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Abstract—In this paper, we propose a new measure for the
freshness of information, which uses the mutual information
between the real-time source value and the delivered samples
at the receiver to quantify the freshness of the information
contained in the delivered samples. Hence, the “aging” of the
received information can be interpreted as a procedure that the
above mutual information reduces as the age grows. In addition,
we consider a sampling problem, where samples of a Markov
source are taken and sent through a queue to the receiver.
In order to optimize the freshness of information, we study
the optimal sampling policy that maximizes the time-average
expected mutual information. We prove that the optimal sampling
policy is a threshold policy and find the optimal threshold exactly.
Specifically, a new sample is taken once a conditional mutual
information term reduces to a threshold, and the threshold
is equal to the optimum value of the time-average expected
mutual information that is being maximized. Numerical results
are provided to compare different sampling policies.

I. INTRODUCTION

Information usually has the greatest value when it is fresh

[1]. For example, real-time knowledge about the location,

orientation, and speed of motor vehicles is imperative in

autonomous driving, and the access to timely updates about

the stock price and interest-rate movements is essential for

developing trading strategies on the stock market. In [2], [3],

the concept of Age of Information was introduced to measure

the freshness of information that a receiver has about the status

of a remote source. Consider a sequence of source samples that

are sent through a queue to a receiver, as illustrated in Fig. 1.

Each sample is stamped with its generation time. Let Un be

the time stamp of the newest sample that has been delivered

to the receiver by time instant n. The age of information, as

a function of n, is defined as ∆n = n − Un, which is the

time elapsed since the newest sample was generated. Hence,

a small age ∆n indicates that there exists a fresh sample of

the source status at the receiver.

In practice, the status of different sources may vary over

time with different speeds. For example, the location of a car

can change much faster than the temperature of its engine.

While the age of information ∆n represents the time difference

between the samples available at the transmitter and receiver,

it is independent of the changing speed of the source. Hence,

the age ∆n is not an appropriate measure for comparing the

freshness of information about different sources.
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Fig. 1: System model.

In recent years, several examples and approaches for eval-

uating the freshness of information about time-correlated

sources have been discussed in, e.g., [4]–[13]. In [4]–[6]

and the references therein, the received samples are used to

estimate the source value in real-time, where the estimation

error is used to measure the freshness of information available

at the receiver. In [7], an age penalty function p(∆) was

employed to describe the level of dissatisfaction for having

aged samples at the receiver, where p is an arbitrary non-

negative and non-decreasing function of the age ∆ that can

be specified based on the application; in addition, an optimal

sampling strategy was developed to minimize the time-average

expected age penalty function. In [8], the authors consid-

ered the relationship between the auto-correlation function

r(∆n) = E[X∗
nXn−∆n

] (where Xn denotes the source status

at time instant n) and the age penalty function in [7], and

provided analytical expressions for the long-run time aver-

age of a few auto-correlation functions. In [9]–[13], several

scheduling policies were developed to minimize an arbitrary

non-decreasing functional f({∆n : n ≥ 0}) of the age process

{∆n : n ≥ 0} in several network settings. The age penalty

models in [9]–[13] are quite general, which include most age

penalty models considered in previous studies as special cases.

For example, because the functional f({∆n : n ≥ 0}) is a

mapping from the space of age processes to real numbers,

it can be selected to describe the time-average age (i.e.,

1/N
∑N

n=0 ∆n), or the time-average of an age penalty func-

tion that depends on the age levels at multiple time instants

(i.e., 1/N
∑N

n=0 p(∆n,∆n−1, . . . ,∆n−k)).

In this paper, we propose a new measure for the freshness

of information, which can precisely describe how information

ages over time. For Markov sources, an online sampling policy

is developed to optimize the freshness of information.1 The

detailed contributions of this paper are summarized as follows:

1Non-Markov sources will be considered in our future work.
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• We propose to use the mutual information between

the real-time source value and the received samples to

quantify the freshness of the information contained in

the received samples. This mutual information term is

easy to compute for Markov sources: By using the data

processing inequality, this mutual information is shown to

be a non-negative and non-increasing function of the age

∆n (Lemma 1). Therefore, the “aging” of the received

information can be interpreted as a procedure that this

mutual information reduces as the age ∆n grows.

