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Abstract—In dense wireless networks (large number of users)
and under high traffic loads, inter-user interference constitutes
a factor limiting network’s performance. Successive Interference
Cancellation (SIC) has successfully counteracted this problem.
Nonetheless, the aggregate Packet Error Rate (PER) when SIC is
employed heavily depends on the users’ symbol energies. We show
that in a wireless (satellite) scenario where users share the same
encoder, we may apply Variational Calculus (VC) in the large-
user limit to derive the optimum distribution of ordered energies,
or Energy Profile, and its associated Signal to Interference plus
Noise Power Ratio (SINR) over consecutive SIC stages when an
average energy constraint is enforced. Both profiles are shown to
solve a differential equation system and to be a non-increasing
function of the user decoding order. A comparative analysis is
carried out for two representative encoders.

Index Terms—Successive Interference Cancellation, Packet
Error Rate, Satellite, Multiple Access, Variational Calculus

I. INTRODUCTION

Interference may pose a severe limitation to massive wire-
less multiple access unless the central receiver is endowed
with strong multipacket reception capabilities. In that respect,
Interference Cancellation (IC) has been extensively studied
[1][2][3]. Such systems have been proposed for satellite com-
munications, combining Direct Sequence (DS) Code Division
Multiple Access (CDMA) with a SIC receiver [4][5][6] or
using multipacket transmission as in Contention Resolution
Diversity Slotted ALOHA (CRDSA) [7][8]. The use of pow-
erful encoders coupled with power imbalance at reception
favours IC and has considerably improved the throughput of
such random access protocols [4][9]. In a context characterized
by high user activity and spectrum/orbit congestion [10], it is
of interest to develop schemes for space assets that optimize
the aggregate spectral efficiency of the user population.

We consider a transparent satellite (i.e., operating as a
repeater), in which the uplink received multiple access signal
is transmitted to the ground gateway central receiver. The
satellite power efficiency constitutes a relevant factor in that
system optimization is carried out for a specific operating point
(OP) of the on-board amplification chain, which can be defined
in terms of the received power on the uplink. The uplink user
channels are slowly time-varying, practically stationary over
the packet duration and propagation delay and characterized
by a strong line-of-sight component (e.g., fixed/mobile satellite
services using medium-complexity stations/terminals equipped
with a directive antenna). If a satellite-to-users downlink

pilot signal is available, perfect channel gain information at
transmission for all users is reasonably assumed. A proof-
of-concept analysis is performed in such case for users that
share the same modulation/coding scheme and may adjust
their transmission power. A practical encoder is adopted, and,
to allow typical satellite terminal operation at a low peak-
to-average power ratio, a DS spread spectrum modulation is
selected for uplink access. Under these conditions, we derive,
for the specific SIC policy described in Section II and with
affordable control overhead at system level, the user energy
profile that optimizes a global utility (the aggregate PER)
under an average received energy constraint related to the OP
of the on-board amplification chain. With this goal in mind, we
show that, for practical coding schemes, the optimum SINR
profile is decreasing in the SIC decoding order when the sys-
tem is heavily loaded. Similar results were obtained in [11] for
a less powerful SIC policy that halts at the first detected packet
loss. This conclusion contrasts with other previous results,
for which the optimum SINR is uniform over consecutive
SIC stages. Specifically, the uniform SINR profile is found
when the objective is to optimize the asymptotic capacity [12],
when the average energy limitation is substituted by a given
power imbalance constraint (maximum to minimum of the
user energy profile) [13], or when an iterative SIC receiver is
implemented (assuming some heuristic simplifications [14]).

Section II presents the system model and the differential
equation for the SIC receiver in the large-user regime [13][15].
Sec. III describes the spectral efficiency optimization problem
and the computation of the corresponding SINR and energy
profiles. Simulations for two coding schemes are shown in
Sec. IV, with conclusions in Sec. V. Secs. VI and VII support
the corresponding VC derivations.

