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Abstract—When interacting with mobile apps, users need to
take decisions and make certain choices out of a set of alternative
ones offered by the app. We introduce optimization problems
through which we engineer the choices presented to users so that
they are nudged towards decisions that lead to better outcomes
for them and for the app platform. User decision-making rules
are modeled by using principles from behavioral science and
machine learning. Such instances arise in (i) mobile crowdsensing
campaigns, where tasks are assigned to users through the app,
and the goal is to optimize the quality of fulfilled tasks; (ii) smart-
energy apps, where energy-saving recommendations are issued
through the app, and the goal is to optimize energy savings; (iii)
mobile advertising, where ads or offers are projected to the user,
and the aim is to optimize revenue through user response to
ads. Each user is modeled as a vector of feature values for a set
of features. In an important class of decision-making models in
behavioral science, the lexicographic fast-and-frugal-tree (FFT)
heuristics, user decision emerges through a ranking of features
that in turn gives rise to a decision tree. Having the incentive
as a controllable feature that guides the user decision process,
we study and characterize the complexity of the problem of
allocating choices and incentives to users out of a limited budget.
Numerical results indicate important performance gains when the
incentive allocation policy adapts to user lexicographic choices.

Index Terms—User choice engineering, mobile apps, incentive
allocation, behavioral science, decision trees.

I. INTRODUCTION

Mobile applications (apps) and their interface with users

are at the epicenter of active research that aims to make them

more attractive and ultimately engaging for users. In a wide

gamut of mobile apps, users need to take decisions and make

certain choices out of a set of alternatives offered by the app.

These choices crucially determine the performance of the app

with respect to a certain objective that it aims to achieve.

For example, a mobile crowdsensing (MCS) campaign app

aims to assign tasks to users which require effort in terms

of time, attention, device energy, user expertise or physical

distance coverage to perform the task. Tasks could be e.g.,

submitting measurements to create transportation or pollution

maps, traveling across a city to capture photos from points of

interest, submitting expert opinions, sharing data or advice for

lifestyle and healthcare improvement, delivering parcels, and

so on. A plausible aim of a mobile crowdsensing campaign
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is to optimize task assignment to users so as to maximize the

extracted social welfare of executed tasks.

In a smart-energy mobile app, recommendations prompt

consumers towards energy-friendly habits [1]. Recommen-

dations include e.g., shifting (part of) their power load to

times that avoid peak-time consumption and lead to savings

in electricity generation cost. In yet another realm, that of

mobile advertising, users are presented with various offers or

ads through a mobile app. The goal is to assign the appropriate

ad to a user at the appropriate time so as to maximize revenue

stemming from positive user response to ads.

In this paper, we introduce optimization problems that

engineer the choices presented to users so that they are nudged

towards decisions that lead to better outcomes for them and for

the app platform. Each user is modeled as a vector of feature

values for a set of features that depends on the problem. We

depart from the vast majority of literature works that model

users as rational entities. Instead, we adopt principles from

behavioral science and machine learning and leverage them

in simple heuristic rules that presumably guide user choices.

Specifically, we consider the class of lexicographic decision-

tree heuristics for user decision making, where the key idea is

to have an intrinsic ordering of available choices by users with

respect to features, while decisions are further shaped by some

threshold values. Depending on the ordering, a deterministic

decision tree emerges whose branches depict the different

possibilities for decisions.

In the instances above, users experience some cost or

inconvenience while interacting with the app, and hence they

need to be incentivized and convinced to engage and make

choices that contribute to the objective of the app. However,

users are heterogeneous in their choices and the motives

behind them, and thus it is important for the app to understand

their inherent hidden reasons behind these choices. Thus, it is

critical to devise realistic models about users’ choice-making

behavior and in particular about their response to incentives

which are a basic feature that may guide their decisions.

