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Abstract—Fast initialization of cognitive radio systems is a
key problem in a variety of wireless communication systems,
particularly for public safety organizations in emergency crises.
In the initialization problem, the goal is to rapidly identify an
unoccupied frequency band. In this paper, we formalize the
initialization problem within the framework of active hypothesis
testing. We characterize the optimal scanning policy in the
case of at most one free band and show that the policy is
computationally challenging. Motivated by this challenge for the
implementation of the optimal policy and the need to cope with an
unknown number of interferers larger than one, we propose the
constrained DGF algorithm. We show that for strict constraints
on the maximum number of observations, the constrained DGF
algorithm can outperform the error probability of the state-
of-the-art C-SPRT algorithm by an order of magnitude, for
comparable average delays.

I. INTRODUCTION

Cognitive radio is now an established means of supporting
coexistence of wireless communication systems operating on
the same frequency bands, in the same region. Beyond im-
proving spectral efficiency in cellular networks [1], cognitive
radio is also recognized as a key technology in a range of
other networks. For instance, a dedicated public safety wireless
network of an organization (e.g., police, fire and medical)
supporting communication on dedicated and unlicensed bands
during an emergency crisis can suffer interference from other
organizations [2]. Due to the clear need for each organization
to reliably communicate, it is necessary to limit the inter-
organization interference. In particular, it is highly desirable
for new organizations assisting in an emergency to initialize
their communication networks to avoid introducing interfer-
ence for existing organizations. As such, the initialization of
each organization’s wireless network plays an important role
in supporting an effective emergency response.

The initialization problem for cognitive radio systems is
closely related to the problem of efficiently scanning spectrum
to find unoccupied frequency bands. To date, a number of
spectrum scanning algorithms have been proposed based on
techniques from statistical detection theory [3]. In the special
case where a single band is observed, a large number of
detection schemes have been developed based on the structure
of the interfering wireless signals, such as energy [4], second
order statistics [5] and cyclostationarity [6]. A key assumption
underlying these schemes is a fixed number of observations.

However, in the initialization problem with multiple bands,
there are two aspects not addressed by schemes for single
band observation with a fixed number of samples. The first
aspect is the need to minimize the number of samples before
a band is identified as unoccupied, subject to a probability of

error. To deal with this aspect, sequential detection algorithms
originating in the work of Wald [7] and Page [8] have been
proposed to identify when it is possible to stop observing and
use only a small number of samples to meet error probability
constraints. A key technique is sequential detection of the
occupancy of a single band based on the sequential probability
ratio test (SPRT) [7].

The second aspect is the ability to identify a free band
within a larger set, when only a small number of bands can
be observed simultaneously. Existing work has focused on the
problem of identifying the occupancy of every band, where
sequential hypothesis testing frameworks have been developed
in [9], [10]. In [9], an optimal algorithm was proposed based
on CUSUM [8]. This was extended in [10] to account for a
constraint on the total number of observations. The detection
problem was shown to be equivalent to a Markov optimal
stopping problem; however, it was found that the optimal pol-
icy is computationally challenging. Motivated by the optimal
scanning policy without a constraint on the number of obser-
vations, the truncated concatenated SPRT (C-SPRT) algorithm
was proposed to provide a tradeoff between obtaining a low
error probability and a practical computational complexity.
However, the key challenge in applying this existing work to
the initialization problem is that the focus is on identifying the
occupancy state of all frequency bands, rather than minimizing
the detection time of a single unoccupied band.

In this paper, we consider the initialization problem for
cognitive radio based on minimizing the detection time of
a single unoccupied band. The first step is to formalize the
problem, where we adopt the Bayesian approach [11]. The
formalization builds on the active hypothesis testing frame-
work developed in [11], [12] for the purpose of anomaly
detection. A key difference is that we allow for the possibility
that no band is occupied and the presence of constraints on
the maximum number of observations, which are important
aspects of real-world cognitive radio systems. Our first result
is a characterization of the optimal scanning policy when
it is known that there is at most one free band. Using a
dynamic programming formulation, we show that this policy
is equivalent to the solution of a Markov optimal stopping
problem. As also occurs in the optimal policy in [10] when
identifying the occupancy state of all bands, the optimal policy
relies on a computationally challenging recursion. As the
difficulties for the optimal policy arise even for at most one
free band, it suggests that the optimal policy is unlikely to be
practical for an unknown number of free bands.