II. SYSTEM MODEL

We adopt a DS spread-spectrum model in which K users
transmit on the uplink with symbol energy Ex[k], with
1≤k≤K the user index. The complex equivalent baseband
signal of the k-th user’s D-symbol packet is given by,

xk(t) = Ak

D−1
∑

n=0

N−1
∑

m=0

ck[Nn+m]ak[n]pc(t− (Nn+m)Tc)

(1)
with Ak an amplitude factor for power control, N the spread-
ing factor, ck[Nn+m] a long spreading code [16], ak[n] the
symbol sequence, pc(t) the chip pulse and Tc the chip period.978-1-5090-6008-5/17/$31.00 c© 2017 IEEE
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Under the flat fading model, the complex equivalent baseband
signal received at the gateway after down-conversion is y(t) =
∑K

k=1 βkxk(t− τk)+n(t), with βk and τk the respective k-th
user’s end-to-end complex channel and timing offset, and n(t)
additive white Gaussian noise. For the sake of meaningful and
affordable theoretical analyses, carrier frequency offsets are
obviated and perfect knowledge of user channel and symbol
energy is assumed. At the gateway, users are received with
symbol energy Es[k] = |βk|2Ex[k], with |βk|2

.
= hdGsh[k]

and h[k], Gs and hd the individual uplink, satellite and
common downlink power gain, respectively. The noise power
spectral density at the gateway is N0 = hdGsNu +Nd, with
Nu and Nd the uplink and downlink contributions.

The receiver performs typical SIC-based demodulation:
de-spreading with ck[·] and subsequent decoding for each
successive user, followed by user packet re-modulation and
cancellation before proceeding to the next user. All users
employ the same encoder, with a Cyclic Redundancy Check
(CRC) to enable error detection at the decoder. The decoder’s
PER characteristic is a function PER[Γ] of the SINR at the
output of the symbol de-spreader (denoted Γ), as at that
point and with long spreading codes [16], multiple access
interference may be assumed Gaussian. We adopt a SIC policy
whereby a user is canceled if its packet has been correctly
decoded and demodulation always progresses to the next
user independently of previous decoding errors (user packet
losses). We assume imperfect cancellation, after which an
implementation-dependent residual fraction ε(Γ) of the user
energy remains. Then, the SINR at the k-th SIC stage is,

Γk =
Es[k]

N0 +
θ
N

∑k−1
i=1 ε[i|Γi]Es[i] +

θ
N

∑K
i′=k+1 Es[i′]

(2)

with ε[i|Γi] a binary random variable equal to 1 (packet loss)
or to ε(Γi) (packet decoded) and θ an average decorrelation
factor accounting for inter-user timing variations [12][15]. In
the large-user limit, we define the continuous user index t

.
=

limK→∞
k
K , with 0 ≤ t ≤ 1. We also let N → ∞ so that the

system load α
.
= K

N is held constant. Under these assumptions,
we define: (i) the asymptotic continuous energy profile Es(t),
with Es[k] obtained by sampling: Es[k] = Es

(

k
K

)

and (ii)
its corresponding asymptotic continuous SINR profile Γ(t)

.
=

limK,N→∞ Γk, expressed as,

Γ(t) =
Es(t)

Nt(t)
=

Es(t)

N0 + ξprv(t) + ξrem(t)
(3)

ξprv(t) = αθ

∫ t

0
r(Γ(τ)) ·Es(τ)dτ , ξrem(t) = αθI(t) (4)

with Nt(t) the noise plus interference term, and ξprv(t) and
ξrem(t) the interference from previous and remaining users,
respectively, given by the following two definitions [15]:

r(Γ)
.
= ε(Γ) + (1 − ε(Γ))PER[Γ] , I(t)

.
=

∫ 1

t
Es(τ)dτ (5)

Expression (3) has been shown [13] equivalent to the following
Ordinary Differential Equation (ODE) in Γ(t) (given Es(t)),

d
dt logEs(t) = d

dt logΓ(t)− αΦ[Γ(t)] (6)

with Φ[Γ]
.
= θ(1−ε(Γ))Γ·PSR[Γ] and PSR[Γ]

.
= 1−PER[Γ]

the Packet Success Rate (PSR) function.

