
ar
X

iv
:1

80
3.

03
73

3v
1 

 [
cs

.I
T

] 
 1

0 
M

ar
 2

01
8

Mobile Edge Computing for Cellular-Connected

UAV: Computation Offloading and Trajectory

Optimization
(Invited Paper)

Xiaowen Cao∗, Jie Xu∗, and Rui Zhang†

∗School of Information Engineering, Guangdong University of Technology, Guangzhou, China
†Department of Electrical and Computer Engineering, National University of Singapore, Singapore

Email: caoxwen@outlook.com, jiexu@gdut.edu.cn, elezhang@nus.edu.sg

Abstract—This paper studies a new mobile edge comput-
ing (MEC) setup where an unmanned aerial vehicle (UAV) is
served by cellular ground base stations (GBSs) for computation
offloading. The UAV flies between a give pair of initial and
final locations, during which it needs to accomplish certain
computation tasks by offloading them to some selected GBSs
along its trajectory for parallel execution. Under this setup,
we aim to minimize the UAV’s mission completion time by
optimizing its trajectory jointly with the computation offloading
scheduling, subject to the maximum speed constraint of the UAV,
and the computation capacity constraints at GBSs. The joint UAV
trajectory and computation offloading optimization problem is,
however, non-convex and thus difficult to be solved optimally.
To tackle this problem, we propose an efficient algorithm to
obtain a high-quality suboptimal solution. Numerical results show
that the proposed design significantly reduces the UAV’s mission
completion time, as compared to benchmark schemes.

I. INTRODUCTION

With recent technology advancement and manufacturing

cost reduction, unmanned aerial vehicles (UAVs) have received

growing interests in various applications such as cargo de-

livery, filming, rescue and search, etc [1]. To maintain the

UAVs’ safe operation with real-time command/control and

enable their new applications with artificial intelligence (AI), it

becomes increasingly important to enhance the communication

and computation capabilities of UAVs. In order to provide

reliable communication for UAVs, cellular-connected UAV

communication has recently emerged as a viable new solution,

in which UAVs are integrated into cellular networks as new

aerial mobile users [2], [3]. As compared to the conventional

direct UAV-to-ground communication with limited range [1],

the cellular-connected UAV communication is able to provide

seamless wireless communication for UAVs. By contrast, there

has been very limited work addressing how to improve the

computation performance of UAVs. Notice that in the forth-

coming AI era, UAVs need to handle computation-intensive

and yet latency-critical tasks, while in practice they usually

have limited computation resources on-broad due to their

size, weight, and power (SWAP) limitations. Therefore, it is

imminent as well as challenging to solve the open problem of

how to significantly enhance the computation power for future

UAVs.

To tackle the above challenge, this paper proposes a new

approach by jointly exploiting the techniques of mobile edge

computing (MEC) and cellular-connected UAV communica-

tion. With MEC, cloud-like computing functionalities are

provided at the edge of wireless networks such as cellular base

stations (BSs) [4]. As a result, UAVs with cellular connection

can offload their intensive computation tasks to ground BSs

(GBSs) for remote execution. As GBSs are nowadays deployed

almost everywhere, this new approach can provide both seam-

less communication and ubiquitous computation services for

UAVs, which help increase their operation range and enlarge

their application horizon.

The new setup of MEC with high-mobility UAV users

poses new opportunities as well as challenges for the optimal

computation offloading design. First, as compared to the

traditional mobile user with complex fading channel with its

associated GBS, a UAV user in the sky usually possesses

stronger and more reliable line-of-sight (LoS) links with a

large number of GBSs at the same time. This thus enables each

UAV to simultaneously connect with multiple GBSs to exploit

their distributed computing resources to improve the com-

putation capability. Second, since the UAV has controllable

mobility in the three-dimensional (3D) airspace, its trajectory

can be jointly designed with its scheduling of computation

offloading to the GBSs associated along the trajectory to

optimize the performance. This is considerably different from

prior studies on MEC with communication and computation

resource allocation at a fixed terrestrial user and its associated

GBS only (see, e.g., [5]–[8]), thus deserving a dedicated new

investigation.

