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Abstract—Classifiers trained using conventional empirical risk
minimization or maximum likelihood methods are known to
suffer dramatic performance degradations when tested over
examples adversarially selected based on knowledge of the clas-
sifier’s decision rule. Due to the prominence of Artificial Neural
Networks (ANNs) as classifiers, their sensitivity to adversarial
examples, as well as robust training schemes, have been recently
the subject of intense investigation. In this paper, for the first
time, the sensitivity of spiking neural networks (SNNs), or
third-generation neural networks, to adversarial examples is
studied. The study considers rate and time encoding, as well as
rate and first-to-spike decoding. Furthermore, a robust training
mechanism is proposed that is demonstrated to enhance the
performance of SNNs under white-box attacks.

Index Terms—Spiking Neural Networks (SNNs), adversarial
examples, adversarial training, Generalized Linear Model (GLM)

I. INTRODUCTION

The classification accuracy of Artificial Neural Networks
(ANNs) trained over large data sets from the problem domain
has attained super-human levels for many tasks including
image identification [1]. Nevertheless, the performance of clas-
sifiers trained using conventional empirical risk minimization
or Maximum Likelihood (ML) is known to decrease dramat-
ically when evaluated over examples adversarially selected
based on knowledge of the classifier’s decision rule [2]. To
mitigate this problem, robust training strategies that are aware
of the presence of adversarial perturbations have been shown
to improve the accuracy of classifiers, including ANNs, when
tested over adversarial examples [2]–[4].

ANNs are known to be energy-intensive, hindering their
implementation on energy-limited processors such as mobile
devices. Despite the recent industrial efforts around the pro-
duction of more energy-efficient chips for ANNs [5], the gap
between the energy efficiency of the human brain and that
of ANNs remains significant [6], [7]. A promising alternative
paradigm is offered by Spiking Neural Networks (SNNs), in
which synaptic input and neuronal output signals are sparse
asynchronous binary spike trains [5]. Unlike ANNs, SNNs are
hybrid digital-analog machines that make use of the temporal
dimension, not just as a neutral substrate for computing, but
as a means to encode and process information [7].
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Fig. 1. Two-layer SNN for supervised learning.

Training methods for SNNs typically assume deterministic
non-linear dynamic models for the spiking neurons, and are
either motivated by biological plausibility, such as the spike-
timing-dependent plasticity (STDP) rule [5], [8], or by an
attempt to mimic the operation of ANNs and associated learn-
ing rules (see, e.g., [9] and references therein). Deterministic
models are known to be limited in their expressive power,
especially as it pertains prior domain knowledge, uncertainty,
and definition of generic queries and tasks. Training for
probabilistic models of SNNs has recently been investigated in,
e.g., [10]–[13] using ML and variational inference principles.

In this paper, for the first time, the sensitivity of SNNs
trained via ML is studied under white-box adversarial attacks,
and a robust training mechanism is proposed that is demon-
strated to enhance the performance of SNNs under adversarial
examples. Specifically, we focus on a two-layer SNN (see
Fig. 1), and consider rate and time encoding, as well as rate
and first-to-spike decoding [13]. Our results illuminate the
sensitivity of SNNs to adversarial example under different
encoding and decoding schemes, and the effectiveness of
robust training methods.

The rest of the paper is organized as follows. In Sec. II,
we describe the architecture of the two-layer SNN with Gen-
eralized Linear Model (GLM) neuron, as well as information
encoding and decoding mechanisms. The design of adversarial
perturbations is covered in Sec. III, while a robust training is
presented in Sec. IV. Sec. V presents numerical results, and
closing remarks are given in Sec. VI.
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II. SNN-BASED CLASSIFICATION

In this section, we introduce the classification task and the
SNN architecture under study.

Network Architecture: We consider the problem of clas-
sification using the two-layer SNN illustrated in Fig. 1. The
SNN is fully connected and has NX presynaptic neurons in
the input, or sensory layer, and NY neurons in the output
layer. Each output neuron is associated with a class. In order
to feed the SNN, an input example, e.g., a gray scale image,
is encoded into a set of NX discrete-time spike trains, each
with T samples. The input spike trains are fed to the NY
postsynaptic GLM neurons, which output discrete-time spike
trains. A decoder then selects the image class on the basis of
the spike trains emitted by the output neurons.

Information Encoding: We consider two encoding mech-
anisms.

1) Rate encoding: With the conventional rate encoding
method (see, e.g., [14]), each entry of the input signal is
converted into a discrete-time spike train by generating an
independent and identically distributed (i.i.d.) Bernoulli vec-
tor. The probability of generating a “1”, i.e., a spike, is
proportional to the value of the entry. In the experiments
in Sec. V, we use gray scale images of USPS dataset with
pixel intensities normalized between 0 and 1 that yield a
proportional spike probability between 0 and 1/2.