• In order to optimize the freshness of information, we

study the optimal sampling strategy that maximizes the

time-average expected mutual information. This prob-

lem is solved in two steps: (i) We first generalize

[7] to obtain an optimal sampling strategy that mini-

mizes the time-average expected age penalty function

lim supN→∞
1
N

E[
∑N

n=1 p(∆n)], where p(∆) is an ar-

bitrary non-decreasing function of the age ∆ (Theorem

1). (ii) Next, we apply the result of Step (i) to a special

age penalty function, i.e., the negative of the mutual

information, which is a non-positive and non-decreasing

function of the age.

• The obtained optimal sampling strategy has a nice struc-

ture: A new sample is taken once a conditional mutual

information reduces to a threshold β, and the threshold

β is equal to the optimum value of the time-average

expected mutual information that we are maximizing

(Theorem 2). Numerical results are provided to compare

different sampling policies.

A. Relationship with Previous Work

The closest study to this paper is [7]. The differences

between [7] and this paper are explained in the following:

• The age penalty function p(·) in [7] is non-negative

and non-decreasing. It cannot be directly applied to our

problem, because the negative of the mutual information

is a non-positive and non-decreasing function of the

age. We relaxed p(·) to be an arbitrary non-decreasing

function in this paper.

• In [7], a two-layered nested bisection search algorithm

was developed to compute the threshold β. In this paper,

β is characterized as the solution of a fixed-point equa-

tion, which can be solved by a single layer of bisection

search. Hence, the computation of β is simplified.

• In [7], the optimal sampling strategy was obtained for

a continuous-time system. In this paper, we develop an

optimal sampling strategy for a discrete-time system,

without taking any approximation or sub-optimality.

• It was assume in [7] that after the previous sample was

delivered, the next sample must be generated within a

fixed amount of time. By adopting more powerful proof

techniques, we are able to remove such an assumption

and greatly simplify the proof procedure in this paper.

II. SYSTEM MODEL

We consider a discrete-time status-update system that is

illustrated in Fig. 1, where samples of a source Xn are taken

and sent to a receiver through a communication channel. The

channel is modeled as a single-server FIFO queue with i.i.d.

service times. The system starts to operate at time instant

n = 0. The i-th sample is generated at time instant Si and

is delivered to the receiver at time instant Di with a discrete

service time Yi, where S1 ≤ S2 ≤ . . ., Si + Yi ≤ Di, and

E[Yi] < ∞ for all i. Each sample packet contains both the

sampling time Si and the sample value XSi
. The samples that

the receiver has received by time instant n are denoted by the

set

Wn = {XSi
: Di ≤ n}. (1)

At any time instant n, the receiver uses the received samples

Wn to reconstruct an estimate X̂n of the real-time source

value Xn, where we assume that the estimator neglects the

knowledge implied by the timing Si for taking the samples.

Let Un = max{Si : Di ≤ n} be the time stamp of the

freshest sample that the receiver has received by time instant

n. Then, the age of information, or simply the age, at time

instant n is defined as [2], [3]

∆n = n− Un = n−max{Si : Di ≤ n}. (2)

The initial state of the system is assumed to satisfy S1 = 0,

D1 = Y1, and ∆0 is a finite constant.

Let π = (S1, S2, . . .) represent a sampling policy and Π
denote the set of causal sampling policies that satisfy the

following two conditions: (i) Each sampling time Si is chosen

based on history and current information of the system, but

not on any future information. (ii) The inter-sampling times

{Ti = Si+1 − Si, i = 1, 2, . . .} form a regenerative process

[14, Section 6.1]2: There exists an increasing sequence 0 ≤
k1 < k2 < . . . of almost surely finite random integers such

that the post-kj process {Tkj+i, i = 1, 2, . . .} has the same

distribution as the post-k1 process {Tk1+i, i = 1, 2, . . .} and

is independent of the pre-kj process {Ti, i = 1, 2, . . . , kj−1};

in addition, 0 < E[Skj+1
− Skj

] < ∞, j = 1, 2, . . .
We assume that the Markov chain Xn and the service

times Yi are determined by two mutually independent external

processes, which do not change according to the adopted

sampling policy.