On the transmission side, we define the corresponding
asymptotic profiles Ex(t) and h(t), so that the received energy
profile can be expressed as Es(t) = hdGsh(t)Ex(t).

III. OPTIMUM SINR AND ENERGY PROFILES

We derive the SINR and energy profiles Γ(t) and Es(t)
that optimize the aggregate spectral efficiency achieved by
the studied SIC receiver in the large-user regime. From the
previous section, the corresponding transmitted energies are
obtained1 from Ex(t) = (hdGsh(t))−1Es(t) and will be
discussed further in Section IV. To enable power control, we
assume that each user packet sent to the gateway contains
its local (perfect) h[k] estimate obtained from a downlink
pilot signal (see Section I) and that the gateway broadcasts
a compressed table Eh(h)

.
= Ex(h−1(h)) to the users on a

low-rate control channel. In this way, each user may set its
symbol energy to Eh(h[k]) to generate the required Es(t).

First, we define an admissible energy profile Es(t) as one
that fulfils the two following conditions in terms of the user
variable t and an admission parameter t0,

(i) an admission constraint: Es(t)
∣

∣

t0<t≤1
= 0.

(ii) a finite differentiable non-zero energy constraint for each
active user:

0 < Es(t)
∣

∣

0≤t≤t0
< ∞ (7)

We are interested in optimizing the overall system spectral
efficiency (bps/Hz), which is proportional to the average PSR:

psr
.
=

∫ 1

0
PSR[Γ(t)]dt (8)

Hence, for Es(t) an admissible profile, we seek to optimize
psr jointly over Es(t) (given t0) and the admission parameter
t0, subject to an average energy constraint Es that sets the
OP of the on-board amplifier2. Accordingly, the following
constrained optimization problem needs to be solved:

psrmax
.
= max

0≤t0≤1

[

max
Es(t)

[
∫ 1

0
PSR[Γ(t)]dt

]]

(9)

s.t. Es(t) : conditions (i)− (ii) (10)

s.t.

∫ 1

0
Es(t)dt = I(0) = Es (11)

where Γ(t) in (9) is obtained from Es(t) by solving the ODE
in (6). The inner maximization over Es(t) in (9) constitutes
a VC problem (see Section III-A). The maximization over
t0, implicit in conditions (i)-(ii), constitutes instead a simpler
univariate optimization problem.

1Given that the optimum Es(t) is non-increasing (Property 2 in Section
III-A), h(t) is taken as the non-increasing profile of channel power gains.

2Given the gain Gshd and the uplink noise power level Nu (perfect pilot-
based estimates assumed at the gateway), the signal bandwidth W and chip
rate rc

.
= 1/Tc, we have: OP = NuW +K ·Esrc · (Gshd)−1.



A. Solution to the VC problem and Invariance Equation

Sections VI and VII show that the energy profile Es,∗(t) and
its resulting SINR profile Γ∗(t) that achieve a local optimum
to the inner VC problem in (9) verify Properties 1 and 2:

Property 1: Conditions for local optimality (Section VI-A).
If Γ∗(t) > Γip, ∀t ∈ [0, t0], with Γip the inflection point of
the PSR function (PSR′′[Γip] = 0), then, Γ∗(t) yields a local
optimum. Otherwise, Γ∗(t) constitutes a saddle point: this
occurs when Γ∗(t) < Γip over a sub-interval within [0, t0].

Property 2: The solution profiles Γ∗(t) and Es,∗(t) are both
non-increasing in t. This result, proved in Section VII, is
subject to the monotonicity conditions exposed therein.

We present now a system of nonlinear and differential
equations whose solution constitutes a stationary point to the
inner VC problem in (9). This system is established in terms
of the profiles Es(t), Γ(t) and I(t) for 0 ≤ t ≤ t0 as follows,

1) First Equation: the integrated energy profile I(t) in (5),

d
dtI(t) = −Es(t) (12)

2) Second Equation: SIC operation. See equation (6).
3) Third Equation: the Invariance Equation (IE). The first

two system equations are fulfiled for each possible profile. The
IE (Section VI), though, is specific to the stationary point and
establishes an invariance throughout the SIC stages,

PSR′[Γ(t)]

Nt(t)− αI(t) · Φ′[Γ(t)]
= ρ > 0 (13)

with 0 ≤ t ≤ t0, ρ a constant value and Nt(t) = Es(t)/Γ(t)
the noise plus interference profile defined in (3).