Consider for instance a mobile crowdsensing app that asks

users to go to a certain place and do a task e.g., take a

photo, in return for some payment. Let us assume that there

are two features that guide user decisions i.e., the received

payment (incentive) and the distance to be traveled to that

place, and that there are two alternative choices offered. A

user that prioritizes payment over distance will perform the



task that offers substantially higher payment than the other. If

payments do not differ so much so as to trigger a choice, the

distance feature is activated, and the user will perform the task

that is much closer than the other. If both tasks are at similar

distance, the user may naturally perform none of the tasks or

may choose one at random.

The contributions of this paper are summarized as follows.

• We devise decision-making models that use principles

from behavioral science and machine learning. Specif-

ically, we consider the class of lexicographic fast-and-

frugal-tree (FFT) heuristics, where user decision emerges

through a ranking of features that in turn gives rise to

a decision tree. One of these features is the incentive

provided to users.

• We introduce these models into the optimization problem

of choice engineering, namely choice and incentive allo-

cation to users out of a limited budget so as to maximize

a welfare performance metric dictated by the app.

In section II we describe the model, and in section III

we formulate the problem. In section IV we present results

on model performance evaluation. We discuss state-of-the-art

work in section V and conclude in section VI.

II. MODEL

Let U denote the set of users that interact with the mobile

app, and let C be the set of choices, also known as alternatives

presented to users. For example, in mobile crowdsensing, the

choices are the crowdsensing tasks that could benefit from user

contributions, whereas in a smart-energy app the choices are

more prudent energy consumption plans the consumers could

subscribe to, and in mobile advertising, the choices are the ads

or offer coupons presented to users.

Each choice i ∈ C is modeled as a K-dimensional vector

xi = (xi(1), xi(2), ..., xi(K)), where xi(k) is the value of

the k-th feature for choice i, k = 1, . . . ,K , and K is the

number of features. For instance, a feature may be a payment

or reward that the choice offers. Another feature may be the

amount of effort that the choice requires, or another quantity

that captures the user cost or inconvenience when making the

specific choice. In the case of mobile crowdsensing, this can

be the amount of time needed or the physical distance covered

in order to contribute to an MCS task. In the smart grid case,

it may refer to the inconvenience of changing daily habits

and shifting the energy load in time; and so on. In general,

there may be more features affecting a choice in a specific

setting, e.g., the crowdsensing task type or the ad category.

For simplicity here, we assume that choices are determined

by the values of two features, those representing the incentive

and the incurred cost of a choice.

The incentives that come with the different choices are

subject to budget constraints. Let bi be the total amount of

rewards (e.g., payments, discounts, coupons) offered so as to

attract users to choice i. For example, in mobile advertising,

the different choices are the advertised stores, and each store

places a certain budget on having its ads and offers displayed

to users. In mobile crowdsensing, the budget is allocated to

each task by the task issuer to reward contributors. The mobile

app then issues pop-up texts that read roughly as follows: “You

can perform task 1 at distance d1, e.g., take photos of a place,

for a reward p1; or you can perform task 2 at a distance d2,

e.g., check and report on the quality of products of a store,

for a reward p2”.

For each choice i ∈ C and user u ∈ U , let qui be a weight

factor that associates choice i and user u. For example, in

mobile crowdsensing, qui denotes the quality of contribution

that user u can make to task i. In mobile advertising, it is

qui = qi for all u, and this denotes the amount paid by store

i to the platform per user visit. In smart-energy apps, it could

be the energy savings if user u chooses energy plan i.

A. Lexicographic user choice heuristics

Our work is inspired by the class of lexicographic heuristics

for modeling user decision-making, whereby choice features

are inspected in a user-specific order, and a choice is made

based on the first feature that discriminates between the

alternatives. Hence, the user does not exhaustively process all

information at hand i.e., the full feature set in order to make a

choice. The accuracy of lexicographic heuristics in predicting

human choices is comparable to that of more sophisticated

or computationally demanding models such as those based

on regression, neural networks, classification and regression

trees or naive Bayes. These simple heuristics often perform

better in predicting choices when compared to matching past

choices. Further, each model outperforms the other under

certain conditions, since each one is capable of exploiting

different properties of the decision environment such as cor-

relation between different features. This coupling between the

structure of choice rules and the context within which decision

takes place allows the former to efficiently exploit the latter,

in what is called ecological rationality [2].