Motivated by the computational challenges of the optimal



scanning policy, we propose the constrained DGF algorithm.
The proposed algorithm is a heuristic low-complexity algo-
rithm, which has a simple scanning rule depending only on the
sum likelihood ratio at each time step. Moreover, the algorithm
can be applied even when there is an unknown number of free
bands, including zero.

We investigate the error probability and average delay of
the constrained DGF algorithm numerically via Monte Carlo
simulations in the case of zero mean Gaussian interferers and
noise. In particular, we demonstrate the effect of algorithm
parameters such as the sensing cost on the tradeoff between
the error probability and the average delay. We then compare
our algorithm with the C-SPRT algorithm proposed in [10]
and show that the constrained DGF algorithm can outperform
the error probability of the C-SPRT algorithm by an order of
magnitude for strict constraints on the number of observations.

II. PROBLEM SETUP

A. System Model

Consider a base station, which aims to find a single fre-
quency band in the set {1, 2, . . . ,K} that is unoccupied. We
assume that the base station can observe a single band at a
time. Let Y (j)

k be the signal sample observed by the base
station, at time j from the band k. If there are no transmissions
by any other networks on band k, then the signal is

Y
(j)
k = W

(j)
k , (1)

where W (j)
k is noise. On the other hand, if there is a trans-

mission on band k at time j, then

Y
(j)
k = X

(j)
k +W

(j)
k , (2)

where X(j)
k is the interfering signal. If an interferer is present

on band k at time j, then the interferer is also present on
band k at any other time j′. For each band k, the signal Y (j)

k

has a probability density function, fk, initially unknown to the
base station. In general, the density fk will not be the same
for each band. As such, we identify a set of densities Dfree
which correspond to free bands and a set of densities Docc
which correspond to occupied bands.

Given nk observations of band k, the base station can
perform a hypothesis test in order to determine whether or
not there is an interferer. In particular,

H
(k)
0 : Y

(j)
k = W

(j)
k , j = 1, 2, . . . , nk (3)

H
(k)
1 : Y

(j)
k = X

(j)
k +W

(j)
k , j = 1, 2, . . . , nk (4)

where H
(k)
0 is the hypothesis that channel k is unoccupied

and H(k)
1 is the hypothesis that channel k is occupied. In the

initialization problem, it is necessary to also choose which
channels to sense. This affects the number of observations
of band k, nk, available to make the decision of whether
or not the band is occupied. As it is necessary to complete
initialization within a short period of time, a constraint on the

maximum number of observations is required. In particular, at
each time n

K∑
k=1

nk = n ≤ T. (5)

B. Problem Formulation

Our goal is to identify the first unoccupied band k ∈
{1, 2, . . . ,K}; i.e., the band with the lowest index such that the
probability density function fk ∈ Dfree. If band k is the first
unoccupied band, then hypothesis H(0)

k is said to be true. We
adopt a Bayesian approach and assign an a priori probability
that H(0)

k is true, denoted by πk. As it is possible that no bands
lie in Dfree, we also consider a band 0 such that H(0)

0 is true
if H(0)

k is not true for all k ∈ {1, 2, . . . ,M}. The a priori
probabilities πk, k ∈ {0, 1, 2 . . . ,K} satisfy

∑K
k=0 πk = 1

At each time, the base station can observe a single band.
When the null hypothesis H(0)

k is true for band k, the prob-
ability density function of Y (j)

k lies in the set Dfree. On the
other hand, if H(0)

k is false, there is an interferer and fk lies
in Docc.

The time at which the base station stops scanning is
denoted by τ . At time τ , the base station declares a band
k ∈ {1, 2, . . . ,K} as free or declares that no band is free by
reporting k = 0. The base station’s decision rule is denoted by
δ, with δ ∈ {0, 1, 2, . . . ,K}. At each time n, the base station
makes a decision for which band to scan. The selection rule
is denoted by φ(n) ∈ {1, 2, . . . ,K}, indicating the band to be
scanned in time slot n.