The previous system must fulfil the following three bound-
ary conditions given Es and ρ (temporarily assumed known),

1) Boundary condition for I(t): we set I(0) = Es.
2) Boundary condition for Γ(t): applying the IE at t = 0,

we set Γ(0) = Γ0 by solving for Γ0 in,

ρ = PSR′[Γ0]/(N0 + αθEs − αEs · Φ′[Γ0]) (14)

where, from (3), we have used Nt(0) = N0+ξprv(0)+ξrem(0),
with ξprv(0) = 0 (from [15]) and ξrem(0) = αθEs (from (5)).

3) Boundary condition for Es(t): from (3), we set t = 0
and we get that Es(0) = Nt(0) · Γ0 = (N0 + αθEs) · Γ0.

Solution procedure: For each possible Γ0 and its respective
ρ in (14), we solve the system for Es(t), Γ(t) and I(t)
by a standard numerical procedure based on Euler’s method
for differential equations, with the boundary conditions as
initialization at t = 0. A valid t0 for each Γ0 is computed
from I(t0) = 0 (when t0≤1) and its PSR obtained to perform
the outer univariate maximization in (9). The maximizing t0
yields the corresponding SINR and energy profiles.

IV. SIMULATIONS

We evaluate the previous theoretical results in a representa-
tive interference-dominated scenario featuring non-orthogonal
spread-spectrum users with spreading factor N = 2048 and a
received average Es/N0 of 15 dB. The SIC residual interfer-
ence power factor is assumed independent of the SINR, with
ε(Γ) = 0.1. The decorrelation factor is set to θ = 1.

As the optimum SINR and energy profiles in Section
III depend on the considered modulation and forward-error
correcting (FEC) code, we have evaluated the SIC performance
for QPSK and two representative FEC codes (Fig. 1): (a) the
classical convolutional code (CC) of rate 1/2 and generator
polynomials 133oct and 171oct (adopted in standards such
as DVB-S or IEEE 802.11), with a packet length of 320
information bits; (b) the DVB-RCS turbo-code (TC) with rate
1/2 using max-log-MAP decoding, with a packet length of
864 information bits. The TC is selected as an instance of
an abrupt PER[Γ] curve, whereas the CC is used to evaluate
the performance for a smoother PER[Γ] curve. Property 1
(Section III) shows that the optimum SINR profile Γ0(t) must
be above a certain threshold Γip for any 0 ≤ t ≤ t0. To check
this condition, the PSR inflection point is indicated in Fig. 1,
for the two FEC codes, with a vertical dashed line.
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Fig. 1. PER vs. SINR curves for the two studied FEC codes.

Fig. 2 depicts, in the upper plot, the system’s spectral
efficiency (SE) 2αRcpsrmax versus the load α = K

N for the
CC, with Rc the code rate. As shown, the SE does not collapse
for high loads, but holds its performance when α exceeds a
maximum value saturating the system. The bottom plot in Fig.
2 shows the value of t0 that maximizes (9) and the evolution
of the range of Γ(t) in terms of α. The range of Γ(t) is defined
for each α by its initial (maximum) and last (minimum) SINR
values Γ(0) and Γ(t0), resp., since Γ(t) (Property 2) is non-
increasing. As shown, when the system is underloaded, the
SINR profile Γ(t) tends to be uniform with t0=1. On the
contrary, when approaching saturation, the optimum SINR
profile is no longer uniform, while t0 still satisfies t0=1. When
the traffic load exceds the saturation value, the range of Γ(t)
does not increase but t0 starts decreasing and regulates the
system load. This behavior guarantees that the SINR profile
satisfies Γ(t) > Γip.