III. MUTUAL INFORMATION AS A MEASURE OF THE

FRESHNESS OF INFORMATION

In this paper, we propose to use the mutual information

I(Xn;Wn) = H(Xn)−H(Xn|Wn) (3)

as a metric for evaluating the freshness of information that

is available at the receiver. In information theory, I(Xn;Wn)

2We assume that Ti is a regenerative process because we will optimize

lim infN→∞ E[
∑

N

n=1
I(Xn;Wn)]/N , but operationally a nicer objective

function is lim infi→∞ E[
∑Di

n=0
I(Xn;Wn)]/E[Di]. These two objective

functions are equivalent if {T1, T2, . . .} is a regenerative process.



is the amount of information that the received samples Wn

carries about the real-time source value Xn. If I(Xn;Wn) is

close to H(Xn), the received samples Wn are considered to be

fresh; if I(Xn;Wn) is almost 0, the received samples Wn are

considered to be obsolete. In addition, because I(Xn;Wn) has

naturally incorporated the information structure of the source

Xn, it can effectively characterize the freshness of information

about sources with different time-varying patterns.

One way to interpret I(Xn;Wn) is to consider how helpful

the received samples Wn are for inferring Xn. By using the

Shannon code lengths [15, Section 5.4], the expected minimum

number of bits L required to specify Xn satisfies

H(Xn) ≤ L < H(Xn) + 1, (4)

where L can be interpreted as the expected minimum number

of binary tests that are needed to infer Xn. On the other hand,

with the knowledge of Wn, the expected minimum number

of bits L′ required to specify Xn satisfies

H(Xn|Wn) ≤ L′ < H(Xn|Wn) + 1. (5)

If Xn is a random vector consisting of a large number of

symbols (e.g., Xn represents an image containing many pixels

or the channel coefficients of many OFDM subcarriers), the

one bit of overhead in (4) and (5) is insignificant. Hence,

I(Xn;Wn) is approximately the reduction in the description

cost for inferring Xn without and with the knowledge of Wn.

A. Markov Sources

To get more insights, let us consider the class of Markov

sources and use the Markov property to simplify I(Xn;Wn).
By using the data processing inequality [15], it is not hard to

show that I(Xn;Wn) has the following property:

Lemma 1. If Xn is a time-homogeneous Markov chain and

Wn is defined in (1), then the mutual information

I(Xn;Wn) = I(Xn;Xn−∆n
) (6)

can be expressed as a non-negative and non-increasing func-

tion r(∆n) of the age ∆n.

Proof. Because Xn is a Markov chain, Xmax{Si:Di≤n} =
Xn−∆n

contains all the information in Wn = {XSi
: Di ≤ n}

about Xn. In other words, Xn−∆n
is a sufficient statistic

of Wn for estimating Xn. Then, (6) follows from [15, Eq.

(2.124)].

Next, because Xn is time-homogeneous, I(Xn;Xn−∆) =
I(X∆+1;X1) for all n, which is a function of the ∆. Further,

because Xn is a Markov chain, owing to the data process-

ing inequality [15, Theorem 2.8.1], I(X∆+1;X1) is non-

increasing in ∆. Finally, mutual information is non-negative.

This completes the proof.

According to Lemma 1, information “aging” can be consid-

ered as a procedure that the amount of information I(Xn;Wn)
that is preserved in Wn for inferring the real-time source

value Xn decreases as the age ∆n grows. This is similar

to the data processing inequality [15] which states that no

processing of the data Y can increase the information that Y
contains about Z; the difference is that in the status-update

systems that we consider, the sample set Wn, the age ∆n,

and the signal value Xn are all evolving over time.

Two examples of the Markov source Xn are provided in

the sequel as illustrations of Lemma 1:

1) Gaussian Markov Source: Suppose that Xn is a first-

order discrete-time Gaussian Markov process, defined by

Xn = aXn−1 + Zn, (7)

where a ∈ (−1, 1) and the Zn’s are zero-mean i.i.d. Gaussian

random variables with variance σ2. Because Xn is a Gaussian

Markov process, one can show that [16]

I(Xn;Wn) = I (Xn;Xn−∆n
) = −

1

2
log2

(

1− a2∆n
)

. (8)

Since a ∈ (−1, 1) and ∆n ≥ 0 is an integer, I(Xn;Wn) is

a positive and decreasing function of the age ∆n. Note that

if ∆n = 0, then I(Xn;Wn) = H(Xn) = ∞, because the

absolute entropy of a Gaussian random variable is infinite.

