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Abstract—We consider the problem of millimeter-wave
(mmWave) channel estimation with a hybrid digital-analog two-
stage beamforming structure. A radio frequency (RF) chain
excites a dedicated set of antenna subarrays. To compensate for
the severe path loss, known training signals are beamformed and
swept to scan the angular space. Since the mmWave channels
typically exhibit sparsity, the channel response can usually be
expressed as a linear combination of a small number of scattering
clusters. Thereby the number of angles of arrival (AoAs) and
angles of departure (AoDs) with significant signal components is
limited, and compressive sensing techniques can be leveraged for
estimating the channel. In this paper, we investigate two sparse
recovery algorithms: a Bayesian and non-Bayesian one. In the
Bayesian approach, we invoke the sparse Bayesian learning (SBL)
framework, which relies on a 2-layer hierarchical prior model for
channel. A highly efficient and fast iterative Bayesian inference
method is then applied to the proposed model. The non-Bayesian
approach is a LASSO-based approach, where we devise a low
complexity solution by adopting alternating directions method of
multipliers (ADMM) technique to solve the problem. The efficacy
of the proposed algorithms is demonstrated using numerical
examples. The Bayesian approach shows improved estimation
performance in relation to the non-Bayesian approach.

Index Terms—Millimeter-wave communications, sparse chan-
nel estimation, sparse Bayesian learning, compressive sensing.

I. INTRODUCTION

The abundant spectrum resources at the millimeter-wave
(mmWave) bands, i.e., 10–100 GHz frequencies, is one core
capacity increase enabler for the Fifth Generation (5G) wire-
less networks [1]. The tiny wavelength of signals at mmWave
allows packing of large numbers of antenna elements, making
it feasible to realize the needed high beamforming gains to
overcome the severe pathloss. However, conventional fully-
digital beamforming architectures cannot be directly applied
in mmWave communications due to the radio frequency (RF)
hardware constraints. Therefore, hybrid beamforming archi-
tectures [2], which is a two-stage digital-analog beamforming
procedure, have been proposed. They allow the use of large
antenna arrays with a limited number of RF chains.

The knowledge of the channel state information is chal-
lenging with the narrow beams. The CSI acquisition could
be based on an exhaustive beamformer sweeping over all
directions or by using a bisection search to estimate the
mmWave channel in the angle of arrival (AoA) and angle
of departure (AoD) domains. Since the mmWave channel
is typically sparse in the angular domain (i.e., it can be

represented as a linear combination of a small number of
AoAs and AoDs), compressive sensing (CS) and sparse signal
recovery can be leveraged to provide accurate estimates of the
corresponding AoAs and AoDs.

The application of CS to mmWave channel estimation has
become a hot research topic. Specifically, the CS theory, which
includes the `1-norm convex constrained optimization [3], [4]
and the sparse Bayesian learning (SBL) methods [5], [6] for
estimating the wireless channel, has been studied recently. We
refer here the sparse channel estimators based on the the `1-
norm convex constrained optimization as the non-Bayesian
and the SBL as the Bayesian. For example, the non-Bayesian
estimator, which is based an `1-norm constrained optimiza-
tion, popularly referred to as Least Absolute Shrinkage and
Selection Operator (LASSO) was proposed for estimating the
channel in a mmWave-hybrid system in [7], [8]. A greedy
orthogonal marching pursuit (OMP) algorithm was then pro-
posed to find an approximate sparse solution. The LASSO-
based estimator is popular due to its convexity. The Bayesian
estimators for estimating the channel in a mmWave-hybrid
system have also been recently proposed in [9], [10]. For the
Bayesian estimators, a prior probability density function (pdf)
of the unknown parameter is specified and the aim is to find
a sparse maximum a posteriori (MAP) estimate.

In this paper, we present Bayesian and non-Bayesian sparse
channel estimation algorithms for mmWave-hybrid system.
The Bayesian approach is a novel application of the fast SBL
algorithm [11] for mmWave-hybrid channel estimation. Mishra
et al. [10] applied the EM algorithm, which is known to suffer
from high computational complexity, for the hyperparameter
estimation. We use a 2-layer hierarchical prior model. We
then introduce a highly accelerated algorithm, which exploits
the properties of the marginal likelihood function. The non-
Bayesian approach is a LASSO-based estimator where we
propose a low complexity solution by adopting alternating
directions method of multipliers (ADMM) technique for the
reweighted `2-norm minimization problem. We point out also
that the SBL framework realizes the LASSO-based cost func-
tion when a certain parameter prior pdf is chosen. Finally,
the simulation results show that both the Bayesian and non-
Bayesian algorithms provide good estimates in terms of the
normalized mean square error (MSE).