In Fig. 3, a 13% overloaded system (α = 1.3) handling
approximately K = 2662 users is simulated to complement
the results in Fig. 2, evidencing that the SINR profile that
maximizes (9) in not uniform. A Monte Carlo simulation with
500 runs shows the average SINR profile (circles) obtained
from the optimum symbol-energy profile (middle plot). The
solid line corresponds to the theoretical optimum profiles.

The same curves are plotted in Figs. 4 and 5 for the more
powerful TC, showing a much higher admissible load. The
maximum accepted load for the TC is approx. α = 1.67 (K ≈
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Fig. 3. Per-user profiles vs. user index t for a 13% overloaded system
(α = 1.3, K ≈ 2662) for the convolutional code.

3420 users) vs. α = 1.15 (K ≈ 2355 users) for the CC.
In both cases, the SE exceeds 1 bps/Hz, the limit value for
orthogonal multiple access. As shown in Fig.4, the range of
Γ(t) is reduced for the TC due to its steeper PER[Γ] curve.

In Figs. 2-5, we also simulate the SIC policy in [11], which
stops iterative decoding when the first packet error occurs. To
avoid this situation, the admitted load is severely limited and,
thus, the system SE degrades (e.g., 34% with the CC).

Fig. 6 complements the PSR information in Figs. 3 and
5 (bottom). It shows, for the CC and the TC, the evolution
of the corresponding PER (average over the 500 Monte Carlo
runs) across the SIC stages, in comparison with the theoretical
prediction (PSR profiles in the mentioned figures). In this
respect, accurate results for the average PER using Equation
(6) were reported in [15] for K ≥ 512 users.
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Fig. 5. Per-user profiles vs. user index t for a 13% overloaded system
(α = 1.9, K ≈ 3891) for the turbo code.

Finally, Fig. 7 shows the transmission profile Ex(t)/N0 for
three uplink channel power gain profiles h(t). We have used an
exponential h(t) = h0e−R2

0
t/σ2

r to model a circular coverage
area of radius R0 with uniformly distributed users and an ideal
Gaussian beamshaped pathloss P (r) versus radius, for which
h(t) = P (R0

√
t). Results have been obtained with a variation

range L = eR
2

0
/σ2

r of 5/10/15 dB within this area, corre-
sponding to the reception profile Es(t)/N0 in Fig. 5 for the
overload regime. The user power imbalance at transmission,
max0≤t1,t2≤t0

Ex(t1)
Ex(t2)

, is found to be 4.97/0.52/3.92 dB for
each choice of L, respectively. Note that the channel power
gain profile contributes to reducing the power imbalance at
transmission with respect to the required 9.42 dB in reception
(Fig. 5 (middle)). In fact, depending on the specific form of
h(t) (i.e., L = 15 dB), a non-decreasing profile may result.
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V. CONCLUSIONS

Variational Calculus constitutes a powerful tool to optimize
advanced interference cancellation architectures enabling mas-
sive non-orthogonal multiple access. We have used it to derive
the user energy profile that maximizes the spectral efficiency
of a SIC receiver handling a large number of coded spread-
spectrum users. In contrast to information theoretic works [12],
we have assumed practical modulation and coding schemes.
An analysis of the numerical results has shown that:

(i) the optimum SINR profile is a decreasing function of
the SIC decoding order (this differs from capacity studies in
which the optimum SINR profile is found to be uniform [12]).
Hence, different users are subject to different PERs (Fig. 6).

(ii) all users are active while the system is underloaded.
However, if the load exceeds the saturation level, the admission
parameter t0 is activated in order to regulate the admitted load.