One instance of lexicographic heuristics is the fast-and-

frugal-trees (FFTs) one [3]. FFTs are deterministic binary

decision trees with at least one exit leaf at every level. In

other words, for every feature that is inspected, at least one of

its outcomes leads to a choice.

Consider the example of mobile advertising with features

being the amount of offer and the distance to travel so as to

retrieve the offer. Assume there are two alternative choices

A, B, for each user u, specified by the reward-distance pairs

(puA, d
u
A) and (puB , d

u
B). Let Ud,Up denote the subsets of users

that place priority on the distance and the payment feature

respectively, i.e., Ud ∩ Up = ∅ and Ud ∪ Up = U .

Since features take continuous values, it makes sense to

define for each user u a threshold θup ≥ 0 for the payment

and a threshold θud ≤ 0 for the distance feature. The training

phase of the model provides (i) the type of tree of each user

u, depending on whether u ∈ Up or u ∈ Ud, (ii) the threshold

values, θup , θ
u
d . Consider a user u ∈ Up that prioritizes the

offer reward over distance. If puA − puB > θup , user u selects

choice A, while if puB−puA > θup , the user goes with choice B.

If the difference in rewards is not large enough to warrant a

choice, i.e., if |puA−puB| ≤ θup , the user switches to the distance



feature. If duA − duB < θud , the user selects choice A; else, if

duB − duA < θud , she selects choice B. If the difference in the

distances is not large enough to justify a choice with respect

to the distance criterion, the user chooses none of the available

choices. Fig. 1 depicts such a fast-and-frugal decision tree.

III. USER CHOICE ENGINEERING

AS AN OPTIMIZATION PROBLEM

The app owner or campaign designer aims at engineering

the alternatives that will be made available to users by allocat-

ing options and incentives to them so that they make choices

that are beneficial for the system objective as a whole. For

instance, the app may recommend certain choices to users

who prioritize based on exerted effort (e.g., distance) and

thus reduce monetary payments. These payments could instead

be allocated to expert users who prioritize over the payment

feature of the recommended choice. Thus, the budgets of the

various choices can be managed more efficiently to attract

more and better users. As mentioned above, for illustrative

reasons we consider two features, the cost (e.g., the distance),

and the reward (e.g., the payment) which is controllable. We

assume that two choices are presented each time to a user.

A. Problem formulation

We need to allocate choices and incentives to users so as

to maximize the total quality of user-selected choices, subject

to a budget constraint for each choice. Let P ⊆ C × C denote

the set of available pairs of choices (i, j) for assignment, with

i 6= j. For each choice pair (i, j) ∈ P , let the binary variable

yu(i,j) = 1 if the choice pair (i, j) is assigned to user u, and 0

otherwise. Let yu = (yu(i,j) : (i, j) ∈ P) be the 0-1 vector of

choice pair allocations to user u, and let y = (yu : u ∈ U) be

the collective choice allocation policy to users.

When a choice pair (i, j) is allocated to user u, the app

should decide whether to make one of the two choices clearly

preferable to the other in terms of incentive payment. Formally,

let variable zui = 1 when choice i is made clearly preferable to

the other one, i.e., when the incentives of choices i, j satisfy

pui − puj > θup . Due to limited budget, the incentive for a

choice should be the minimum possible so that the user will

make that choice. When zui = 1, the minimum payment for

choice i is θup +ǫ, where ǫ is a small fixed amount of payment;

θup is the incentive difference between the two choices. Note

that it is zui = 0 when pui − puj ≤ θup , and zuj = 1 when

puj − pui > θup . Also, it is zui + zuj ≤ 1, thus we may also

choose zui = zuj = 0, i.e., not make any of the choices clearly

preferable to the other in the payment. Let zu = (zui : i ∈ C)
be the incentive allocation policy for user u that determines

whether or not we make a choice with much higher incentive

than the other. Let z = (zu : u ∈ U).
A user u ∈ Up will pick choice i if zui = 1, and the payment

will be pui = θup + ǫ. If zui = zuj = 0, then u will resort to

the distance feature to make a choice. If the pair of presented

choices (i, j) is such that dui − duj < θud , user u will pick

choice i. If duj − dui < θud , the user will pick choice j. The

payment will be an amount δ that is a priori determined by the
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Fig. 1. A Fast and Frugal Tree (FFT) applied on two alternative choices with
two decision features for a user in Up. Parameters thrp > 0 and thrd < 0
are the payment and distance thresholds, namely the minimum differences in
the values of these features that render one choice preferable over the other.