2) Time encoding: With the time encoding method, each
entry of the input signal is converted into a spike train having
only one spike, whose timing depends on the entry value. In
particular, assuming intensity-to-latency encoding [14]–[16],
the spike timing in the time interval [1, T ] depends linearly on
the entry value, such that the maximum value yields a spike at
the first time sample t = 1, and the minimum value is mapped
to a spike in the last time sample t = T .

GLM Neuron Model: The relationship between the input
spike trains from the NX presynaptic neurons and the output
spike train of any postsynaptic neuron i follows a Bernoulli
GLM with canonical link function (see, e.g., [13], [17]). To
elaborate, we denote as xj,t and yi,t the binary signal emitted
by the j-th presynaptic and the i-th postsynaptic neurons,
respectively, at time t. Also, we let xbj,a = (xj,a, ..., xj,b) be
the vector of samples from spiking process of the presynaptic
neuron j in the time interval [a, b]. Similarly, the vector
ybi,a = (yi,a, ..., yi,b) contains samples from the spiking
process of the neuron i in the interval [a, b]. The membrane
potential of postsynaptic neuron i at time t is given by

ui,t =

NX∑
j=1

αTj,ix
t−1
j,t−τy + βTi y

t−1
i,t−τ ′

y
+ γi, (1)

where αj,i ∈ Rτy is a vector that defines the synaptic kernel
(SK) applied on the {j, i} synapse between presynaptic neuron
j and postsynaptic neuron i; βi ∈ Rτ

′
y is the feedback kernel

(FK); and γi is a bias parameter. Note that τy and τ ′y denote
the lengths of the SK and FK, respectively. The vector of
variable parameters θi includes the bias γi and the parameters
that define the SK and FK filters, which are discussed below.

According to the GLM, the log-probability of the output spike
train yi = [yi,1, ..., yi,T ]

T conditioned on the input spike trains
x = {xj}NX

j=1 can be written as

log pθi(yi |x ) =

T∑
t=1

[yi,t log g (ui,t) + ȳi,t log ḡ (ui,t)], (2)

where g (·) is an activation function, such as the sigmoid
function g (x) = σ (x) = 1/ (1 + exp (−x)), and we defined
ȳi,t = 1 − yi,t and ḡ (ui,t) = 1 − g (ui,t). As per (2), each
sample yi,t is Bernoulli distributed with spiking probability
g (ui,t).

As in [13], we adopt the parameterized model of [17] for
the SK and FK filters. Accordingly, we write the SK αj,i and
the FK βi as

αj,i =

Kα∑
k=1

wj,i,kak = Awj,i, (3)

and

βi =

Kβ∑
k=1

vi,kbk = Bvi, (4)

respectively, where we have defined the fixed basis matrices
A = [a1, ...,aKα ] and B =

[
b1, ...,bKβ

]
and the vectors

wj,i = [wj,i,1, ..., wj,i,Kα ]
T and vi =

[
vi,1, ..., vi,Kβ

]T
; Kα

and Kβ denote the respective number of basis functions;
ak = [ak,1, ..., ak,τy ]T and bk = [bk,1, ..., bk,τ ′

y
]T are the

basis vectors; and {wj,i,k} and {vi,k} are the learnable weights
for the kernels αj,i and βi, respectively. For the experiments
discussed in Sec. V, we adopt the raised cosine basis functions
introduced in [17, Sec. Methods].

Information Decoding: We also consider two alternative
decoding methods, namely rate decoding and first-to-spike
decoding. 1) Rate decoding: With rate decoding, decoding is
carried out by selecting the output neuron with the largest
number of spikes. 2) First-to-spike decoding: With first-to-
spike decoding, the class that corresponds to the neuron that
spikes first is selected.

ML training: Conventional ML training is performed dif-
ferently under rate and first-to-spike decoding methods, as
briefly reviewed next.

1) Rate decoding: With rate decoding, the postsynaptic
neuron corresponding to the correct label c ∈ {1, ..., NY } is
assigned a desired output spike train yc containing a number
of spikes, while an all-zero vector yi, i 6= c, is assigned to the
other postsynaptic neurons. Using the ML criterion, one hence
maximizes the sum of the log-probabilities (2) of the desired
output spikes y (c) = {y1, ...,yNY

} for the given NX input
spike trains x = {x1, ...,xNX

}. The log-likelihood function
for a given training example (x, c) can be written as

Lθ (x, c) =

NY∑
i=1

log pθi(yi|x), (5)

where the parameter vector θ = {W,V,γ} includes the
parameters W = {Wi}NY

i=1, V = {vi}NY

i=1 and γ = {γi}NY

i=1.



The sum in (5) is further extended to all examples in the
training set. The negative log-likelihood (NLL) −Lθ is convex
with respect to θ and can be minimized via SGD [13].