VI. APPENDIX I: STATIONARY POINT EQUATION

Let us consider infinitesimal SINR variations δΓ(t)
.
= av(t)

on a (constrained) SINR profile Γ0(t). The infinitesimal term
a → 0 sets, given v(t), the magnitude of δΓ(t). v(t) is
admissible if the corresponding Es(t) is admissible and fulfils
the problem constraints. Let Γ0(t) be a stationary point of the
VC problem in (9). Then, for Γ(t) = Γ0(t)+av(t), 0 ≤ t ≤ t0,
we construct the following Lagrangian with respect to a,

L(a) .
=

∫ t0

0
PSR[Γ(t)]dt− λ ·

(
∫ t0

0
Es(t)dt− Es

)

(15)

Let V denote the set of admissible SINR variations v(t). Thus,
for Γ0(t) to be a stationary point of (15), we must have that,

lim
a→0

∇a[L(a)] = 0 , ∀ v(t) ∈ V (16)

Applying the gradient ∇a to (15), the first term yields,

∇a

∫ t0

0
PSR[Γ(t)]dt =

∫ t0

0
PSR′[Γ(t)]v(t)dt (17)

Let us look at the second term. First, from (6), integrating with
respect to t on both sides and using Nt(t) in (3), we have,

Es(t) = Γ(t) ·Nt(0)e
−B(t) , B(t)

.
= α

∫ t

0
Φ[Γ(τ)]dτ (18)

where, using (3)-(5): Nt(0) = Es(0)/Γ(0) = N0 + αθEs is
independent of a. Applying ∇a to the second term in (15),

∇a

∫ t0

0
Es(t)dt = Nt(0)

∫ t0

0
e−B(t)v(t)dt (19)

+ Nt(0)

∫ t0

0
Γ(t)e−B(t)

(

−α

∫ t

0
Φ′[Γ(τ)]v(τ)dτ

)

dt

Using (18), the previous right-hand side term becomes,
∫ t0

0
Nt(t)v(t)dt−

∫ t0

0
αEs(t)

∫ t0

0
Φ′[Γ(τ)]v(τ)u(t− τ)dτdt

for u(τ) the unit step function. Exchanging integrals over t, τ
in the second term, and as Es(t) = 0 for t0 < t ≤ 1, we get
I(t) in (5):

∫ t0
0 Es(t)u(t − τ)dt =

∫ t0
τ Es(t)dt = I(τ).

Thus, using t as in integration variable, we finally obtain,

∇a

∫ t0

0
Es(t)dt =

∫ t0

0
(Nt(t)−αI(t)Φ′[Γ(t)])v(t)dt (20)

Let D(t)
.
= Nt(t)−αI(t)Φ′[Γ(t)]. Combining (20) with (17)

in (16), we get the stationary point equation for all v(t) ∈ V ,

lim
a→0

∫ t0

0

(

PSR′[Γ(t)]− λ ·D(t)
)

v(t)dt = 0 (21)

It only remains now to determine V : as the Es constraint must
be fulfiled along the variation, this is equivalent to setting,

lim
a→0

∇a

[
∫ t0

0
Es(t)dt− Es

]

= 0 (22)

At this point, we drop lima→0 and interpret Γ(t), Es(t), I(t)
and Nt(t) to correspond to the stationary point. The gradient
in (22) appears in (20). Hence, any admissible v(t) at any
Γ(t) must fulfil:

∫ t0
0 (Nt(t)−αI(t)Φ′[Γ(t)])v(t)dt = 0, which,

combined with (21), defines V at a stationary point Γ(t) as,

V .
=

{

v(t) :

∫ t0

0
PSR′[Γ(t)] · v(t)dt = 0

}

(23)

Hence, if (21) must hold for any v(t) ∈ V , then, from (23),
the factor of v(t) in (21) must be either zero or proportional
to PSR′[Γ(t)]. This finally establishes, for q += 1, that:
PSR′[Γ(t)]−λ·D(t) = qPSR′[Γ(t)]. Setting ρ

.
= λ

1−q , we get
the Invariance Equation in (13) along the SIC stages, where
ρ > 0 as I(t0) = 0. Note that setting q = 1 leads to a con-
tradiction at t = t0, where I(t0) = 0 ⇒ D(t0) = Nt(t0) = 0,
but necessarily Nt(t) > 0, from Nt(t) = Nt(0)e−B(t) in (18).