platform. We define indicator parameters Iuij and Iuji ∈ {0, 1}
as follows: when dui − duj ≤ θud , it is Iuij = 1, else Iuij = 0.

When duj − dui ≤ θud , it is Iuji = 1, else Iuji = 0. Clearly, it is

Iuij + Iuji ≤ 1. If Iuij = Iuji = 0, the user will select none of the

choices. On the other hand, a user u ∈ Ud will pick choice

i if Iuij = 1 and choice j if Iuji = 1; the payment will again

be δ. If Iuij = Iuji = 0, user u will use the payment feature to

decide and will pick choice i or j, depending on whether zui
or zuj = 1, thus getting a payment of θup + ǫ.

The objective is to find the choice and incentive assignment

policies y
u, zu for each user u so as to maximize the total

quality of selected choices by users, subject to a budget

constraint for each choice. The statements above are quantified

by defining functions αu
p (·), β

u
p (·) for each user u ∈ Up about

quality of selected choices and budget spent respectively,

αu
p (z

u
i , z

u
j ) = qui z

u
i + quj z

u
j + (Iuijq

u
i + Iujiq

u
j )(1 − zui − zuj ),

βu
p (z

u
i , z

u
j ) = (θup + ǫ)zui + Iuijδ(1− zui − zuj ) ,

and functions αu
d(·), β

u
d (·) for each user u ∈ Ud,

αu
d(z

u
i , z

u
j ) = Iuijq

u
i + Iujiq

u
j + (1− Iuij − Iuji)(q

u
i z

u
i + quj z

u
j ) ,

βu
d (z

u
i ) = Iuijδ + (1− Iuij − Iuji)(θ

u
p + ǫ)zui .

Then, the objective is written as

max
y,z

∑

u∈Up

∑

(i,j)∈P

αu
p (z

u
i , z

u
j )y

u
(i,j)+

∑

u∈Ud

∑

(i,j)∈P

αu
d(z

u
i , z

u
j )y

u
(i,j)

(1)

subject to a budget constraint
∑

u∈Up

βu
p (z

u
i , z

u
j )y

u
(i,j) +

∑

u∈Ud

βu
d (z

u
i )y

u
(i,j) ≤ bi, ∀ i ∈ C , (2)

zui + zuj ≤ 1, ∀ u ∈ U , ∀ (i, j) ∈ P , (3)

∑

(i,j)∈P

yu(i,j) ≤ 1, ∀ u ∈ U , (4)

where constraint (4) says that at most one pair of choices

should be allocated to each user. We refer to problem (1)-

(4) as problem (P1). Even for fixed values of variables z,

(P1) is an instance of the Generalized Assignment Problem

(GAP), which is known to be NP-Hard. Exact algorithms for



small instances and approximation solutions for larger problem

instances are described in [4].

Remark 1. In the model above, users choose between two

alternatives. A simpler scenario would be that a single offer i

is made to a user u by the app, and she decides to take it or

leave it. Again, two thresholds γu
p , γu

d dictate u’s decision. If

u ∈ Up, the user first checks the incentive value pui of offer i. If

pui > γu
p , the user adopts it, otherwise she checks the distance

feature. If dui < γu
d , she takes the offer else not. A similar

line is followed for a user u ∈ Ud. The decision variables are

{yui } for allocating single choices i to user u and {zui } for

deciding whether the choice incentive pui will be made greater

than γu
p or not, with u ∈ U , i ∈ C. The problem formulation

is a simpler variant of (P1), and we refer to that as (P1’).