2) First-to-spike decoding: With first-to-spike decoding, the
class that corresponds to the neuron that spikes first is selected.
The ML criterion hence maximizes the probability to have the
first spike at the output neuron corresponding to the correct
label. The logarithm of this probability for a given example
(x, c) can be written as

Lθ (x, c) = log

(
T∑
t=1

pt (θ)

)
, (6)

where

pt (θ) =

NY∏
i=1,i6=c

t∏
t′=1

ḡ (ui,t′)g (uc,t)

t−1∏
t′=1

ḡ (uc,t′), (7)

is the probability of having the first spike at the correct neuron
c at time t. In (7), the potential ui,t for all i is obtained from
(1) by setting yi,t = 0 for all i and t. The minimization of the
log-likelihood function Lθ in (6), which is not concave, can
be tackled via SGD as proposed in [13].

III. DESIGNING ADVERSARIAL EXAMPLES

In this work, we consider white-box attacks based on full
knowledge of the model, i.e., of the parameter vector θ, as
well as of the encoding and decoding strategies. Accordingly,
given an example (x, c), an adversarial spike train xadv is
obtained as a perturbed version of the original input x, where
the perturbation is selected so as to cause the classifier to be
more likely to predict an incorrect label c′ 6= c, while being
sufficiently small.

We consider the following types of perturbations: (i) Re-
move attack: one or more spikes are removed from the input
x; (ii) Add attack: one or more spikes are added to the input x;
and (iii) Flip attack: one or more spikes are added or removed.
The size of the disturbance is measured for all attacks by the
number of spikes that are added and/or removed. Mathemati-
cally, this can be expressed as the Hamming distance

dH
(
x,xadv) =

NX∑
j=1

T∑
t=1

1
(
xj,t 6= xadv

j,t

)
, (8)

where 1 (·) is the indicator function, i.e., 1 (a) = 1 if condition
a is true and 1 (a) = 0 otherwise.

In order to select the adversarial perturbation of an input
x, we consider the maximization of the likelihood of a given
incorrect target class c′ 6= c. According to [18], an effective
way to choose the target class c′ is to find the class cLL 6= c that
is the least likely under the given model θ. Mathematically,
for a given training example (x, c), the least likely class is
obtained by solving the problem

cLL = argmin
c′ 6=c

Lθ (x, c′), (9)

where the log-likelihood Lθ (x, c′) is given by (5) for rate
decoding and (6) for first-to-spike decoding.

Algorithm 1 Greedy Design (θ, TA, ε)

Input: x, θ, TA, ε
1: Compute cLL from (9)
2: Initialize: xadv (0)← x
3: for i = 1 to bεNXT c do
4: xadv (i) ← xadv (i− 1) + p, where p is obtained by

solving problem (10) with xadv (i− 1) in lieu of x and
pj,t = 0 for all t > TA.

5: end for
Output: xadv

Algorithm 2 Adversarial Training (TA, εA)

Input: Training set, basis functions A and B, learning rate
η, TA, and εA

Initialize: θ
1: for each iteration do
2: Choose example (x, c) from the training set
3: Compute xadv and cLL from Algorithm 1 with input θ,

TA and εA
4: Update θ: θ ← θ + η∇θLθ

(
xadv, c

)
5: end for

Output: θ

Then, in order to compute the adversarial perturbation p,
we maximize the likelihood of class cLL under model θ by
tackling the following optimization problem

max
p∈C

Lθ

(
x + p, cLL

)
s.t. ‖p‖0 ≤ εNXT ,

(10)

where ‖p‖0 denotes the number of non-zero elements of
p. In (10), the perturbation ε > 0 controls the adversary
strength. In particular, the adversary is allowed to add or
remove spikes from a fraction ε of the NXT input samples,
i.e., T samples for each input neuron. The constraint set C
in problem (10) is given by the set of binary perturbations,
i.e., C = {0, 1}NXT , for add attacks, since spikes can
only be added; C = {0,−1}NXT for remove attacks; and
C = {0,±1}NXT for flip attacks.

The exact solution of problem (10) requires an exhaustive
search over all possible perturbations of εNXT samples. In
the worst case of flip attacks, the resulting search space is
hence exponential in NX and T . Therefore, here we resort to
a greedy search method. As detailed in Algorithm 1, at each
of the bεNXT c steps, the method looks for the best spike to
add, remove or flip, depending on the attack type. We further
reduce complexity by searching only among the first TA ≤ T
samples across all input neurons. As a results, the complexity
of each step of Algorithm 1 is at most NXTA.

IV. ROBUST TRAINING

In order to increase the robustness of the trained SNN to
adversarial examples, in this section, we propose a robust
training procedure. Accordingly, in a manner similar to [4],
during the SGD-based training phase, each training example
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Fig. 2. Test accuracy for ML training under adversarial and random
changes versus ε with rate encoding for both rate and first-to-spike
decoding rules (T = K = 16).