With a finite number of observations, it is not possible to be
certain that any given band lies in Dfree due to the presence of
noise. Let αk = Pk(δ 6= k) be the probability of declaring δ 6=
k when band k is in fact the first band that lies in Dfree. The
probability of error is then defined by Pe =

∑M
k=0 πkαk. This

notion of error forms an upper bound on the total probability
of error, which is the probability that a band k is selected with
fk ∈ Docc or band k = 0 is selected when there is a free band.
We consider the probability of error as it provides a tractable
yet practically useful means of obtaining characterizations of
the optimal policy. Moreover, it is desirable to find free bands
with low indices, particularly if more than one base station is
scanning at the same time. We investigate the total probability
of error via simulations in Section V.

The other key factor in the initialization problem is the
detection delay. To this end, consider the average detection
delay given hypothesis H(k)

0 is true, denoted by Ek[τ ]. The
average detection delay is then E[τ ] =

∑K
k=0 Ek[τ ].

For each observation there is a sensing cost, which is
denoted by c ∈ R+. The Bayes risk when hypothesis H(0)

k

is true is then given by

Rk = αk + cEk[τ ], (6)



and the average Bayes risk is

R =

K∑
k=0

Rk = Pe + cE[τ ]. (7)

The initialization problem is therefore equivalent to finding a
policy consisting of a stopping time τ , a decision rule δ and a
band selection rule φ(n), n = 1, 2, . . . , T that minimizes the
average Bayes risk R.

III. OPTIMAL SCANNING POLICIES

In order to gain insight into how to design an initialize
algorithm, we first characterize the optimal scanning policy
when at most one band is free and Dfree = {f0}, Docc = {f1}
such that |Dfree| = |Docc| = 1. An example of this scenario
occurs is when the noise, W (j)

k , is zero mean Gaussian random
variable with a known variance σ2

W and the signal, X(j)
k

is also zero mean Gaussian random variable with a known
variance σ2

X . We show that even in this restricted scenario, the
optimal policy is computationally challenging and not ideal for
practical implementation.

Let qki (z) be the probability density function of an obser-
vation on band z given that band i is free. In particular,

qki (z) =

{
f0(z), i 6= k
f1(z), i = k.

(8)

Consider the Bayesian update of the belief vector π(n) =

[π
(n)
0 , π

(n)
1 , . . . , π

(n)
K ] by the nk-th observation of band k,

Y
(nk)
k , given by

Φk(π(n), Y
(nk)
k )

=

[
π
(n−1)
0

qk0 (Y
(nk)
k )

qk
π(n−1)(Y

(nk)
k )

, . . . , π
(n−1)
K

qkK(Y
(nk)
k )

qk
π(n−1)(Y

(nk)
k )

]
,

(9)

where qk
π(n−1)(Y

(nk)
k ) =

∑K
j=1 π

(n−1)
j qkj (Y

(nk)
k ). Define the

cost-to-go function given a filtration Fn (interpreted as the
information available at time n) as

R̃(Fn) = c+ min
k=1,2,...,K

E[R̃n+1(Fn+1|k,Fn)]. (10)

The value function can then be defined recursively as

R = min

{
min

k=1,...,K
c+ E[R̃n+1(Fn+1|k,Fn)],

min
k=1,2,...,K

1− π(nk)
k

}
, (11)

We now show that π(n) is a sufficient statistic capturing the
past history of the process, which forms a basis to characterize
the optimal policy. To begin, the cost-to-go at time T is

R̃T (Fn) = 1− π(T )
k∗ ; (12)

where k∗ = mink=0,1,2,...,M 1− π(T )
k . For j < T , the cost-to-

go is given by R̃ in (10), where mink=0,1,2,...,K 1 − π(n)
k is

the cost incurred if scanning is terminated and the expected
cost of continuing scanning is given by

min
k=1,2,...,K

c+ E
[
R̃n+1(Fn+1)|k,Fn

]
. (13)

Note that the expectation E[R̃n+1(Fn+1)|k,Fn] depends on
Fn, which is the entire observation history so far.