Specifically, this paper considers a practical scenario where

a UAV is designated to fly from an initial location to a final

location, during which it needs to accomplish certain compu-

tation tasks. We assume that the UAV can arbitrarily partition

these tasks into smaller-size subtasks, and offload them to

some selected GBSs along its trajectory for parallel execution.

Under this setup, we aim to minimize the UAV’s mission

completion time or total flight duration by jointly optimizing

its trajectory and computation offloading scheduling, subject

to the maximum speed and initial/final location constraints of

the UAV, as well as the GBSs’ individual computation capacity

http://arxiv.org/abs/1803.03733v1


Initial location

Final location

GBS2

GBS1
GBS3 GBS4

Computation task offloading

Computation result downloading

MEC server

Fig. 1. Illustration of the new MEC scenario where a cellular-connected UAV
is served by multiple GBSs along its trajectory for computation offloading.

constraints. Although the formulated problem is non-convex

and difficult to be solved optimally, we propose an efficient

algorithm to obtain a high-quality suboptimal solution by

using the techniques of alternating optimization and successive

convex approximation (SCA). Numerical results show that the

proposed design significantly reduces the mission completion

time for the UAV as compared to other benchmark schemes.

It is worth noting that there has been prior work [9] that

investigated another type of UAV-MEC system, where the

UAV is employed as a moving MEC server in the sky to help

execute the computation tasks offloaded by multiple ground

users. By contrast, this paper studies a new and different

scenario where the UAV is the mobile user that offloads

computation tasks to multiple GBSs.

II. SYSTEM MODEL

In this paper, we consider a new MEC system with one

single cellular-connected UAV user and a set K , {1, . . . ,K}
of K ≥ 1 GBSs with MEC functionality. The UAV has a

mission to fly from an initial location to a final location, during

which it also needs to accomplish certain computation tasks

by offloading them to the GBSs for remote execution.1 Let

L denote the number of task-input bits. We assume that the

computation tasks can be arbitrarily partitioned into smaller-

size subtasks that can be offloaded to different GBSs and

executed in parallel [4]. We further assume that at each GBS

k ∈ K, the execution of each task-input bit requires the same

number of central frequency unit (CPU) cycles, denoted by

ck > 0. Furthermore, we assume that the computation results

or the task-output bits have much smaller size than the task-

input bits, and hence the computation downloading time from

GBSs to the UAV is practically negligible and thus omitted.

Consider a 3D Cartesian coordinate system, in which each

GBS k ∈ K has zero altitude and fixed horizontal location

νk = (xk, yk). We assume that the UAV flies at a fixed altitude

H ≥ 0 in meter (m), and use uI = (xI , yI) and uF =
(xF , yF ) to denote the UAV’s initial and final locations pro-

jected on the horizontal plane, respectively. Furthermore, we

denote the mission completion time as T in second (s), which

is a variable to be optimized later. Let û(t) = (x̂(t), ŷ(t))
denote the UAV’s horizontal location at time instant t ∈ [0, T ].

1Due to the SWAP limitations, the UAV usually has limited local computa-
tion resources. In this case, we consider that the UAV user does not perform
any local computing, for the purpose of exposition.

Then we have û(0) = uI and û(T ) = uF for the given initial

and final locations, respectively. At time instant t, the distance

between the UAV and GBS k is given by

dk(û(t)) =
√

H2 + ‖û(t)− νk‖2, (1)

where ‖·‖ denotes the Euclidean norm of a vector. Let Vmax >
0 denote the UAV’s maximum speed in m/s. Then we have
√

˙̂x2(t) + ˙̂y2(t) ≤ Vmax, ∀t ∈ [0, T ], in which ˙̂x(t) and ˙̂y(t)

denote the first-derivatives of x̂(t) and ŷ(t), respectively.

Normally, the air-to-ground channels from the UAV to GBSs

are dominated by the LoS links, and hence we consider the

free-space path-loss model similarly as in [2], [3]. At time

instant t, the channel power gain from the UAV to GBS k is

denoted as

hk(û(t)) =
β0

d2k(û(t))
=

β0

H2 + ‖û(t)− νk‖2
, (2)

where β0 denotes the channel power gain at a reference

distance of 1 m.