II. CHANNEL MODEL

We consider a multiple-input multiple-output (MIMO) sys-
tem with one base station (BS) and a single user equipment
(UE) as in Fig. 1. The BS is equipped with NBS

T antennas
and NBS

RF radio frequency (RF) chains. Similarly, the UE is
equipped with MUE

R antennas and MUE
RF radio frequency (RF)

chains. We assume that NBS
RF ≤ NBS

T , MUE
RF ≤ MUE

R , and
narrowband flat-fading channels with L scattering clusters in
the environment. The channel matrix can be expressed as

H =

L∑
`=1

ξ`sR(θ`)s
H
T(φ`), (1)

where ξ` is the complex channel gain of `th path. The
vectors sR(θ`) ∈ CM

UE
R ×1 and sT(φ`) ∈ CN

BS
T ×1 denote the

antenna array response at the UE and BS, respectively, where
θ` ∈ [0, 2π) and φ` ∈ [0, 2π) are AoA and AoD, respectively.
Assuming a uniform linear array (ULA), sR(θ`) and sT(φ`)
are given as

sR(θ`) = [1, ejµ(θ`), ej2µ(θ`), . . . , ej (M−1)µ(θ`)]T (2)
sT(φ`) = [1, ejµ(φ`), ej2µ(φ`), . . . , ej (N−1)µ(φ`)]T (3)

where µ(θ`) =
2π

λ
dsin(θ`), λ is the carrier wavelength and

d is the spacing between the antenna elements. Since both θ`
and φ` are unknown, we use the quantized grid for both AoAs
and AoDs by uniformly sampling [0, 2π] with Q samples.
Neglecting the grid quantization error, the transformed channel
model can be expressed as [7]

H = S(Θ)HvS(Φ)H, (4)

where S(Θ) and S(Φ) contain steering vectors sR(θ) and
sT(φ), respectively, for Q resolvable directions (Q� L), i.e.,

S(Θ) = [sR(0), sR(
2π

Q
), . . . , sR(

2π

Q
(Q− 1))]

S(Φ) = [sT(0), sT(
2π

Q
), . . . , sT(

2π

Q
(Q− 1))].

Matrix Hv ∈ CQ×Q contains the channel gains where the
(i, j)th entry can be interpreted as the channel gain between
the i-th angular bin for the AoA and the j-th angular bin for
the AoD. Note that the channel exhibits L multipaths which
implies that the channel matrix Hv will have L dominant
elements while the remaining elements are close to zero.

Fig. 1. Hybrid analog-digital transmitter and receiver.

A. Channel Sensing Method

In the channel acquisition phase, the BS uses beamforming
vectors v1, . . . ,vD ∈CN

BS
T ×1 to scan D different directions.

The UE in turn applies the combining vectors w1, . . . ,wD ∈
CM

UE
R ×1 to the received signals. After the UE uses the com-

bining vectors w1, . . . ,wD to detect the signal, the detector
output zi becomes

zi = WHHvisi + WHni, (5)

where W = [w1, . . . ,wD] ∈ CM
UE
R ×D is the combining

matrix and ni ∈CM
UE
R ×1 is the i.i.d Gaussian noise vector and

si is the transmitted symbol. Since si is known symbol, we
can let si = 1. By stacking all D received vectors z1, . . . , zD,
we have

y =
[
zT1 , . . . , z

T
D

]T
= vec

(
WHHV

)
+ n (6)

=
(
VT conj(S(Φ))⊗WHS(Θ)

)
h + n (7)

where vec(·) and conj(·) refer to vectorization and com-
plex conjugate operation respectively, h = vec(Hv), and
n =

[
nT1 , . . . ,n

T
D

]T
. A more compact representation of (7)

is expressed as
y = Ψh + n (8)

where y ∈ CD
2×1 is the received vector and Ψ =(

VT conj(S(Φ))⊗WHS(Θ)
)
∈ CD

2×Q2

is the sensing ma-
trix. The vector h ∈CQ

2

contains the channel gains and most
of the entries are close to zero.