2) Binary Markov Source: Suppose that Xn ∈ {0, 1} is a

binary symmetric Markov chain defined by

Xn = Xn−1 ⊕ Vn, (9)

where ⊕ denotes binary modulo-2 addition and the Vn’s are

i.i.d. Bernoulli random variables with mean q ∈ [0, 12 ]. One

can show that

I(Xn;Wn) = I (Xn;Xn−∆n
) = 1−h

(

1− (1− 2q)∆n

2

)

,

(10)

where Pr[Xn = 1|X0 = 0] = 1−(1−2q)n

2 and h(x) is the

binary entropy function defined by h(x) = −x log2 x − (1 −
x) log2(1−x) with a domain x ∈ [0, 1] [15, Eq. (2.5)]. Because

h(x) is increasing on [0, 12 ], I(Xn;Wn) is a non-negative and

decreasing function of the age ∆n.

IV. ONLINE SAMPLING FOR INFORMATION FRESHNESS

In this section, we will develop an optimal online sampling

policy that can maximize the freshness of information about

Markov sources.

A. Problem Formulation

To optimize the freshness of information, we formulate

an online sampling problem for maximizing the time-average

expected mutual information between Xn and Wn over an

infinite time-horizon:

Īopt = sup
π∈Π

lim inf
N→∞

1

N
E

[

N
∑

n=1

I(Xn;Wn)

]

, (11)

where Īopt is the optimal value of (11). We assume that Īopt is

finite.

It is helpful to remark that Īopt in (11) is different from the

Shannon capacity considered in, e.g., [15], [17]: In (11), our

goal is to maximize the freshness of information and make

more accurate inference about the real-time source value; this
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Fig. 2: A sample-path illustration of the optimal sampling

policy (15) and (16), where the service time Yi is equal to

either 1 or 5 with equal probability. On this sample-path, the

service times are Y0 = 1, Y1 = 1, Y2 = 5, Y3 = 5, Y4 =
1, Y5 = 1, Y6 = 5.

goal is achieved by minimizing the average amount of mutual

information that is lost as the received data becomes obsolete.

On the other hand, the focus of Shannon capacity theory is

mainly on maximizing the rate of information that can be

reliably transmitted to the receiver, but (in most cases) without

significant concerns about whether the received information is

new or old.

B. Optimal Online Sampling Policy

In [7], an age penalty function p(∆) was defined to charac-

terize the level of dissatisfaction for having aged information

at the receiver, where p : R 7→ R is an arbitrary non-negative

and non-decreasing function that can be specified according

to the application. For continuous-time status-update systems,

the optimal sampling policy for minimizing the time-average

expected age penalty lim supT→∞
1
T

E[
∫ T

0 p(∆(t))dt] was

obtained in [7]. Unfortunately, we are not able to apply the

results in [7] to solve (11). Specifically, if we choose an

age penalty function p2(∆n) = −I(Xn;Wn) = −r(∆n),
then Lemma 1 suggests that p2(·) is a non-positive and non-

decreasing, which is different from the non-negative and non-

decreasing age penalty function required in [7]. In addition,

we consider a discrete-time system in this paper, which is

different from the continuous-time system in [7].

To address this problem, we generalize [7] by considering

an arbitrary non-decreasing age penalty function (no matter

positive or negative) and design an optimal sampling policy

that minimizes the time-average expected age penalty. To

that end, we consider the following discrete-time age penalty

minimization problem:

p̄opt = inf
π∈Π

lim sup
N→∞

1

N
E

[

N
∑

n=1

p(∆n)

]

(12)

where p : R 7→ R is an arbitrary non-decreasing function and

p̄opt denotes the optimal value of (12). We assume that p̄opt is

finite. Problem (12) is a Markov decision problem. A closed-

form solution of (12) is provided in the following theorem:

Theorem 1. If p : R 7→ R in (12) is non-decreasing and the

service times Yi are i.i.d., then there exists a threshold β ∈ R

such that the sampling policy

Si+1 = min{n ∈ N :n ≥ Di,E[p(n+ Yi+1 − Si)|Si, Yi]≥β}
(13)

is optimal to (12), where Di = Si + Yi and β is determined

by solving (13) and (14):

β =

E

[

Di+1−1
∑

n=Di

p(n− Si)

]

E[Di+1 −Di]
, (14)

Further, β is exactly the optimal value of (12), i.e., β = p̄opt.