For ease of exposition, we discretize the mission duration T
into N time slots each with a given duration δt, i.e. T = Nδt,
where δt is chosen to be sufficiently small such that the UAV’s

location can be assumed to be approximately unchanged

during each slot with δtVmax ≪ H , and N is thus a variable

to be optimized. In this case, we denote the UAV’s horizontal

location at time slot n as u[n] , û(nδt), n ∈ N , {1, ..., N},

with u[0] , û(0) = uI and u[N ] , û(T ) = uF .

Accordingly, the channel power gain from the UAV to GBS k
is hk(u[n]) at slot n. Furthermore, let Smax = δtVmax denote

the maximum UAV displacement during each time slot. Thus,

the maximum UAV speed and initial/final location constraints

are respectively re-expressed as

‖u[n]− u[n− 1]‖2 ≤ S2
max, ∀n ∈ N , (3)

u[0] = uI , u[N ] = uF . (4)

We consider the time-division-multiple-access (TDMA)

protocol to implement the UAV’s computation offloading, by

dividing each time slot n ∈ N into K sub-slots each with

duration τk[n] ≥ 0, where
∑

k∈K

τk[n] = δt, ∀n ∈ N . (5)

In each sub-slot k ∈ K, the UAV offloads the respective task-

input bits to GBS k. Suppose that the UAV adopts a constant

transmit power P > 0 for offloading. Then the achievable

offloading rate from the UAV to GBS k in bits-per-second

(bps) at slot n is expressed as

Rk(u[n]) = B log2

(

1 +
Phk(u[n])

σ2

)

,

= B log2

(

1 +
ρ

H2 + ‖u[n]− νk‖2

)

, (6)

where σ2 and B represent the noise power at the receiver

of each GBS and the bandwidth, respectively, and ρ = Pβ0

σ2

denotes the reference signal-to-noise ratio (SNR). In order for

the UAV to offload all the L task-input bits to the K GBSs,

we need to have
∑

k∈K

∑

n∈N

τk[n]Rk(u[n]) ≥ L. (7)

Next, we consider the remote task execution at each GBS k.

Denoting fk as the maximum CPU frequency at GBS k ∈ K



in Hz, then we obtain the per-slot computation capacity of

GBS k as fkδt, which represents the maximum number of

task-input bits that can be executed by GBS k over one slot.

Note that as each task-input bit can be executed independently,

each GBS can immediately start the execution as soon as the

task-input bits are received. In other words, the offloaded task-

input bits at each slot n − 1 are immediately executable at

slot n. Also note that at each GBS k, all the offloaded task-

input bits must be successfully executed before the mission

completion time T (or N ). Therefore, we have the following

computation capacity constraints over time: for each GBS k ∈
K, the accumulative number of offloaded task-input bits over

the last (N − n + 1) slots must be no larger than the GBS’s

accumulative computation capacity over the last (N−n) slots,

∀n ∈ N , i.e.,
N
∑

j=n

ckτk[j]Rk(u[j]) ≤ (N − n)fkδt, ∀n ∈ N . (8)

The computation capacity constraints in (8) can be under-

stood intuitively as follows. First, for n = N , we have

ckτk[N ]Rk(u[N ]) = 0, which indicates that the UAV can-

not offload any task in slot N , as there is no time for

each GBS to execute. Next, for n = N − 1, we have

ckτk[N − 1]Rk(u[N − 1]) + ckτk[N ]Rk(u[N ]) ≤ fkδt. By

combining this with ckτk[N ]Rk(u[N ]) = 0, we further have

ckτk[N − 1]Rk(u[N − 1]) ≤ fkδt, which implies that the

offloaded task-input bits in slot N − 1 cannot exceed the

computation capacity in slot N . Furthermore, by recursively

considering time slots N − 2, N − 3, . . ., until the first slot,

the constraints in (8) follow similarly.