III. BAYESIAN CHANNEL ESTIMATION

Given the signal model in (8), and the noise term n modeled
as an i.i.d Gaussian random vector with some variance σ2, we
can express the pdf of the signal vector y, given noise variance
σ2 and h as

p
(
y|h, σ2

)
=
(
πσ2

)−N
e
(
−σ−2‖y−Ψh‖22

)
, (9)

where we set N = D2. A key feature of the SBL framework
is the incorporation of a parameterized prior that encourages
sparsity in the representation. Invoking a two-layer hierarchical
model, we consider the channel h to be zero-mean Gaussian
with pdf specified as

p(h|α) = (π)
−M

M∏
m=1

α−1
m e
(
−α−1

m |hm|2
)
, (10)

where we define M = Q2 and α = [α1, . . . , αM ]T is a vector
of M hyperparameters. The sparseness of h is moderated by
the hyperparameters (notice that hm = 0 when αm = ∞)
whereby individual αm is independently assigned to each hm.
To complete the specification of the second layer of the hierar-
chical model, hyperpriors are assigned to the hyperparameters
and suitable priors are the Gamma distributions [6]:

p(α) =

M∏
i=1

Gamma(αi|a, b), (11)



where Gamma(αi|a, b) = Γ(a)−1baαa−1e−bα with Γ(a) =∫∞
0
ta−1e−1 being the gamma function. Choosing the Gamma

distribution allows for a closed form Bayesian analysis, since it
is the conjugate prior of the Gaussian likelihood function [12,
Chapter 2.3.7]. The parameters of the hyperpriors are chosen
so that it is uninformative (by setting a, b→ 0 in (11)), i.e., so
as to express no preference over any value for the correspond-
ing hm. Given the priors, the Bayesian inference proceeds by
computing the posterior distribution of the channel vector h
conditioned on the received signal vector y as

p(h,α, σ2|y) = p(h|y,α, σ2)p(α, σ2|y), (12)

where p(h|y,α, σ2) can be computed analytically as

p(h|y,α, σ2) =
p(y|h, σ2)p(h|α)

p(y|α, σ2)
(13)

= (π)
−M |Σ|−1e−(h−µ)HΣ−1(h−µ),(14)

and the covariance and the mean are given respectively as

Σ = (σ−2ΨHΨ + A)−1 (15)
µ = σ−2ΣΨHy, (16)

with A = diag(α1, . . . , αM ). The focus now turns to the
second term on the right-hand side of (12), the hyperparam-
eters posterior p(α, σ2|y), which is analytically intractable.
The Bayesian learning thus becomes the search for the hyper-
parameter posterior mode via a type-II maximum likelihood
procedure [6], [11]. Therefore, the estimate of α is sought
by maximizing the likelihood function, or equivalently, its
logarithm:

L(α) = log(p(y|α, σ2))

= −[N logπ + log|C|+ yHC−1y], (17)

where C = σ2I+ΨA−1ΨH. Typically, the learning algorithm
can proceed by iteratively maximizing (17), i.e.,

argmax
α

L(α) = argmin
α

[log|C|+ yHC−1y],

concurrent with updating Σ and µ from (15) and (16) hoping
it converges to a MAP solution [6]. This iterative process,
however, suffers high complexity due to the fact that at each
iteration, the covariance matrix (15) has to be computed. It
requires a matrix inverse operation of size M ×M . An accel-
erated learning algorithm can instead be derived by exploiting
the properties of the maximum likelihood function (17). The
central idea is by isolating the effect of each αm on the
marginal likelihood function. In that regards, matrix C in (17)
can be decomposed into two parts

C = C−m + αmψmψ
H
m, (18)

where ψm is the m-th column vector of the matrix Ψ.
Applying the Woodbury’s matrix inversion lemma and matrix
determinant lemma to C−1 and |C| in (17), respectively
(see [12, Appendix C, eq. C.7 and eq. C.15]), L(α) can be
expressed as

L(α) = L(α−m) + `(αm), (19)

where term `(αm) only involves hyperparameter αm, given
by

`(αm) = logαm − log(αm + sm) +
|qm|2

αm + sm
, (20)

with sm = ψH
mC−1
−mψm and qm = ψH

mC−1
−my. Thus far, the

maximization of (17) is reduced to maximization of a simpler
function (20). By differentiating (20) and setting it to zero, a
unique maximum of L(α) with respect to αm is expressed as

αm =


sm

(|qm|2 − sm)
if |qm|2 > sm,

∞ if |qm|2 ≤ sm
(21)

It is relatively straightforward now to learn the channel ef-
ficiently by sequentially adding and deleting the columns of
the sensing matrix Ψ. The sequential learning algorithm is
provided in Algorithm 1. Upon completion of the learning,
the channel vector estimate is given as ĥ = µ.

