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ABSTRACT

Electric power distribution systems encounter fluctuations

in supply due to renewable sources with high variability in

generation capacity. It is therefore necessary to provide algo-

rithms that are capable of dynamically finding approximate

solutions. We propose two semi-distributed algorithms based

on ADMM and discuss their advantages and disadvantages.

One of the algorithms computes a feasible approximate of

the optimal power allocation at each time instance. We re-

quire coordination between the nodes to guarantee feasibility

of each of the iterates. We bound the distance from the

approximate solutions to the optimal solution as a function

of the variation in optimal power allocation, and we verify

our results via experiments.

Index Terms— Time varying optimization, Economic

Dispatch, ADMM, Smart Grids

I. INTRODUCTION

The introduction of renewable sources in energy markets

poses new challenges that affect the power allocation policies

of distribution systems [1], [2], [12]. Decisions concerning

the operation of the system including the dispatch of genera-

tion, must be done quickly due to the high variability in gen-

eration capacity of renewable sources. Distributed solutions

are of interest due to their scalability with the number of

energy sources and loads. However, distributed solutions that

tackle the dispatch of generation typically deal with static

scenarios where the production costs (or utilities), production

capacity and load do not change over time. These solutions

are typically iterative [11] and the power balance constraint

is typically not fulfilled until convergence is reached. In the

time varying case this implies that a feasible solution may

never be reached. Therefore, fast converging algorithms are

desired so as to minimize the impact of problem variability.

We consider, like [3], a resource allocation problem with

N users in which the system operator’s goal is to maximize

the social welfare subject to a given system resource. Unlike

[3] we admit in our analysis the presence of box constraints,
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which, in the Economic Dispatch case, may represent con-

straints on the generation capacities. The utilities, constraints

and system resources are considered to vary at the same time

scale as the algorithm, i.e., we are only allowed one iteration

before the problem changes. This captures the supply vari-

ability of renewable sources while also allowing for changes

in generation cost and constraints. Further, we allow for

smart consumers that have utilities dependent on their own

time dependent demand. In contrast to most of the current

literature, we do require the presence of a master node that

supplies a limited amount of coordination. However, this

ensures that each of the obtained solutions is feasible at

each iteration. While this will increase the communication

over head per time instance, only one iteration will be

performed per time step. In short, we propose and provide

guarantees for a scheme in which a semi-decentralized power

allocation algorithm, based on ADMM, is implemented in

real time. Our main contribution guarantees that the iterates

will remain at a bounded neighborhood of the optimal point

and that the size of this neighborhood vanishes if the problem

stops changing.

II. PROBLEM FORMULATION AND ALGORITHMS

We consider a power distribution system with R primary

suppliers and N users. In particular, we consider that the

power injected by the primary suppliers is given, at time

k, by P[k] ∈ R
R. Further, the users may locally produce

power and sell it to the primary suppliers to be used by

other users in the system. The goal is to maximize the

system’s aggregate utility while taking into account P[k],

and the maximum and minimum power, pi
[k] and pi

[k],

a user can produce and or consume at a specific time.

The system’s aggregate utility is defined considering the

users’ cost to produce electricity Ci(pi, k) and the utility

they obtain by consuming electricity Ui(pi, k). This can be

formulated mathematically as

min
{pi}N

i=1

M∑

i=1

Ci(pi, k)−
N∑

i=M+1

Ui(pi, k) (1a)

s.t. p[k]
i

≤ pi ≤ p
[k]
i , i = 1, . . . , N (1b)

N∑

i=1

pi = P[k], (1c)
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where all the quantities indexed by [k] are allowed to vary in

time. The classic Economic Dispatch problem [11], where

one intends to minimize the aggregate cost of producing

electricity while meeting a demand constraint, can also be

formulated in the form of (1).