Remark 2. When choices are not distinguishable from each

other in terms of the second tested feature, we assumed that

a user selects none of the choices (e.g., see right-most leaf in

the FFT in Fig. 1). Another model might assume that the user

picks any of the two choices at random.

IV. EVALUATION - NUMERICAL RESULTS

In this section, we evaluate the achievable performance gain

when the incentive allocation process explicitly accounts for

lexicographic decision-making. For the sake of concreteness,

we carry out this evaluation in the context of mobile crowd-

sensing (MCS); the methodology however, readily generalizes

to the other applications mentioned in sections I and II.

A. Methodology

We consider a set C of C MCS tasks spread across a rect-

angular area of L×L. We consider N users who roam across

the area of interest and interact with an app that recommends

MCS tasks to them. Users who want to make contributions to

tasks need to travel to these physical locations. Each MCS task

i ∈ C comes with a budget bi to reward user contributions.

A user u presents distinct skills qui for each task i. At any

point in time, users stand at different distances from the C

ongoing tasks, and the mission of the app is to optimize task

recommendations and offered incentive payments to maximize

the aggregate quality of user contributions.

Drawing parallels to the model in section II, the cost of

alternative (i.e., task) i for user u relates to its physical distance

dui , and the incentive accompanying a recommendation is the

monetary reward pui for contributing to the task. The choices

of each MCS user (i.e., accept the recommendation or not)

are described by a different FFT, and the task assignment

problem for given user locations is the single-offer problem

(P1’) described in Remark 1 above.

We generate random user locations and user profiles, each

profile consisting in the type of tree and the two thresholds,

γu
p and γu

d that drive user decisions. We then solve (P1’)

with the approximation algorithm described in [4] to compute

the aggregate expected quality of contributions. This solution

is compared to alternative heuristic rules that determine the

recommended tasks and offered payments without accounting

for the lexicographic structure in user decision making. Hence,

recommendations may be issued to a user for the task that

lies closest to her or for the one she is most skilled for; while

the task budget is split either equally among users that get

recommendations for it or in proportion to their skills for it.

The four combinations, abbreviated as CLOSE-EQ, CLOSE-

PROP, SKILL-EQ, and SKILL-PROP, are summarized in

Table I. The recommended tasks and offered payments in each

one of the four cases are then processed by the decision trees

profiling each user to determine whether the user will accept

the offer or not.

B. Numerical results

Tables II and III report the expected aggregate quality

achieved with a task recommendation and payment allocation

policy that explicitly accounts for lexicographic choices by

users (GAP column). The numbers correspond to averages

over 50 simulation runs together with their standard variation.

In the same tables, we report the expected aggregate quality

under each of the four alternative heuristic policies.

In all instances, the achievable performance gain when the

policy adapts to lexicographic choices is in the order of 1.5-

2.2 times the one under the simpler policies. These figures

persist over a wide range of values for the number of users,

MCS tasks, budget distribution per MCS task, and payment

threshold values, a subset of which is shown here due to space

constraints.

V. RELATED WORK

The class of fast-and-frugal heuristics originated from

Gigerenzer et.al [5] as an effort to develop simple heuristics

which capture the fact that humans do not use all available

information when deciding. These heuristics can perform

better than many complex methods that have their sources

in statistics or artificial intelligence [2]. Another similar class

of heuristics are the lexicographic (LEX) ones [6] which

also parse features of different choices in a certain order

and terminate upon the first feature that is different among

alternative tasks; they then make the choice for which the

selected feature is best. While LEX decides in favor of a choice

even if a feature for this choice is only a little better than that

for another choice, another variant, Lexicographic semiorder

(LEX-Semi) [7] suggests that the difference in a certain feature

should exceed a predetermined threshold. The equivalent of

the LEX class for binary-valued features is the Deterministic

Elimination by Aspects (DEBA) heuristic [8]. DEBA parses

features sequentially and eliminates choices that do not address

or have inadequate value in that feature. For continuous-valued

features, the adequacy of a feature is assessed by comparing

its value to the median feature value over all tasks.