Algorithm 1 Fast Sparse Bayesian Learning.
1: Initialize with a single column ψm of Ψ and calculate αm

from (21).
2: Compute Σ and µ from (15) and (16) (which are scalars

initially), along with qi and si for all columns ψi of Ψ.
3: repeat
4: Select any candidate column vector ψi
5: If |qi|2 > si, and αi < ∞, ψi is in the model, update

αi using (21).
6: If |qi|2 > si, and αi =∞, add ψi to the model, update

αi using (21).
7: If |qi|2 ≤ si, and αi < ∞, delete ψi from the model,

set αi =∞.
8: Recompute Σ and µ from (15) and (16) (with Ψ

contains only those columns currently included in the
model), along with qi and si for all columns ψi of Ψ.

9: until Desired level of convergence has been reached.

IV. NON-BAYESIAN CHANNEL ESTIMATION

In this section, we formulate the sparse channel estimation
problem from the perspective of the popular LASSO regres-
sion. The LASSO approach is attractive, because it is a convex
relaxation of the `0 and it promotes sparse solutions. We begin
by casting the sparse channel reconstruction problem as `2
norm minimization problem [3], [4], [13]:

minimize
h

‖y −Ψh‖22 + λ

M∑
m

log(|hm|+ ε), (22)

where λ is a non-negative parameter. Viewing (22) through
the lenses of the Bayesian framework, we can see that the
same objective function is arrived at with a proper choice of
the prior pdf of the channel vector h. Recall that, according to
the Bayesian framework, a prior distribution is designed for h
and then a sparsity promoting maximum a posteriori (MAP)
is sought for. Now from (14), we have defined the posteriori



distribution for the channel h which is proportional to the
product of the prior distribution and the likelihood function or

p(h|y,α, σ2) ∝ p(y|h, σ2)p(h|α),

where p(y|h, σ2) is given in (9). When the prior p(h) is
chosen such that p(h) ∝

∏M
m |hm|−2 [6], and we compute

the logarithm of the posteriori p(h|y,α, σ2), we obtain

L(h) = −‖y −Ψh‖22 − σ2
M∑
m

log(|hm|). (23)

It is now clear that maximizing (23) is equivalent to the `2
norm minimization problem (22). We will now propose an
iterative method to approximate the solution to (22) which
admits closed form solutions at each step based on the suc-
cessive convex approximation (SCA), wherein we approximate
the concave term in the objective by its first order linear
approximation. Note that due to the iterative nature of the
relaxed problem a matrix inversion is computed in each
iteration, which is computationally expensive. Therefore, we
invoke the ADMM algorithm to efficiently solve the problem.
By introducing an auxiliary variable z ∈ CM , we recast the
new problem as

minimize
h,z

‖y −Ψh‖22 + λ
∑
m log(|zm|+ ε)

subject to h = z,
(24)

where z and h are the optimization variables. With the
reformulation (24), we derive the augmented Lagrangian
in (25) [14], [15] as

Lρ
(
h, z,u

)
= λ

∑
i log(|zi|+ ε) + ‖y −Ψh‖22

+ρ‖z− h + u‖22 − ρ‖u‖22.
(25)

The ADMM algorithm thus consists of the iterations

hk+1 = argmin
h

Lρ
(
h, zk,uk

)
(26)

zk+1 = argmin
z

Lρ
(
hk+1, z,uk

)
(27)

uk+1 = uk + zk+1 − hk+1, (28)

where superscript k is the iteration counter and ρ > 0 is a
penalty factor. Now we derive closed form solutions to the
above iterative steps. The update hk+1 in expression (26) is the
solution to the following unconstrained optimization problem:

minimize ‖y −Ψh‖22 + ρ‖z− h + u‖22, (29)

where the solution is derived by taking the gradient of the
objective function with respect to h and equating to zero. The
solution is given by the following closed form expression

hk+1 =
(
ΨHΨ + ρI

)−1[
ΨHy + ρ

(
zk + uk

) ]
. (30)

We now derive the update zk+1 which is the solution to the
optimization problem

minimize λ
∑
m

log(|zm|+ ε) + ρ‖z− h + u‖22. (31)

We replace the logarithm term
∑
m log(|zm|+ ε) with its first

order linear approximation. So, let ẑm be an arbitrary point, the

first order linear approximation of
∑
m log(|zm| + ε) around

the point ẑm is given as∑
m

log(|ẑm|+ ε) +
∑
m

(zm − ẑm)
1

(|ẑm|+ ε)
. (32)