ADMM can be applied to solve (1) in at least two different

ways. These are based on the following two reformulations

of (1).

min
{pi}N

i=1, {qi}N
i=1

M∑

i=1

Ci(pi, k)−
N∑

i=M+1

Ui(qi, k) (2a)

s.t. p[k]
i

≤ pi ≤ p
[k]
i , i = 1, . . . , N (2b)

N∑

i=1

qi = P[k] qi = pi, i = 1, . . . , N. (2c)

min
{pi}N

i=1, {qi}N
i=1

M∑

i=1

Ci(pi, k)−
N∑

i=M+1

Ui(qi, k) (3a)

s.t. p[k]
i

≤ qi ≤ p
[k]
i , i = 1, . . . , N (3b)

N∑

i=1

qi = P[k] qi = pi, i = 1, . . . , N. (3c)

The reformulation we use may impact the algorithm’s con-

vergence rate. The two equivalent reformulations of (1) differ

only in the constraints (2b) and (3b). The reformulation of

(1) in (2) allows us to solve (1) by using Algorithm 1.

Algorithm 1 provides a distributed solution to the Economic

Dispatch problem in (1) if suppliers measure the used power

{p[k]
i }, set the price {λ[k]} and broadcast the new set of

prices. This algorithm bears great resemblance to the OD3

algorithm proposed in [3] with the exception of the box

constraints and primal-dual inertia terms in (4a). However, in

[3], the box constraints are omitted so as to obtain Q-linear

convergence using Dual Decomposition.

While Algorithm 1 or OD3 require a much smaller

communication effort than Algorithm 2 (to be introduced),

the box constraints are essential to the problem as they

represent generation and consumption limits on generators

and consumers respectively. Based on [3] the amount by

which (1c) is violated, i.e. e[k] ,
∑N

i=1 p
[k]
i − P[k] can be

bounded in norm. However, we can not know before-hand

the sign of the components of e[k], which denote an excess or

shortage of power supply. This is critical since a widespread

system breakdown (blackouts) can occur if the aggregate

power consumption exceeds the supply capacity [8]. Further,

to the best of our knowledge, the convergence rate that

ADMM achieves for Algorithm 1 does not suffice to claim

that the iterates will remain at a bounded distance of the

optimum point without the statement being trivial (i.e. due

to compactness of the feasible set). Under the assumptions

given in Section 3, Algorithm 1 converges R-linearly in the

static case. This can be proven using the results in [7].

The reformulation in (3) allows us to solve (1) by using

Algorithm 2. In this case, the problem each node solves, i.e.

Algorithm 1 ADMM applied to (2): Partial feasibility

1: Initialize λ
[0] and set k = 0.

2: Each node i obtains fi(·, k+1), p[k+1]
i

and p
[k+1]
i . The

suppliers obtain P[k+1]

3: Each user computes:

pi(k + 1) :=min
pc

fi(pi, k + 1) + (λ[k] − λ
[k−1])Tpi+

(4a)

+
ρ

2
‖pi − p

[k]
i ‖2

s.t. p[k+1]
i

≤ pi ≤ p
[k+1]
i (4b)

4: The suppliers measure
∑N

i=1 p
[k+1]
i −P[k+1] and com-

pute the price

λ
[k+1] := λ

[k] +
ρ

N
(

N∑

i=1

p
[k]
i −P[k+1]). (5)

5: The suppliers broadcast the prices λ
[k+1].

6: Set k = k + 1

the iterate in (7) consists of minimizing a strongly convex

function with no constraints. This allows us to establish Q-

linear convergence via [6]. However, all constraints must

be left for the iterate in (6). This has the downside of

requiring information exchange in order to be able to obtain

the iterate (6). The specifics of how this is done are included

in Algorithm 3. For convenience, let us define Q[k]
i as the

set of vectors fulfilling constraint i in (3b) for time k.

Further, let [x]Q[k]
i

denote the projection of x over Q[k]
i .

In particular, we require, for a bus network, the exchange

of RN + 2
∑R

j=1 |T (j)| (cf. (11)) real quantities and the

broadcasting of a binary vector of size R. If we were

to directly send the limits of the box constraints to solve

the iterate (6) we would require the exchange of 4RN

real quantities. Hence, in the worse case scenario we will

transmit 4RN real quantities and a binary vector of size R.