Proof. See Section V.

Next, we consider a special case that p(∆n) =
−I(Xn;Wn) = −r(∆n). It follows from Theorem 1 that

Theorem 2. If the service times Yi are i.i.d., then there exists

a threshold β ≥ 0 such that the sampling policy

Si+1=min{n∈N :n ≥ Di,

EYi+1

[

I(Xn+Yi+1
;XSi

|Yi+1 = yi+1)
]

≤β}

=min{n∈N :n ≥ Di, I(Xn+Yi+1
;XSi

|Yi+1)≤β} (15)

is optimal to (11), where Di = Si + Yi, EY denotes the

expectation with respect to the random variable Y , and β
is determined by solving (15) and (16):

β =

E

[

Di+1−1
∑

n=Di

I(Xn;XSi
)

]

E[Di+1 −Di]
. (16)

Further, β is exactly the optimal value of (11), i.e., β = Īopt.

The optimal sampling policy in (15) and (16) has a nice

structure: The next sampling time Si+1 is determined based on

the mutual information between the freshest received sample

XSi
and the signal value XDi+1

, where Di+1 = Si+1 + Yi+1

is the delivery time of the (i + 1)-th sample. Because the

transmission time Yi+1 will be known by both the transmitter

and receiver at time Di+1 = Si+1 + Yi+1, Yi+1 is the side

information that is characterized by the conditional mutual

information I[Xn+Yi+1
;XSi

|Yi+1]. The conditional mutual

information I[Xn+Yi+1
;XSi

|Yi+1] decreases as time n grows.

According to (15), the (i + 1)-th sample is generated at the

smallest integer time instant n satisfying two conditions: (i)

The i-th sample has already been delivered, i.e., n ≥ Di, and

(ii) The conditional mutual information I[Xn+Yi+1
;XSi

|Yi+1]
has reduced to be no greater than a pre-determined thresh-

old β. In addition, according to (16), the threshold β is

equal to the optimum objective value Īopt in (11), i.e., the

optimum of the time-average expected mutual information

lim infN→∞
1
N

E[
∑N

n=1 I(Xn;Wn)] that we are maximizing.

Note that the sampling times Si and delivery times Di on the

right-hand side of (16) depends on β. Hence, β is a fixed point

of (16).
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source in (9).

The optimal sampling policy is illustrated in Fig. 2, where

the service time Yi is equal to either 1 or 5 with equal proba-

bility. The service time Si, delivery time Di, and conditional

mutual information I[Xn+Yi+1
;XSi

|Yi+1] of the samples are

depicted in the figure. One can observe that if the service time

of the previous sample is Yi = 1, the sampler will wait un-

til the conditional mutual information I[Xn+Yi+1
;XSi

|Yi+1]
drops below the threshold β and then take the next sample;

if the service time of the previous sample is Yi = 5, the next

sample is taken upon the delivery of the previous sample at

time Di, because I[Xn+Yi+1
;XSi

|Yi+1] is below β then.

Notice that in the optimal sampling policy (15) and (16),

there is at most one sample in transmission at any time and

no sample is waiting in the queue. This is different from the

traditional uniform sampling policy, in which the waiting time

in the queue can be quite high and, as a result, the freshness

of information is low. This phenomenon will be illustrated by

our numerical results in Section VI.

V. PROOF OF THEOREM 1

A. Simplification of Problem (12)

In [5], [7], it was shown that no new sample should be taken

when the server is busy. The reason is as follows: If a sample is

taken when the server is busy, it has to wait in the queue for its

transmission opportunity; meanwhile the sample is becoming

stale. A better strategy is to take a new sample once the server

becomes idle. By using the sufficient statistic of the Markov

chain Xn, one can show that the second strategy is better.