Mobile user profiling has been considered previously in the

literature in various contexts. In mobile crowdsensing where

users are assigned tasks and need to select some to fulfill, our

previous work [9] sought to predict the likelihood that a user

fulfills a task through logistic-regression models and binary

classification. We formulated and characterized the complex-

ity of task assignment with the objective to maximize total



TABLE I
HEURISTIC RULES FOR RECOMMENDING TASKS AND OFFERING REWARDS TO MCS USERS.

Recommend the closest task Recommend the task the user is most skilled for

Split the task budget equally CLOSE-EQ SKILL-EQ
Split the task budget in proportion to user skills CLOSE-PROP SKILL-PROP

TABLE II
COMPARISON OF TASK RECOMMENDATION AND PAYMENT OFFER STRATEGIES. C=25, L=1KM, γu

p ∼ U [0.5, 1.5], γu
d
∼ U [100, 500]

.

GAP CLOSE-EQ CLOSE-PROP SKILL-EQ SKILL-PROP

N=200, bi ∼ U [10, 20] 172.67± 2.2 85.03± 7.3 88.24± 6.5 100.26± 6.37 111.64± 4.17
N=100, bi ∼ U [10, 20] 87± 1.55 47.9± 3.18 47.39± 2.76 59.47± 3.07 59.93± 2.97
N=200, bi ∼ U [15, 25] 172.65± 2.36 93.05± 5.51 93.59± 4.91 110.27± 4.67 112.22± 4.42

TABLE III
COMPARISON OF TASK RECOMMENDATION AND PAYMENT OFFER STRATEGIES. C=30, L=1KM, γu

p ∼ U [1, 2], γu
d
∼ U [100, 500]

.

GAP CLOSE-EQ CLOSE-PROP SKILL-EQ SKILL-PROP

N=200, bi ∼ U [10, 20] 179.55± 2.19 80.17± 5.84 85.14± 5.4 101.44± 7.8 125.86± 4.49
N=100, bi ∼ U [10, 20] 89.02± 1.59 46.89± 3.99 46.34± 3.89 56.49± 3.11 57.99± 2.93
N=200, bi ∼ U [15, 25] 179.72± 1.38 90.56± 4.81 92.18± 4.521 120.16± 5.92 127.91± 3.96

expected task quality. In [10], we considered the allocation

of incentives to users for which the likelihood to perform

a task was captured through a continuous-valued willingness

function that was concave in provisioned incentives. In that

work, constraints on exerted effort such as total distance to

perform a task were considered. The paper [11] includes a

study of different threads on individual and social strategic

decision making and reasoning under certainty or uncertainty.

Behavioral concepts touch upon the area of product mar-

keting as well. Conjoint analysis aims to determine the subset

of features that is most influential for choice of products.

The approach entails a controlled set of potential products or

services shown to users for comparison. Conjoint analysis has

been used for assessing privacy in social apps [12] and for

predicting user preferences in online platforms [13].

VI. CONCLUSION

Concepts from cognitive and behavioral science remain, to

the best of our understanding, largely unexploited by most

of the (wireless) networking community. Our approach is an

important step in user modeling that departs from approaches

that use utility functions e.g., logarithmic ones, parametrized

by a few parameters to distinguish among users. The models

appear to have broader implications in various application

areas where user-app interaction and decision making arise

at individual or social level with strategic user interactions.

Besides mobile crowdsensing, smart-energy apps and mobile

advertising, the models have significant repercussions on how

to engineer choices offered to users in recommender systems,

online social networks, social media platforms, and more. The

ultimate goal is to appropriately engineer choices so as to

nudge users towards decisions that lead to better outcomes for

user experience and for the service or platform welfare.

Our study relied on decision-making models inspired by

FFTs and can be extended through sophisticated machine-

learning techniques on FFT learning (e.g., learning the various

thresholds that guide user choices) and learning uncertainty, as

well as through other models from behavioral science. Feature

selection techniques could be used to determine the subset

of features that build user profiles and guide user choices.

Another interesting and non-trivial extension concerns the

presentation of more than two choices to users.
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