Note that at no moment do we require the exchange of

information regarding the objective functions. Algorithm 2

provides, by solving (6), a feasible iterate at each itera-

tion. The power balance constraint can be replaced by an

inequality constraint if we do not require all the power to

be used, i.e., we have storing devices. Note that, just as

for Algorithm 1, for the results in [3] the direction of the

constraint violation, i.e., the sign of each of the coordinates

in e[k], can not be determined and therefore the power

balance constraint may not be fulfilled even if it is replaced

by an inequality. Further, by replacing the power balancing

constraint by an inequality constraint we can essentially turn

the problem into a resource allocation problem with strongly

concave utilities.

III. TRACKING STATEMENT

Consider the following assumptions.



Algorithm 2 ADMM applied to (3): Total feasibility

1: Initialize {p[0]
i }Ni=1 and {λ[0]

i }Ni=1. Set k = 0.

2: Each node i obtains fi(·, k+1), p[k+1]
i

and p
[k+1]
i . The

system operator obtains P[k+1].

3: The system operator and the users cooperatively solve:

{q[k+1]
i }Ni=1 = argmin

{qi}N
i=1

1

2

N∑

i=1

‖qi − (p
[k]
i +

λ
[k]
i

ρ
)‖2

(6a)

s.t. p[k+1]
i

≤ qi ≤ p
[k+1]
i (6b)

N∑

i=1

qi = P[k+1] (6c)

See Algorithm 3 for how to solve (6) cooperatively.

4: Each node computes:

p
[k+1]
i = argmin

pi

fi(pi, k + 1) + λ
[k]T
i pi (7)

+
ρ

2
‖pi − q

[k]
i ‖2

λ
[k+1]
i = λ

[k]
i + ρ(p

[k+1]
i − q

[k+1]
i ) (8)

Assumption 1 (Uniform bounds on the curvature). The

objective functions f
[k]
i (pi) , C

[k]
i (pi) or f

[k]
j (pj) ,

−U
[k]
j (pj) are σ−strongly convex and their gradients are

L−Lipschitz continuous for all k, i = 1, . . . ,M and j =
M + 1, . . . , N .

Assumption 2 (Feasibility). The optimization problem (1) is

feasible for all k. Further, it holds that
∑N

i=1 p
[k]
i

< P[k] <
∑N

i=1 p
[k]
i .

Assumption 3 (Bounded dynamics). Let p⋆[k] denote the

optimal point of (1). Then, the drift quantities are bounded,

i.e. ‖p⋆[k]−p⋆[k+1]‖ ≤ ∆p⋆ and ‖λ⋆[k]−λ
⋆[k+1]‖ ≤ ∆λ⋆,

where the optimal dual multiplier λ
⋆[k] may correspond to

either the constraint in the RHS of (2c) or (3c) which become

relevant when we reformulate the problem so as to solve it

using ADMM.

Assumption 4 (Network connectivity). All nodes can reach

the system operator, i.e. the network if fully connected.

Assumption 1 is a standard assumption for convex opti-

mization methods that achieve Q-linear convergence rates;

while linear convergence has been established under milder

conditions [10], to the best of the authors’ knowledge this

still require appropriate step size selection to achieve such

rates. On the contrary, ADMM achieves linear convergence

rates (albeit the specific rate will vary with the step size)

regardless of choice of step-size [6].

Assumption 2 guarantees that not all generators and

consumers will be pushed to the limit of their capabilities in

order to fulfill the power balance constraint. Assumption 2

guarantees that the linear independence constraint qualifica-

tion (LICQ) holds at the optimal point, implying uniqueness

of the optimal dual multipliers [9]. In the static scenario

uniqueness of the dual multipliers may not be a concern

since it is sufficient to establish convergence to a KKT point.