Because of this, we only need to consider a sub-class of

sampling policies Π1 ⊂ Π in which each sample is generated

and submitted to the server after the previous sample is

delivered, i.e.,

Π1 = {π ∈ Π : Si+1 ≥ Di = Si + Yi for all i}. (17)

Let Zi = Si+1 −Di ≥ 0 represent the waiting time between

the delivery time Di of sample i and the generation time Si+1

of sample i+1. Since S1 = 0, we have Si = S1+
∑i

j=1(Yj+

Zj) =
∑i

j=1(Yj +Zj) and Di = Si+Yi. Given (Y1, Y2, . . .),

(S1, S2, . . .) is uniquely determined by (Z1, Z2, . . .). Hence,

one can also use π = (Z1, Z2, . . .) to represent a sampling

policy in Π1.

Because Ti is a regenerative process, using the renewal

theory in [18] and [14, Section 6.1], one can show that in

Problem (12), 1
i
E[Si] and 1

i
E[Di] are convergent sequences

and

lim sup
N→∞

1

N
E

[

N
∑

n=1

p(∆n)

]

= lim
i→∞

E

[

∑Di

n=1 p(∆n)
]

E[Di]

= lim
i→∞

∑i

j=1 E

[

∑Dj+1−1
n=Dj

p(∆n)
]

∑i
j=1 E [Yj + Zj]

.

In addition, for each policy in Π1, it holds that Di ≤ Di+1.

In this case, the age ∆n in (2) can be expressed as

∆n = n− Si, if Di ≤ n < Di+1.

Hence,

Di+1−1
∑

n=Di

p(∆n) =

Di+1−1
∑

n=Di

p(n− Si) =

Yi+Zi+Yi+1−1
∑

n=Yi

p(n), (18)

which is a function of (Yi, Zi, Yi+1). Define

q(Yi, Zi, Yi+1) =

Yi+Zi+Yi+1−1
∑

n=Yi

p(n), (19)

then (12) can be simplified as

p̄opt = inf
π∈Π1

lim
i→∞

∑i

j=1 E [q(Yj , Zj, Yj+1)]
∑i

j=1 E [Yj + Zj ]
. (20)

In order to solve (20), let us consider the following Markov

decision problem with a parameter c ≥ 0:

h(c), inf
π∈Π1

lim
i→∞

1

i

i−1
∑

j=0

E [q(Yj , Zj, Yj+1)− c(Yj + Zj)] (21)

where h(c) is the optimum value of (21). Similar with Dinkel-

bach’s method [19] for nonlinear fractional programming, the

following lemma in [20] also holds for our Markov decision

problem (20):

Lemma 2. [20, Lemma 2] The following assertions are true:

(a). p̄opt T c if and only if h(c) T 0.

(b). If h(c) = 0, the solutions to (20) and (21) are identical.

Hence, the solution to (20) can be obtained by solving (21)

and seeking p̄opt ∈ R that satisfies

h(p̄opt) = 0. (22)

B. Optimal Solution of (21) for c = p̄opt

Next, we present an optimal solution to (21) for c = p̄opt.



Definition 1. A policy π ∈ Π1 is said to be a stationary

randomized policy, if it observes Yi and then chooses a waiting

time Zi ∈ [0,∞) based on the observed value of Yi, according

to a conditional probability measure p(y,A) , Pr[Zi ∈
A|Yi = y] that is invariant for all i = 1, 2, . . . Let ΠSR

(ΠSR ⊂ Π1) denote the set of stationary randomized policies,

defined by

ΠSR={π ∈ Π1 : Given the observation Yi = yi, Zi is chosen

according to the probability measure p(yi, A) for all i}.

Lemma 3. If the service times Yi are i.i.d., then there exists a

stationary randomized policy that is optimal for solving (21)

with c = p̄opt.