A. Extremality Analysis

We derive conditions for Γ0(t) to be a local maximum. We
expand the psr around Γ0(t) up to second order in a,

psr =
2

∑

i=0

∫ t0

0
PSR(i)[Γ0(t)]

(av(t))i

i!
dt+ o(a2) (24)

Clearly, using (23), for v(t) admissible at the stationary point
Γ0(t), the i = 1 term above in av(t) is exactly zero and,

psr -
∫ t0

0
PSR[Γ0(t)]dt+

∫ t0

0
PSR′′[Γ0(t)] · a

2v2(t)
2 dt (25)

Thus, D2
.
=

∫ t0
0 PSR′′[Γ0(t)]v2(t)dt must be negative for all

v(t) ∈ V . D2 < 0 holds when Γ0(t) > Γip at 0 ≤ t ≤ t0, with
Γip the inflection point of PSR[Γ], at which PSR′′[Γip] =
0. But, if for T .

= [t1, t2] ⊂ [0, t0] we have Γ0(t) ≤ Γip,
then: PSR′′[Γ0(t)] ≥ 0 for t ∈ T . In that case, consider a
variation v∗(t) = 0, t /∈ T that still fulfils (23). Hence, v∗(t)
is admissible but yields D2 ≥ 0. Thus, for such T and v(t) ∈
V at Γ0(t), we may have D2 < 0 (when v(t) = 0 where
PSR′′[Γ0(t)] ≥ 0) or D2 ≥ 0 (when v(t) = v∗(t)). Thus, a
Γ0(t) that at some T fulfils Γ0(t) < Γip, is a saddle point. We
must have Γ0(t) > Γip over 0 ≤ t ≤ t0 for a local maximum.

VII. APPENDIX II: MONOTONICITY OF Es(t) AND Γ(t)

From I(t) in (5) and Nt(t) in (3), we get that d
dtI = −Nt·Γ.

Hence, substituting Nt(t) = Es(t)/Γ(t) into (6), we get,

d
dtNt = α(Φ[Γ]/Γ) · d

dtI (26)

Now, from (13), we solve for Nt versus Γ and I and obtain
that: Nt(Γ, I) = ρ−1 · PSR′[Γ] + αI · Φ′[Γ], with differential
dNt = (∂ΓNt) · dΓ+ (∂INt) · dI .

Let ΓI(I) map I(t) to SINR, with Γ(t) = ΓI(I(t)). Here,
ΓI(I) is well-defined as I(t) is non-increasing in t. Computing
the partial derivatives in ∂ΓNt and ∂INt and using (26) for
dNt, we get the following ODE for ΓI(I), where ρ > 0,

dΓI

dI
= Ψα,ρ(ΓI , I)

.
=

(α/ΓI) (Φ[ΓI ]− ΓIΦ′[ΓI ])

ρ−1PSR′′[ΓI ] + αI · Φ′′(ΓI)
(27)

Monotonicity conditions (SINR): ΓI(I) is a monotone func-
tion if Ψα,ρ(ΓI , I) in (27) does not change its sign. This
is fulfiled for typical PSR[Γ] functions over some SINR
threshold: Γ ≥ Γth, where the inequalities PSR′′[Γ] < 0,
Φ′′[Γ] < 0 and 1 − Γ · d

dΓ logΦ[Γ] < 0 hold simultaneously.
Hence, Ψα,ρ(ΓI , I) ≥ 0 and thus, from (27), ΓI(I) is non-
decreasing in I: d

dIΓI ≥ 0. In consequence, Γ(t) = ΓI(I(t))
is non-increasing in t.

Now, let us define EI : I → Es, with Es(t) = EI(I(t)).
Monotonicity conditions (Energy): EI(I) is monotone. Let

Γ∗(I) solve (27). Then, EI(I) = Γ∗(I)Nt(Γ∗(I), I) ⇒
d
dIEI = Nt

d
dIΓI + ΓI

d
dINt. As d

dIΓI ≥ 0, and, from (26),
Φ[Γ] ≥ 0, we get d

dINt ≥ 0. Thus, d
dIEI ≥ 0. Hence,

d
dIEI(I) ≥ 0 and Es(t) = EI(I(t)) is non-increasing in t.
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