However, if the dual multipliers are allowed to move and

they are not unique, further requirements are needed in order

to define the drift of the multipliers.

Assumption 3 establishes a bound on the optimal power

allocation and optimal multipliers from one iterate to the

next. It can be shown that the quantities ∆p⋆ and ∆λ
⋆

will

remain bounded as long as the gradient drift is bounded [4],

i.e., ∃∆f < ∞ s.t.
∑

i ‖∇fi(p
⋆[k], k) − ∇fi(p

⋆[k+1], k +
1)‖ ≤ ∆f.

Assumption 4 is required so that the required information

always reaches every node. Before making the main state-

ment we need to establish uniqueness of the optimal dual

multipliers. This is done to guarantee that the multiplier drift

‖λ⋆[k] − λ
⋆[k+1]‖ is well defined.

Lemma 1. Under Assumptions 1-4 the optimal dual multi-

pliers λ
⋆[k]

associated to (3c) are unique for each k.

Proof Sketch: All dual multipliers associated to the con-

straints in (1) can be shown to be unique using the result in

[9]. Further, by writing the optimality conditions of (3) and

(1) we can show that λ
⋆[k] is a linear combination of the

optimal dual multipliers of (1) implying the uniqueness of

λ
⋆[k]. �

Let q[k], p[k], λ[k] be concatenations of

{q[k]
i }Ni=1, {p

[k]
i }Ni=1 and {λ[k]

i }Ni=1 respectively.

Theorem 1. Under Assumptions 1-4 Algorithm 2 generates

a sequence of iterates {q[k],p[k],λ[k]} that fulfills

lim sup
k→∞

‖p[k] − p⋆[k]‖ ≤ c1, and (9)

lim sup
k→∞

‖q[k] − q⋆[k]‖ ≤ c2, (10)

where c1 ,
g√

1+δmax−1
, c2 , 3c21 +

1
ρg

2 + 3√
ρc1g, δmax ,

1√
L/σ

and g ,

√

ρ(∆p⋆)2 + 1
ρ (∆λ

⋆)2. Note that the

sequence {q[k]} is always primal feasible.

Proof. This proof consists of two parts. Part 1 corresponds to

the tracking statement based on ADMM’s Q-linear conver-

gence [6]. The second part proves that Algorithm 3 actually

solves the optimization problem in (6). Part 1: The first

statement of the theorem follows from statements in [6]

and [4]. In particular, the problem in 3 can be seen as

an instance of Scenario 1 in [6] for which Deng and Yin

establish Q-linear convergence for {p[k],λ[k]} if the problem

is kept static. Let u[k] , [p[k]T ,λ[k]T ]T , u⋆ , [p⋆T ,λ⋆T ]T ,

G =

(
ρI 0

0 1
ρI

)

and ‖ · ‖G be the semi-norm induced by

G, from Theorem 3.1 and Corollary 3.1 in [6] we have

‖u[k+1] − u⋆‖2G ≤ 1

1 + δmax

‖u[k] − u⋆‖2G, (13)



Algorithm 3 Cooperative projection

1: Each user computes mi = [p
[k]
i +

λ
[k]
i

ρ ]Q[k+1]
i

−(p
[k+1]
i +

λ
[k]
i

ρ )
2: Each user forwards information such that the system

operator receives
∑N

i=1[p
[k]
i +

λ
[k]
i

ρ ]Q[k+1]
i

3: The system operator computes d = −∑N
i=1[p

[k]
i +

λ
[k]
i

ρ ]Q[k+1]
i

+P[k+1] and broadcasts sign(d).

4: Each user then:

5: if sign(d)(j) = sign(mi(j))||mi(j) = 0 then

6: if sign(mi(j)) > 0 then

7: The user sends (mi(j), xij) to the operator,

where

xij , p
i
− [p

[k]
i +

λ
[k]
i

ρ
]Q[k+1]

i

(j).