Our objective is to minimize the UAV’s mission completion

time N (or equivalently T ) by optimizing the UAV trajectory

{u[n]} and the time allocation for computation offloading

{τk[n]}, subject to the maximum UAV speed constraint in (3),

the initial/final UAV location constraints in (4), the TDMA

constraints in (5), as well as the task execution constraints in

(7) and (8). Therefore, the joint UAV trajectory and computa-

tion offloading optimization problem is formulated as

(P1) : min
{u[n],τk[n]},N∈Z+

N

s.t. τk[n] ≥ 0, ∀k ∈ K, n ∈ N (9)

(3), (4), (5), (7), and (8),
where Z

+ denotes the set of all strictly positive integers.

Notice that (P1) is a non-convex optimization problem, as the

optimization variable N is an integer, and constraints (7) and

(8) are non-convex. Furthermore, as N is a-priori unknown,

(P1) consists of an uncertain number of constraints in (3), (5),

and (8). Due to the above facts, (P1) is difficult to be solved

optimally.

III. PROPOSED SOLUTION TO (P1)

In this section, we propose an efficient algorithm to solve

(P1) sub-optimally.

First, we show that (P1) can be equivalently solved by

first optimizing over {u[n]} and {τk[n]} under any given N ,

and then using a bisection search to find the optimal N . In

particular, under any given N , (P1) becomes the following

feasibility checking problem:

(P2) : find {u[n]} and {τk[n]}

s.t. (3), (4), (5), (7), (8), and (9).
Suppose that the optimal solution of N to (P1) is N⋆. Then,

consider (P2) under any given N . If (P2) is feasible under N ,

then it follows that N⋆ ≤ N ; otherwise, we have N⋆ > N .

Therefore, we can solve (P1) by checking the feasibility of

(P2) under any given N and using a bisection search over N .

As a result, we only need to consider (P2) under given N .

Next, we show that solving (P2) is equivalent to solving the

following problem (P3) to maximize the number of computa-

tion task-input bits under given N .

(P3) : max
{u[n]},{τk[n]},L̃≥0

L̃

s.t.
∑

k∈K

∑

n∈N

τk[n]Rk(u[n]) ≥ L̃, (10)

(3), (4), (5), (8), and (9).

Suppose that the optimal solution of L̃ to (P3) is L̃∗. Then

it is evident that if L̃∗ ≥ L, then (P2) is feasible; otherwise,

(P2) is infeasible.

Now, it only remains to solve (P3). Note that (P3) is still

non-convex, due to the non-convex constraints in (8) and (10).

In the following, we propose an efficient algorithm to obtain a

suboptimal solution to (P3) by optimizing the time allocation

{τk[n]} and the UAV trajectory {u[n]} in an alternating

manner.

1) Time Allocation for (P3) Under Given UAV Trajectory:

Under given {u[n]}, (P3) is reduced to

(P3.1) : max
{τk[n]},L̃≥0

L̃ s.t. (5), (8), (9), and (10).

It is easy to show that (P3.1) is a linear program (LP), which

can be solved by standard convex optimization techniques

such as the interior point method [10]. We adopt the well-

established optimization toolbox CVX [11] to solve (P3.1)

optimally and efficiently.

2) UAV Trajectory Optimization for (P3) Under Given Time

Allocation: Under given {τk[n]}, (P3) is reduced to

(P3.2) : max
{u[n]},L̃≥0

L̃ s.t. (3), (4), (8), and (10).

Notice that (P3.2) is still non-convex, as constraints (8) and

(10) are non-convex. To tackle this problem, we propose an

iterative algorithm to obtain an efficient solution to (P3.2)

by using the SCA technique. The idea is that under any

given local point at each iteration, we approximate non-

convex constraints (8) and (10) by their corresponding convex

ones. By solving a series of approximate convex problems

iteratively, we can attain an efficient suboptimal solution to

(P3.2).

Suppose that {u(i)[n]} denotes the local point at the i-th
iteration, i ≥ 0. Then, we approximate constraints (8) and

(10) in the following, respectively. First, consider constraint

(8). Notice that by checking the first-order Taylor expansion

of the convex term H2 + ‖u[n]− νk‖
2 with respect to u[n]

at the local point u(i)[n], we have

H2 + ‖u[n]− νk‖
2 ≥ q

(i)
k [n] + 2(ω(i)[n])Tu[n], (12)



with ω
(i)[n] = u

(i)[n] − νk and q
(i)
k [n] = H2 + ‖u(i)[n] −

νk‖
2−2(ω(i)[n])Tu(i)[n], where (·)T indicates the transpose.