Proof. In (21), the minimization of the term

E [q(Yj , Zj , Yj+1)− p̄opt(Yj + Zj)]

=E [q(Yj , Zj , Yj+1)− p̄opt(Zj + Yj+1)] (23)

over Zj depends on (Y1, . . . , Yj , Z1, . . . , Zj−1) via Yj . Hence,

Yj is a sufficient statistic for determining Zj in (21). This

means that the rule for determining Zi can be represented by

the conditional probability distribution Pr[Zi ∈ A|Yi = yi],
and in addition, there exists an optimal solution (Z1, Z2, . . .)
to (21), in which Zi is determined by solving

min
Pr[Zi∈A|Yi=yi]

E
[

q(Yi, Zi, Yi+1)−p̄opt(Zj + Yj+1)
∣

∣Yi = yi
]

,

(24)

and then use the observation Yi = yi and the optimal condi-

tional probability distribution Pr[Zi ∈ A|Yi = yi] that solves

(24) to decide Zi. Finally, notice that the minimizer of (24)

depends on the joint distribution of Yi and Yi+1. Because the

Yi’s are i.i.d., the joint distribution of Yi and Yi+1 is invariant

for i = 1, 2, . . . Hence, the optimal conditional probability

measure Pr[Zi ∈ A|Yi = yi] solving (24) is invariant for

i = 1, 2, . . . By definition, there exists a stationary randomized

policy that is optimal for solving Problem (21) with c = p̄opt,

which completes the proof.

Next, by using an idea similar to that in the solution of [21,

Problem 5.5.3], we can obtain

Lemma 4. If p : R 7→ R is non-decreasing and the service

times Yi are i.i.d., then an optimal solution (Z1, Z2, . . .) of

(21) is given by

Zi = min{n ∈ N : E[p(Yi + n+ Yi+1)|Yi]≥β}, (25)

where β = p̄opt.

Proof. Using (19) and β = p̄opt, (24) can be expressed as

min
Pr[Zi∈A|Yi=yi]

E





Zi+Yi+1−1
∑

n=0

[p(n+ Yi)− β]

∣

∣

∣

∣

∣

Yi



 . (26)

It holds that for m = 1, 2, 3, . . .

E





m+Yi+1
∑

n=0

[p(n+ Yi)− β]−

m+Yi+1−1
∑

n=0

[p(n+ Yi)− β]

∣

∣

∣

∣

∣

Yi





=E[p(Yi +m+ Yi+1)− β|Yi] . (27)

Because p : R 7→ R is non-decreasing, if Zi is chosen

according to (25), we can obtain

E[p(Yi + n+ Yi+1)− β|Yi] < 0, n = 0, . . . , Zi − 1, (28)

E[p(Yi + n+ Yi+1)− β|Yi] ≥ 0, n ≥ Zi. (29)

Based on (27)-(29), it is easy to see that (25) is the optimal

solution to (26). This completes the proof.

Hence, Theorem 1 follows from Lemma 2 and Lemma 4.

VI. NUMERICAL RESULTS

In this section, we evaluate the freshness of information

achieved in the following three sampling policies:

• Uniform sampling: Periodic sampling with a period given

by Si+1 − Si = E[Yi].
• Zero-wait: In this sampling policy, a new sample is taken

once the previous sample is delivered to the receiver, so

that Si+1 = Di = Si + Yi.

• Optimal policy: The sampling policy given by Theorem 2.

Let Iuniform, Izero-wait, and Iopt be the average mutual informa-

tion of these three sampling policies.

We consider the binary Markov source Xn in (9). The ser-

vice time Yi is equal to either 1 or 11 with equal probability.3

Figure 3 depicts the time-average expected mutual information

versus the mean q of the Bernoulli random variables Vn in

(9). One can observe that Iopt ≥ Izero-wait ≥ Iuniform holds for

every value of q. Notice that because of the queueing delay

in the uniform sampling policy, Iuniform is much smaller than

Iopt and Izero-wait. In addition, as q grows from 0 to 0.5, the

changing speed of the binary Markov source Xn increases and

the freshness of information (i.e., the time-average expected

mutual information) decreases. When q = 0.5, the Xn’s form

an i.i.d. sequence and the freshness of information is zero in

all three sampling policies.

VII. CONCLUSION

In this paper, we have used mutual information to evaluate

the freshness of the received samples that describe the status

of a remote source. We have developed an optimal sampling

policy that can maximize the time-average expectation of the

above mutual information. This optimal sampling policy has

been shown to have a nice structure. In addition, we have

generalized [7] by finding the optimal sampling strategies for

minimizing the time-average expectation of arbitrary non-

decreasing age penalty functions.

3The service time distribution is different from that used in Figure 2.
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