8: end if

9: if sign(mi(j)) < 0 then

10: The user sends (mi(j), xij) to the operator,

where

xij , p
i
− [p

[k]
i +

λ
[k]
i

ρ
]Q[k+1]

i

(j).

11: end if

12: end if

T (j) , set of nodes transmitting regarding component j.

(11)

13: The system operator solves

min
{∆qij}i∈T2(j),j

∑

ij

‖∆qij +mi(j)‖2 (12a)

s.t. 0 ≤ ∆qij ≤ xij i ∈ T (j)
︸ ︷︷ ︸

(if sign(d(j))>0

(12b)

xij ≤ ∆qij ≤ 0, i ∈ T (j)
︸ ︷︷ ︸

if sign(d(j))<0

(12c)

∑

i∈T (j)

∆qij = d(j) (12d)

14: The system operator sends to each node in T(j) the

required amount of movement, i.e. ∆qij ∀i ∈ T (j).

15: Each node j ∈ T2 computes q
[k+1]
i (j) = [p

[k]
i (j) +

λ
[k]
i

(j)

ρ ]Q[k+1]
i

+∆qij .

with δmax = 1√
L/σ

corresponding to selecting ρ =
√

Lσ
(NR) .

For the dynamic case, this implies that

‖u[k+1] − u⋆[k+1]‖2G ≤ 1

1 + δmax

‖u[k] − u⋆[k+1]‖2G, (14)

where u⋆[k+1] is now parametrized with an iteration number

so as to indicate that the optimal primal-dual point moves

over time. By taking square root, using the triangle inequality

and evaluating the bound recursively, we obtain

‖u[k+1] − u⋆[k+1]‖G ≤
(

1√
1 + δmax

)k+1

‖u[0] − u⋆[0]‖

+
k∑

i=0

(
1√

1 + δmax

)k−i+1

‖u⋆[i] − u⋆[i+1]‖G, (15)

where ‖u⋆[k+1] − u⋆[k]‖G ≤ g. By taking the limits

lim sup
k→∞

‖u[k+1] − u[k]‖G ≤ g√
1 + δmax − 1

. (16)

Up until here the procedure is but a simplified version of

that in [4]. We now proceed to derive the bound (10) which

is more interesting than the previous since it concerns the

primal feasible iterate. Problem (6) finds the projection of

p[k] + λ
[k]

ρ on the compact polyhedral set P [k+1] defined

by P [k+1] , {q : p[k+1] ≤ q ≤ p[k+1],
∑N

i=1 qi =

P[k+1]}. Hence we will write q
[k+1]
i = [p

[k]
i + λi

ρ ]P[k+1] .

An intermediate step to showing that (10) is true is that

q
⋆[k+1]
i = [p

⋆[k+1]
i + λ

⋆[k+1]

ρ ]P[k+1] for any ρ > 0 which can

be done by writing the optimality conditions of (1) and (3).

We have already established that
1

ρ
‖λ[k+1] − λ

⋆[k+1]‖2 ≤ (17)

(
1√

1 + δmax

‖u[k] − u⋆[k]‖+ g

)2

− ρ‖p[k+1] − p⋆[k+1]‖2.

Note that λ[k+1] = λ
[k]+ ρ(p[k+1] −q[k+1]) and λ

⋆[k+1] =
λ
⋆[k+1] + ρ(p⋆[k+1] − q⋆[k+1]), which means the LHS of

(17) can be equivalently written as

ρ‖q[k+1] − q⋆[k+1]‖2+

ρ

∥
∥
∥
∥
∥
p[k+1] +

λ
[k]

ρ
−
(

p⋆[k+1] +
λ
⋆[k+1]

ρ

)∥
∥
∥
∥
∥

2

+

−2ρ
(

q[k+1] − q⋆[k+1]
)T

(18)

×
(

p[k+1] +
λ
[k]

ρ
−
(

p⋆[k+1] +
λ
⋆[k+1]

ρ

))

,

where the last term can be lower bounded by −2ρ‖p[k+1]+
λ

[k]

