pattern (UAP), denoted by, as a K-length and MU-GSM arel /n; andn,s/n,, respectively. So the use

vector with kth entry asuy, — 1 if there is at least one non_of the proposed algorithm for detection of these signals is

zero entry in thekth user’s recovered MBM signal vector,a.ls'0 appropriate. ML detection is used to detect MU-CM

anduy = 0 otherwise. A valid reconstructed signal vector i?s(;?r}?ls_qzlsi f F);zsfgle dfi(r)r:em;itgg with sphere decoding
one which has all ones in. SR is used multiple times with MU-K/IBI\/,I }.oe.r,formance using proposéd algorithm: Figure

a range of sparsity estimates starting frét (K + j in the shows the performance of MU-MBM system. using the
algorithm listing) till the valid UAP is obtained (i.e., ltithe ™

. oposed algorithm with) OMP, i) CoSaMP, andii) SP.
algorithm reconstructs at least one non-zero entry for e : : :

) X SE detection performance is also shown for comparison.
user’s MBM signal vector).

In the algorithm listing,u’ denotes the UAP at thgth ?orrmns?dsjr\é?j I\/IIEIQ/(I:ﬁ usg/::elTsewn_hli : 16_a1ndﬂ?" - éQirI;
iteration. On recovering ag, with valid UAP, the MBM ' 5= 1, Ny = L, Myy =0,

signal vector of each user is mapped to the nearest (in t‘rlfeQAM' This results in a spectral efficiency of 8 bpcu per user

Euclidean sense) MBM signal vector $3,.yey. This is shown and a sparsity ff’iCtor d.f/64' From FigLB, we observe that the_
in the Step 8 in the algorithm listing, wheseé® denotes the p_r(?posed algorithm with OMP, CoSaMP, and SP achieve sig-
recovered MBM signal vector of theth user andc* denotes nificantly better performance compared to MMSE. Among the

the MBM signal vector to whicht gets mapped to. Finally, the use of OMP, CoSaMP, and SP in the proposed algorithm,

the MU-MBM signal vector is obtained by concatenating thdse of SP gives the best performance. This illustrates the

detected MBM siqgnal vectors of all the users, i.ex ,= superior reqonstruchon/detecuon advantage of th(_e mmb(_)
[XlT 2T LK |7 algorithm with SP. We will use the proposed algorithm with

X . . .
’ P . . : P in the subsequent performance results figures. It is noted
. The decoding Of. mformaﬂpn bits from th_e detec;ed MB hat the complexity of proposed algorithm is also quite favo
signal vector of a given user involves decoding of mirroreixd able; the complexity of the proposed algorithm with SP and

bits and QAM symbol bits of that user. The mirror inde 2 353 .
bits are decoded from the MAP of the detected MBM signgrllageﬁci)lr\ﬂn'\‘gr?ci ?);GI\O/I(UI-(M]\;\T)MaLrJ]ij(\)/I(KMfJV{G)é\r/le-SE%CJIrVeeI%L

vector and the QAM bits are decoded from the detected QA%OWS a BER performance comparison between MU-MBM,

symbol. MU-CM, MU-SM, and MU-GSM in a massive MIMO setting
] . with K = 16 andn,. = 128. The proposed algorithm with SP

B. Performance results in massive MIMO system is used for detection in MU-MBM, MU-SM, and MU-GSM.

In this subsection, we present the BER performance of MBAL detection is used for MU-CM. The spectral efficiency
MBM systems in a massive MIMO setting (i.els in the is fixed at 5 bpcu per user for all the four schemes. MU-
tens andn, in the hundreds) when the proposafyjorithm  MBM achieves this spectral efficiency with = 1, n,5 =1,
1 is used for MU-MBM signal detection at the BS. In then,; = 3, and 4-QAM. MU-CM usesy; = 1, n,y = 1, and
same massive MIMO setting, we evaluate the performan82-QAM to achieve 5 bpcu per user. To achieve the same
of other systems that use conventional modulation (M@ bpcu per user, MU-SM uses; = 4, n,y = 1, and 8-
CM), spatial modulation (MU-SM), and generalized spatigdDAM, and MU-GSM uses;, = 5, n,y = 2, and BPSK.
modulation (MU-GSM), and compare them with the perforfhe sparsity factors in MU-MBM, MU-SM, and MU-GSM



i STCN, = 1 7y = 1, .GAN, VLD 10 TTOMU-CM, 7y = 1, 1y = 1, 32-QAM, MLD
Ao, m =By j’&gpf\*f Srop B (f]f)) ’ MU-GSM, n; = 5,1,y = 2, BPSK, Prop. Det. (SP)
- .7l¢:A",f:. AM, Frop. Det. (3 _ _ A y
10 MU-MBM, n, = 1,y = 1,m,; = 3, +QAM, Prop. Det. (SP) 1 FMU-SM, i = 4,y = 1, 8-QAM, Prop. Det. (SP)
10 O MU-MBM, n; = 1,1,y = 1,m,; = 3, 4-QAM, Prop. Det. (SP)
[0
£
K-=16,n=128 o 10'2
5 bpeu per user 5
H
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Fig. 4. BER performance MU-MBM, MU-CM, MU-SM, and MU-GSM in Fig. 5. BER performance MU-MBM, MU-CM, MU-SM, and MU-GSM as
a massive MIMO setting with' = 16, n,, = 128, and 5 bpcu per user. a function ofn,. in a massive MIMO setting with' = 16, 5 bpcu per user,
and SNR = 4 dB.
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