Observe that R̃T only depends on π(T ). We show that π(n)

is also a sufficient statistic for n < T using an argument based
on induction. Suppose that R̃n(Fn+1) depends on π(n+1) only,
which we denote by R̂n+1(π(n+1)). Then,

R̃(Fn) = min

{
c+ min

k=1,2,...,K
E[R̃n+1(Fn+1|k,Fn)],

min
k=0,1,...,K

1− π(n)
k

}
= min

{
c+ min

k=1,...,K
E[R̂n+1(π(n+1))|k,Fn],

min
k=0,1,...,K

1− π(n)
k

}
. (14)

We then have

E[R̂n+1(πn+1)|k,Fn]

=

∫
Rn+1

(
Φk(π(n), y)

)
qkπ(n)(y)dy

= A(k)
n (π(n)). (15)

It then follows that

k∗ = argmin
k=1,2,...,K

A(k)
n (π(n)). (16)

As such π(n) is a sufficient statistic. Moreover, since the choice
of k only depends on π(n), the process {π(n), n = 0, 1, 2, . . .}
is Markov.

Using the same argument as in [13, Theorem 1],
E[R̂(π(n+1))|k, π(n)] is concave in π(n) for all k =
1, 2, . . . ,K. This implies that the cost-to-go R̃(Fn) is concave
and the optimal policy is the solution to a Markov optimal
stopping time problem. The optimal stopping rule is therefore
[14]

τ = inf

{
n : min

k=0,1,...,K
c+ E[R̂n+1(πn+1|k, πn)] ≥

min
k=1,2,...,K

1− πnk∗
}
. (17)

To summarize, we have shown that the initialization problem
in this scenario is equivalent to a Markov optimal stopping
time problem. However, computing the policy to select a
band to observe relies on the recursion in (15). To reduce
the computational requirements and cope with more general
scenarios allowing for an unknown number of free bands larger
than one, it is desirable to consider simpler policies.



IV. PROPOSED INITIALIZATION ALGORITHM

In this section, we propose an initialization algorithm to
efficiently find a single unoccupied band. Motivated by the
complexity of the optimal scanning policy characterized in
Section III, the decision of which band to sense and the
stopping criterion rely on a condition that is straightforward
to verify. In particular, the algorithm is based on the DGF
algorithm [11] developed for anomaly detection within the
active hypothesis testing framework of Chernoff [12].

Let fr,i ∈ Dfree be a probability density function in Dfree
and fr,o be a probability density function in Docc. At time n,
define Λ

(kl)
n as the l-th largest sum likelihood (corresponding

to the band with index kl) given by

Λ(kl)
n =

nkl∑
j=1

fr,i(Y
(nkl

)

kl
)

fr,o(Y
(nkl

)

kl
)
. (18)

The constrained DGF algorithm is detailed as follows.
1) Initialization: Select c > 0, fr,i ∈ Dfree, fr,o ∈ Docc,

and set n = 1.
2) Loop: For each time n, select a band k according to the

rule

k =

{
k1, D(fr,i||fr,o) ≥ D(fr,o||fr,i)

K−1
k2, D(fr,i||fr,o) < D(fr,o||fr,i)

K−1 ,
(19)

where D(·||·) is the Kullback-Leibler divergence [15].
3) Based on the new observation of band k, update the

ordering of the sum likelihoods {Λ(k)
n }Kk=1. If Λ

(1)
n ≥

− log c, then terminate and set k = k1. Similarly, if
n + 1 > T , then terminate and set k = 0. Otherwise,
repeat Step 1 for time n+ 1.

The constrained DGF algorithm has several desirable fea-
tures. First, the band selection rule in time slot n given in
(19) is simple, particularly compared with the optimal policy
in Section III. Second, the constrained DGF algorithm can be
applied when there is an unknown number (≥ 1) of unoccupied
bands and when |Dfree| > 1 or |Docc| > 1. Third, when the
only element of Dfree is fr,i and the only element of Docc is
fr,o and it is known that there is only a single free band, then
as c→ 0 it follows from [11, Theorem 1] that

R ∼ −c log c

D(fr,o||fr,i)
, (20)

which agrees with the Bayes risk minimizing policy.
However, to apply the constrained DGF algorithm it is

necessary to select the sensing cost c. In the following section,
we investigate the effect of these parameters on the total error
probability and average delay of the algorithm and compare it
with the C-SPRT algorithm proposed in [10].