ρ −
(

p⋆[k+1] + λ
⋆[k+1]

ρ

)

‖2 because q[k+1] = [p[k+1] +

λ
[k]

ρ ]P[k+1] , q⋆[k+1] , [p⋆[k+1] + λ
⋆[k]

ρ ]P[k+1] and P [k+1]

is convex. Through algebraic manipulation and using the

triangular inequality we obtain

‖q[k+1] − q⋆[k+1]‖2 ≤
(

1√
1 + δmax

(

‖u[k] − u⋆[k]‖+ g
))2

+ ‖u[k] − u⋆[k]‖2 + 1

ρ
(∆λ

⋆)2 +
2√
ρ
‖u[k] − u⋆[k]‖∆λ

⋆

+ ‖u[k+1] − u⋆[k+1]‖‖u[k] − u[⋆[k]]‖

+
∆λ

⋆

√
ρ
‖u[k+1] − u⋆[k+1]‖. (19)



Taking the limit on both sides yields

lim sup
k→∞

‖q[k+1] − q⋆[k+1]‖2 ≤ 3c21 +
1

ρ
g2 +

3√
ρ
c1g

Part 2: Algorithm 3 solves the optimization problem (6) by

forcing the nodes to first obtain a feasible projection over

their own box constraints. Then, the non-feasibility of the

projections with regard to the power balance constraint (1c)

is computed. It is then relevant to inspect in which direction

the power balance constraint is violated. Depending on this

direction, the variables that are in the lower or upper bound

of their box constraints will be set to their optimal values

already. Within the remaining variables, their value will be

changed by the same amount, constraints permitting. We will

now show that Algorithm 3 solves (6). First of all, note

that the solution to (6), q[k+1], can be written for each

user as q
[k+1]
i (j) = [p

[k+1]
i +

λ
[k]
i

ρ ]
pi
p

i
(j) + ∆qij , where

∆qij indicates the deviation due to requiring the fulfillment

of the power balance constraint. Problem (6) can then be

equivalently written as

min
{∆q}ij

∑

i,j

‖∆qij +mi(j)‖2 (20a)

s.t. xij ≤ ∆qij ≤ xij (20b)

N∑

i=1

∆qij = d(j). (20c)

Whenever the quantity d(j) > 0, and xij = 0, we have that

∆qij ≤ 0 and mi(j) ≤ 0 (cf. Step 1 in Algorithm 3). This

implies that setting ∆qij 6= 0 does not bring us closer to

fulfilling (20c) while it increases the value of the objective

function. The analogous can be argued for d(j) < 0. Hence,

solving (12a) is equivalent to solving (6).

IV. NUMERICAL EXPERIMENTS

In this section we demonstrate numerically that the tracked

solution remains close to the optimal solution when using

Algorithm 2. We use as in [3] power generation data

from the IEsystem operator Canada Independent Electricity

System Operator. We also consider a 10 user network

with a single supplier, i.e. N = 10 and R = 1. For

each user i = 1, . . . , 10, the cost function takes the form

(pi− d
[k]
i )2 where the demand d

[k]
i is recursively updated as

d
[k+1]
i = [d

[k]
i + n[k]]+ with n[k] ∼ N (0, 1) and d

[0]
i = 2.

P [k] corresponds to the supply of aggregate power provided

by renewable sources: biofuel, wind and solar, obtained in

5-minute intervals. The box constraints are set to p
i
= 0

and pi = P [k] for i = 1, . . . , 10. Fig. 1 depicts and verifies

that aggregate primal feasible iterates (6) track the optimal

aggregate power.
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Fig. 1. p⋆[k]T1(blue) and q[k]T1 (red) generated by Algo-

rithm 2. Step size ρ = 10.

V. CONCLUSIONS

We have considered an economic dispatch problem where

the utilities and constraints vary over time. As a difference

to [3] our analysis takes into account the problem’s box

constraints. Further, at the expense of increased information

exchange, we are capable of providing a feasible solution at

each iteration.
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