Based on (12), we obtain an upper bound of Rk(u[n]) as

Rk(u[n]) ≤ B log2

(

1 +
ρ

q
(i)
k [n] + 2(ω(i)[n])Tu[n]

)

, R
(i)
k,up(u[n]),

where R
(i)
k,up(u[n]) is convex with respect to u[n]. Replacing

Rk(u[n]) in (8) as R
(i)
k,up(u[n]), we have the approximated

convex constraints as
N
∑

j=n

ckτk[n]R
(i)
k,up(u[n]) ≤ (N − n)fkδt, ∀n ∈ N . (13)

Next, consider constraint (10). Notice that Rk(u[n]) is a

convex function with respect to the term ‖u[n]− νk‖2. Then

by taking the first-order Taylor expression of Rk(u[n]) with

respect to ‖u[n] − νk‖2, we can obtain a lower bound of

Rk(u[n]) at local point u(i)[n] as follows.

Rk(u[n]) ≥ R
(i)
k,low(u[n])

, Rk(u
(i)[n])− b

(i)
k [n](‖u[n]− νk‖

2 − ‖u(i)[n]− νk‖
2),
(14)

where b
(i)
k [n] = Bρ/(ln 2d2k(u

(i)[n])(ρ+ d2k(u
(i)[n]))). Here,

R
(i)
k,low(u[n]) is a concave function with respect to u[n]. By

replacing Rk(u[n]) in constraint (10) as R
(i)
k,low(u[n]), we have

the approximated convex constraints as
∑

k∈K

∑

n∈N

τk[n]R
(i)
k,low(u[n]) ≥ L̃. (15)

Finally, with (13) and (15) at hand, (P3.2) is approximated

as the following convex optimization problem (P3.3) at local

point {u(i)[n]}, which can be solved optimally via convex

optimization techniques such as CVX.

(P3.3) : max
{u[n]},L̃≥0

L̃ s.t. (3), (4), (13), and (15).

Let {u(i)∗[n]} denote the optimal UAV trajectory solution

to (P3.3) at local point {u(i)[n]}. Then, we can obtain an

efficient iterative algorithm to solve (P3.2) as follows. In

each iteration i ≥ 1, the UAV trajectory is updated as

{u(i)∗[n]} by solving (P3.3) at local point {u(i)[n]}, i.e.

u
(i+1)[n] = u

(i)∗[n], ∀n ∈ N , where {u(0)[n]} denotes the

initial UAV trajectory. In summary, the proposed algorithm is

presented in Table I as Algorithm 1.

TABLE I
ALGORITHM 1 FOR SOLVING PROBLEM (P3.2)

1 Initialization: Given the UAV trajectory {u(0)[n]}; let i = 0.
2 Repeat:

i Solve problem (P3.3) under given {u(i)[n]} to obtain the optimal

solution as {u(i)∗[n]}.

ii Update u
(i+1)[n] = u

(i)∗[n],∀n ∈ N .
iii Update i = i+ 1.

3 Until the optimal value converges within a given threshold or a
maximum number of iterations is reached.

Notice that after each iteration in Algorithm 1, the objec-

tive value of (P3.2) is monotonically non-decreasing. As the

optimal value of (P3.2) is upper-bounded, Algorithm 1 should

converge to (at least) a locally optimal solution to (P3.2).

x(m)
0 100 200 300 400 500 600 700 800 900 1000

y(
m

)

0

100

200

300

400

500

600

700

800

900

1000

UAV Trajectory (L = 100 Mbits)
UAV Trajectory (L = 200 Mbits)
UAV Trajectory (L = 500 Mbits)
Initial and final points
GBSs

GBS1

GBS2

GBS3

GBS4

GBS5

Fig. 2. Optimized UAV trajectory projected on the horizontal plane under
different values of L.