V. NUMERICAL RESULTS

In this section, we numerically evaluate the total error prob-
ability and average delay of the constrained DGF algorithm for

zero-mean Gaussian signal and noise with variances σ2
X and

σ2
W , respectively. In particular,

fr,i(x) =
1√

2πσ2
W

exp

(
− x2

2σ2
W

)
fr,o(x) =

1√
2π(σ2

X + σ2
W )

exp

(
− x2

2(σ2
W + σ2

X)

)
. (21)

To implement the constrained DGF algorithm, the Kullback-
Leibler divergences in (19), which are given by

D(fr,i||fr,o) = log

(
σ2
W + σ2

X

σ2
W

)
+

σ2
W

2(σ2
W + σ2

X)
− 1

2

D(fr,o||fr,i) = log

(
σ2
W

σ2
W + σ2

X

)
+
σ2
W + σ2

X

2σ2
W

− 1

2
(22)

In the simulations, K = 7, with each band unoccupied with
probability 0.1. The signal-to-noise ratio σ2

X/σ
2
W is −5dB.
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Fig. 1. The effect of the sensing cost, c, on the total error probability for
varying observation constraint, T .

In Fig. 1 and Fig. 2, we consider the effect of the observation
constraint, T , and the sensing cost, c. Fig. 1 shows the total
error probability as the sensing cost varies, for T = 1000
and T = 5000. Observe that for sufficiently large sensing
cost c, the total error probability decreases for decreasing
c. This is due to the fact that for large c, the sensing cost
reduces the number of observations and increases the total
error probability. There are two other key observations. First, a
larger T does not imply that the total error probability is lower
for all choices of the sensing cost. This is due to an improved
identification of the case that there are no unoccupied bands.
Second, the total error probability is increasing for low values
of c with T = 1000. This arises because decreasing c, leads
to a larger number of observations exceeding T which means
that free bands are incorrectly identified as occupied.

Fig. 2 shows that average delay as the sensing cost varies.
Observe that increasing the sensing cost reduces the average
delay. This is because a high sensing cost causes the con-
strained DGF algorithm to terminate faster than for a low
sensing cost.
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Fig. 2. The effect of the sensing cost, c, on the average delay for varying
observation constraint, T .

TABLE I
COMPARISON OF THE CONSTRAINED DGF AND C-SPRT ALGORITHMS.

T Average Delay Total Error Probability
Cons. DGF 1000 705.6 0.085

C-SPRT 1000 839.9 0.404
Cons. DGF 2000 1107.1 0.11

C-SPRT 2000 1092.1 0.17
Cons. DGF 5000 1104.3 0.349

C-SPRT 5000 1157.7 0.091

Table I compares the proposed constrained DGF algorithm
with the C-SPRT algorithm proposed in [10] which is modified
to terminate after the first unoccupied channel is identified. The
experiments compare the total error probability with compara-
ble average delays. Observe that for a maximum of T = 1000
observations, the constrained DGF algorithm leads to an order
of magnitude reduction in the total error probability. For an
increasing maximum number of observations, the C-SPRT
algorithm begins to outperform the constrained DGF algorithm
above T = 2000 observations. The reason is that the C-SPRT
algorithm is able to identify the scenario where all bands are
unoccupied more rapidly than the constrained DGF algorithm,
for large values of T . This suggests that an adaptive approach
using the constrained DGF algorithm for small values of T
and C-SPRT for large values of T is an effective solution to
the initialization problem.

VI. CONCLUSIONS

Initialization of cognitive radio systems plays an important
role for public safety organizations seeking to communicate in
an emergency crisis. In particular, a key challenge is to quickly
identify an unoccupied frequency band with a low probability
of error. In this paper, we formalize the initialization prob-
lem within the framework of active hypothesis testing. We
characterize the optimal spectrum scanning policy when there
is at most one free band and show that a computationally

challenging recursion must be solved. Motivated by this and
the need to allow for an unknown number of unoccupied bands
greater than one, we proposed the constrained DGF algorithm.
We demonstrated the effect of the sensing cost parameter
and the constraint on the maximum number of observations
via Monte Carlo simulations. Moreover, we compared the
algorithm with the existing C-SPRT algorithm designed to
identify the occupancy state of all bands. A key conclusion is
that for strict constraints on the maximum number of observa-
tions, the proposed constrained DGF algorithm can outperform
the C-SPRT algorithm by an order of magnitude. We also
found that for a large maximum number of observations, T ,
the C-SPRT algorithm is a better choice suggesting that an
adaptive approach using the constrained DGF algorithm for
small values of T and the C-SPRT algorithm for large values
of T is an effective strategy.
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