(x, c) is substituted with the adversarial example xadv obtained
from Algorithm 1 for the current iterate θ. The training
algorithm is detailed in Algorithm 2. Note that, the robust
training algorithm is parameterized by TA and εA, which
determine the parameters of the assumed adversary during
training.

V. NUMERICAL RESULTS

In this section, we numerically study the performance of the
described probabilistic SNN under the adversarial attacks. We
use the standard USPS dataset as the input data. As a result,
we have NX = 256, with one input neuron per pixel of the
16×16 images. Unless stated otherwise, we focus solely in the
classes {1, 5, 7, 9} and we set T = K = 16. We assume the
worst-case TA = T for the adversary during the test phase. For
rate decoding, we use a desired spike train with one spike after
every three zeros. SGD is applied for 200 training epochs and
early stopping is used for all schemes. Holdout validation with
20% of training samples is applied to select between 10−3 and
10−4 for the constant learning rate η. The model parameters
θ are randomly initialized with uniform distribution between
-1 and 1.

We first evaluate the sensitivity of different encoding and de-
coding schemes to adversarial examples obtained as explained
in Sec. III. For reference, we consider also perturbations
obtained by randomly and uniformly adding, removing and
flipping spikes. Fig. 2 illustrates the test accuracy under ad-
versarial and random perturbations when performing standard
ML training. The accuracy is plotted versus the adversary’s
power ε assuming rate encoding and both rate and first-to-spike
decoding rules. The results highlight the notable difference in
performance degradation caused by random perturbations and
adversarial attacks. In particular, adversarial changes can cause
a significant drop in classification accuracy even with small
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Fig. 3. Test accuracy for ML training under adversarial attacks versus
ε with both rate and time encoding rules for first-to-spike decoding
(T = K = 16).

values of ε, particularly when the most powerful flip attacks
are used.

First-to-spike decoding is seen to be more resistant to
add and flip attacks, while it is more vulnerable than rate
decoding to remove spike attacks. The resilience of first-to-
spike decoding can be interpreted as a consequence of the
fact that the log-likelihood (6), unlike (5) for rate decoding,
associates multiple outputs to the correct class, namely all
of those with the correct neuron spiking first. Nevertheless,
removing properly selected spikes can be more deleterious to
first-to-spike decoding as it may prevent spiking by the correct
neuron.

The comparison between rate and time encoding in terms of
sensitivity to adversarial examples is considered in Fig. 3 un-
der the assumption of first-to-spike decoding. Time encoding is
seen to be significantly less resilient than rate encoding. This is
due to the fact that time encoding, in the form considered here
of intensity-to-latency encoding, which associated a single
spike per input neuron [14], can be easily made ineffective
by removing selected spikes.

We then evaluate the impact of robust adversarial training
as compared to standard ML. To this end, in Fig. 4, we plot
the test accuracy for the case of flip and remove attacks for
both ML and adversarial training when T = K = 8. Here
we also focus solely on the two classes {5, 7}. We recall
that the adversarial training scheme is parametrized by the
time support TA of the attacks considered during training,
here TA = 8, and by its power εA, here εA = 5/2048 and
εA = 10/2048. It is observed that robust training can signifi-
cantly improve the robustness of the SNN classifier, even when
εA is not equal to the value ε used by the attacker during the
test phase. Furthermore, increasing εA enhances the robustness
of the trained SNN at the cost of a higher computational
complexity. For instance, for an attacker in the test phase
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with ε = 10/2048, i.e., with 10 bit flips, conventional ML
achieves an accuracy of 45%, while adversarial training with
εA = 10/2048 (i.e., 10 bit flips) achieves an accuracy of 87%.
Finally, the results show that the classifier remains resilient
against other type of attacks, despite being trained assuming
the flip attack.

Finally, under the same conditions as in Fig. 5, we study the
effect of limiting the power of the adversary assumed during
training by considering TA = 1 and TA = 8 with the same
εA = 5/2048. We assume time encoding and rate decoding. It
is observed that robust training can still improve the robustness
of the SNN classifier, even when TA � T during training. For
instance, for an attacker in the test phase with ε = 5/2048, i.e.,
5 bit flips, conventional ML achieves an accuracy of 34.2%,
while adversarial training with εA = 5/2048 and TA = 1 and
8 achieves accuracy levels of 60.3% and 77.5%, respectively.

VI. CONCLUSIONS

In this paper, we have studied for the first time the sensitivity
of a probabilistic two-layer SNN under adversarial perturba-
tions. We considered rate and time encoding, as well as rate
and first-to-spike decoding. We have proposed mechanisms
to build adversarial examples, as well as a robust training
method that increases the resilience of the SNN. Additional
work is needed in order to generalize the results to multi-layer
networks.
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