3) Complete Algorithm to Solve (P3): With (P3.1) and

(P3.2) solved, we are ready to solve (P3) by updating the UAV

trajectory {u[n]} and time allocation {τk[n]} in an alternating

manner. In each iteration, we first solve (P3.1) under given

{u[n]} to update {τk[n]}, and then solve (P3.2) under {τk[n]}
to update {u[n]}. For each iteration, the optimal value of

(P3) is monotonically nondecreasing. As the optimal value

of (P3) is upper-bounded, the alternating-optimization-based

algorithm will converge to at least a locally optimal solution

to (P3).

Finally, with (P3) solved, the feasibility of (P2) is accord-

ingly checked. By combing this together with the bisection

search over N , problem (P1) can be efficiently solved. Here,

it is worth noting that the obtained solution to (P1) is generally

suboptimal, which is due to the fact that under given N , we

only obtain a locally optimal solution to (P3). Nevertheless,

as shown in numerical results next, such suboptimal solution

to (P1) performs quite well in practice.

IV. NUMERICAL RESULTS

In this section, we present numerical results to validate the

proposed joint trajectory and computation offloading design.

Suppose that there are K = 5 GBSs that are distributed within

a geographic area of size 1× 1 km2, as shown in Fig. 2. We

set the bandwidth as B = 1 MHz and the flying altitude of the

UAV as H = 50 m. The channel power gain at the reference

distance of 1 m is β0 = −30 dB and the noise power at each

GBS receiver is σ2 = −60 dBm. The maximum UAV speed

is Vmax = 50 m/s while the transmit power is P = 30 dBm.

At each GBS k ∈ K, we set the maximum CPU frequency

as fk = 2.5 GHz and the required number of CPU cycles

per task-input bit as ck = 103. Furthermore, the initial UAV

trajectory for Algorithm 1 is heuristically designed as follows.

• Straight flight: the UAV flies straight from the initial to

the final location at a fixed speed V = ‖uF − uI‖/T .

To minimize the mission completion time under this

trajectory, we first check the computation feasibility under

any given T (or N ) by optimizing the time allocation, and

then use a bisection search over T (or N ).

Fig. 2 shows the optimized UAV trajectory projected on

the horizontal plane under different values of L, in which



Number of task-input bits (Mbits)
100 200 300 400 500 600

M
is

si
on

 c
om

pl
et

io
n 

tim
e 

(s
)

20

40

60

80

100

120

140

Straight flight
Successive hover-and-fly
Proposed design

Fig. 3. The minimum mission completion time T versus the number of task-
input bits L.
the trajectory is sampled every δt = 1 s. It is observed that

when L = 100 Mbits, the UAV flies straight from the initial

location to the final location at the maximum speed, and the

mission completion time is T = ‖uF − uI‖/Vmax, which

is constrained by the flying distance between the initial and

final locations. When L = 200 Mbits, the UAV trajectory

is observed to deviate from the straight line by flying closer

towards GBSs 1, 4, and 5, in order to exploit better wireless

channels for computation offloading towards them. When L
further increases to 500 Mbits, the UAV is observed to reach

and hover above all the five GBSs and even fly back and forth

between GBSs 4 and 5. In this case, the mission completion

time is mainly constrained by the computation task execution,

and thus the UAV trajectory is designed for most efficient

computation offloading.

Next, we validate the performance of our proposed design

as compared to two benchmark schemes, namely the above

straight flight trajectory and the following heuristic design.

• Successive hover-and-fly: the UAV flies to successfully

reach at the top of the K GBSs at the maximum speed

Vmax, and hovers above each of them for efficient com-

putation offloading. The visiting order is determined by

solving the Traveling Salesman Problem (TSP) [12] to

minimize the flying distance. Under such a UAV trajec-

tory design, the mission completion time minimization

problem can be solved similarly as in the straight flight

scheme, while the only difference is that during checking

the computation feasibility under any given T (or N ),

we need to optimize the hovering durations above these

GBSs jointly with the time allocation while flying.