We can therefore, rewrite (31) as

minimize λ
∑
m

zm

(
1

(|ẑi|+ ε)

)
+ ρ‖z− h + u‖22 (33)

where we have dropped the constant term
λ
(∑

m log(|ẑm|+ ε) +
∑
m ẑm

(
1

(|ẑi|+ε)

))
, since it does

not affect the solution to the problem. The update zk+1 can
be derived by taking the gradient of the objective function
in (33) with respect to z and equating to zero. The closed
form solution can be expressed as

zk+1 = hk+1 − uk − 2λ/ρ

(
1

(|ẑ|m + ε)

)
. (34)

We now summarize the ADMM algorithm to solve problem
(22) in Algorithm 2.

Algorithm 2 ADMM algorithm.
1: Initialization zk, uk and k = 0.
2: repeat
3: Update hk+1 by using expression (30)
4: Update zk+1 by using expression (34).
5: Update uk+1 by using expression (28).
6: Set k = k + 1.
7: until Desired level of convergence has been reached.

V. NUMERICAL RESULTS

We test the efficacy of the proposed algorithms using
numerical examples considering a hybrid partially connected
MIMO structure as depicted in Fig. 1, where each RF chain
is connected to a dedicated antenna subarray. The training
beamformers are designed similar to the approach in [7] taking
into consideration of the partial connection and the power con-
straint, i.e., the transmit beamformer ‖v‖2 = ‖vRFvBB‖2 =
1. We quantify the channel estimation performance using
normalized MSE (NMSE), defined as NMSE =

‖ĥ−h‖22
‖h‖22

. For
each signal-to-noise ratio (SNR) value, we generated 100
channel and noise realizations. The AoA/AoD quantization
grid is set to Q = 25, and the BS and the UE each search in
D = 20 directions. The sensing matrix Ψ is of size 400×1024
and we set L = 4 scattering clusters (i.e., the expected channel
sparsity of 0.0039). Fig. 2 shows the NMSE vs. SNR plot for
the Bayesian and non-Bayesian algorithms. It can be seen that
the Bayesian estimator shows an improved performance gain
of around 2 dB. It is important to mention that the choice
of penalty parameter ρ in (30) affects the performance of the
non-Bayesian estimator. For our simulations, we set ρ = 10
and λ = σ2.

Fig. 3 shows the angle domain representation of the channel
for a single realization at SNR = 3 dB with the same setting as
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Fig. 2. NMSE estimation performance of the proposed algorithms for a system
with NBS

T = MUE
R = 8, and NBS

RF = MUE
RF = 2.

that in Fig. 2. As seen in the figure, both the Bayesian and non-
Bayesian algorithms can estimate the channel quite accurately:
the 4 clusters can be easily identified. The approximate nature
of the sparsity of the mmWave channel is also visible in Fig. 3.

0

0.2

0.4

1

0.6

|C
h

a
n

n
e

l 
g

a
in

s
|

2

0.8

3

1

4 clusters of scatters

84

Rx bins

75
66

Tx bins

57 4
8 3

2
1

(a) original channel

0

0.2

0.4

1

0.6

|C
h

a
n

n
e

l 
g

a
in

s
|

2

0.8

3

1

84

Rx bins

75
66

Tx bins

57 4
8 3

2
1

(b) Bayesian Estimate

0

0.2

0.4

1

0.6

|C
h

a
n

n
e

l 
g

a
in

s
|

2

0.8

3

1

84

Rx bins

75
66

Tx bins

57 4
8 3

2
1

(c) non-Bayesian Estimate

Fig. 3. Angle domain representation of the channel for single trial at SNR = 3
dB. Subfigure (a) shows the actual channel, (b) shows the Bayesian estimate,
and (c) shows the non-Bayesian estimate.

VI. CONCLUSION

We have considered sparse channel estimation for
millimeter-wave systems using partially connected hybrid
digital-analog hybrid transceiver architecture. We presented
two novel channel estimation algorithms. The first is a
Bayesian based estimator, which relies on a 2-layer hierarchi-
cal prior model. A highly efficient and accelerated Bayesian
inference method was then introduced and applied to the
model. The second one is a non-Bayesian based estimator
which was formulated as a reweighted `2 norm minimization
problem. An efficient and low complexity algorithm based on
the alternating directions method of multipliers was proposed
to solve the problem. The proposed algorithms were validated
using numeral examples. The results show good estimation
performance. In our future work, we plan to study the per-
formance also with larger arrays structures and hardware
accelerated computation.
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