Fig. 3 shows the mission completion time T = Nδt versus

the number of task-input bits L. It is observed that as L
becomes larger, the mission completion time increases for

all the three schemes, while the proposed design performs

best among the three schemes over all L values. When L
is small (e.g., L = 100 Mbits), the straight-flight scheme is

observed to achieve the same mission completion time as the

proposed design, and outperforms the successive-hover-and-

fly scheme. This is due to the fact that in this regime, the

mission completion time is constrained by the flying distance,

and the successive-hover-and-fly scheme leads to longer flying

distance as the UAV needs to visit all GBSs. When L is larger

than 200 Mbits, it is observed that the straight-flight scheme

performs worse than the successive-hover-and-fly scheme and

the proposed design. This is due to the fact that in this regime,

the mission completion time is constrained by the computation

task execution, and the latter two schemes can more efficiently

explore the UAV trajectory design for computation offloading.

In addition, the successive-hover-and-fly scheme is observed to

perform close to the proposed design when L = 300 Mbits, but

the performance gap increases when L further increases. This

is due to the fact that when L becomes larger, in the proposed

design the UAV can fly back and forth among different GBSs

(see Fig. 2 for L = 500 Mbits) in order to explore multiple

GBSs’ distributed computation resources more efficiently by

time sharing.

V. CONCLUSION

This paper investigates a new MEC application scenario

where a cellular-connected UAV offloads its computation tasks

to multiple GBSs along its trajectory. The UAV trajectory is

jointly designed with the computation offloading scheduling,

to minimize the mission completion time, subject to the UAV’s

maximum speed and initial/final location constraints, as well

as the GBSs’ individual computation capacity constraints.

By exploiting alternating optimization and SCA techniques,

an efficient algorithm is proposed to solve the formulated

problem sub-optimally. Numerical results show a significant

performance gain of our proposed design over the benchmark

schemes.

REFERENCES

[1] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with
unmanned aerial vehicles: Opportunities and challenges,” IEEE Commun.

Mag., vol. 54, no. 5, pp. 36–42, May 2016.

[2] S. Zhang, Y. Zeng, and R. Zhang, “Cellular-enabled UAV communication:
Trajectory optimization under connectivity constraint,” to appear in Proc.

IEEE ICC 2018. [Online] Available: https://arxiv.org/pdf/1710.11619

[3] Y. Huang, J. Xu, L. Qiu, and R. Zhang, “Cognitive UAV commu-
nication via joint trajectory and power control.” [Online] Available:
https://arxiv.org/abs/1802.05090

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE

Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 3rd Quarter, 2017.

[5] S. Barbarossa, S. Sardellitti, and P. D. Lorenzo, “Communicating while
computing: Distributed mobile cloud computing over 5G heterogeneous
networks,” IEEE Signal Process. Mag., vol. 31. no. 6, pp. 45–55, Nov.
2014.

[6] X. Cao, F. Wang, J. Xu, R. Zhang, and S. Cui, “Joint computation
and communication cooperation for mobile edge computing.” [Online]
Available: https://arxiv.org/abs/1704.06777

[7] M.-H. Chen, M. Dong, and B. Liang, “Joint offloading decision and
resource allocation for mobile cloud with computing access point,” in
Proc. IEEE ICASSP, Shanghai, China, 2016, pp. 3516–3520.

[8] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing
optimization in wireless powered mobile-edge computing system,” to
appear in IEEE Trans. Wireless Commun..

[9] S. Jeong, O. Simeone, and J. Kang, “Mobile edge computing via a UAV-
mounted cloudlet: Optimization of bit allocation and path planning,” to
appear in IEEE Trans. Veh. Technol..

[10] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, U.K.:
Cambridge Univ. Press, Mar. 2004.

[11] M. Grant and S. Boyd, CVX: MATLAB Software for Disciplined Convex

Programming, Version 2.1, 2016. [Online] Available:http://cvxr.com/cvx.

https://arxiv.org/pdf/1710.11619
https://arxiv.org/abs/1802.05090
https://arxiv.org/abs/1704.06777
http://cvxr.com/cvx.


[12] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys,
The Traveling Salesman Problem: A Guided Tour of Combinatorial

Optimization, 1st ed. Wiley, 1985.


	I Introduction
	II System Model
	III Proposed Solution to (P1)
	III-1 Time Allocation for (P3) Under Given UAV Trajectory
	III-2 UAV Trajectory Optimization for (P3) Under Given Time Allocation
	III-3 Complete Algorithm to Solve (P3)


	IV Numerical Results
	V Conclusion
	References

