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Abstract—We examine the usability of deep neural networks
for multiple-input multiple-output (MIMO) user positioning
solely based on the orthogonal frequency division multiplex
(OFDM) complex channel coefficients. In contrast to other
indoor positioning systems (IPSs), the proposed method does not
require any additional piloting overhead or any other changes
in the communications system itself as it is deployed on top
of an existing OFDM MIMO system. Supported by actual
measurements, we are mainly interested in the more challenging
non-line of sight (NLoS) scenario. However, gradient descent
optimization is known to require a large amount of data-points
for training, i.e., the required database would be too large when
compared to conventional methods. Thus, we propose a two-
step training procedure, with training on simulated line of sight
(LoS) data in the first step, and finetuning on measured NLoS
positions in the second step. This turns out to reduce the required
measured training positions and thus, reduces the effort for data
acquisition.

I. INTRODUCTION

Due to the huge success of mobile communication devices
in almost any area of modern life, indoor positioning systems
(IPSs) receive large attraction in both industry and academia. It
can be seen as key enabler of a wide range of applications such
as indoor navigation, smart factories, or could even provide a
basic security functionality in distributed Internet of Things
(IoT) sensor networks. Additionally, IPSs provide several
promising benefits for existing technologies, e.g., for improved
beamforming algorithms or motion prediction for channel
estimation. On the other hand, multiple-input multiple-output
(MIMO)-orthogonal frequency division multiplex (OFDM)
systems are widely available and are workhorses of many
state-of-the-art communication standards. Thus, it appears
attractive to focus on such OFDM multi-antenna systems in
the following.

While the line of sight (LoS) scenario is well-understood
and multiple technologies are reported in the literature (e.g.,
angle- and time-of-arrival based predictions and triangulation
methods) suitable solutions for the non-line of sight (NLoS)
scenario are still open for research. Therefore, this work
tackles the more challenging NLoS case which covers a huge
variety of different scenarios. Although there exists an under-
lying channel transfer function which describes the behavior
of the channel for any given position, this function is typically
not known or can only be approximated as it is infeasible to
fully capture the geometries of the room and its surrounding
area. Thus, different approaches have been proposed (comp.
[1], [2], [3], [4], [5], [6]) and investigated in the past, each

optimized for different applications and system models (e.g.,
see [2] and [5] and references therein). Moreover, geomagnetic
sensors were tested in [3] as an indoor positioning system in
combination with deep learning. Overall, these approaches can
be split into two categories, where obviously mixtures between
both categories exist:

1) Model-based: define how the channel is expected to
behave and estimate position accordingly (e.g., ray-
tracing of a room).

2) Data-driven: collect a database with appropriate features
(often called fingerprints) and corresponding positions
(e.g., CSI [4], received signal strength indicator (RSSI)
[7], [8] and recently time-reversal IPS (TRIPS) [9]) and,
somehow, interpolate in-between.

In this work, we follow the data-driven approach, i.e., we do
not assume any specific underlying channel model (except
a basic pathloss-model in Sec. III). In comparison to most
approaches in the literature (e.g., see [5]), we formulate
the problem as a regression task rather than a classification
problem, i.e., we directly predict 3D positions. Thus, the
neural network implicitly has to learn a channel model or
more precisely, it has to approximate the dependency between
the channel coefficients and the corresponding positions. The
authors of [4] follow a similar approach (however, for a
convolutional neural network (CNN) structure) and report
fractional-wavelength accuracy for a simulated channel model
and thus, without considering the amount of training data.

In many applications, machine learning and, in particular
deep learning, is known to be very effective whenever the
underlying model is hard to aproxmiate or unknown (see [10]).
Therefore, deep learning methods appear to be a good match
for IPSs where the fundamental problem boils down to the
question How to approximate the channel behavior based
only on a limited number of observations? Unfortunately,
training such a deep neural network typically requires a huge
amount of training samples, hindering practical usability. As
a result, besides the achievable accuracy, we believe the more
fundamental question is how much information (datapoints)
about a new environment does the system need in order to
provides sufficient accuracy.

In the following, we propose a two-step training strategy,
where the neural network (NN) is pre-trained on a simulated
LoS channel in the first step, and later, in a second step
finetuned, with only a small number of measured training
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samples. We then consider the performance of the NN for
different reference case scenarios to answer basic questions
on generalization and training strategies. We believe that the
major contribution of this paper is to show that a NN, pre-
trained on a simulated LoS channel, can learn the NLoS
scenario faster (i.e., with less training data) than a randomly
initialized NN. The intuition behind this approach is that
both tasks are closely related. Thus, the weights from the
previous task are a good starting point for learning the second
task, leading to a reduction in overall training complexity.
In machine learning terminology this means that we found
a better way of initializing the weights of the NN, rather than
a random initialization.

For the presented LoS and NLoS results all data was mea-
sured with a spider-antenna setup [11] which inherently pro-
vides ground truth (i.e., 3D position labels) at sub-centimeter
precision.

II. BACKGROUND

A. Deep learning for user positioning

We refer the interested reader to [10] for a comprehensive
introduction to machine learning. However for the sake of
completeness and to clarify the notation we provide a short
introduction.

In its basic form, a feed-forward NN is a directed compu-
tation graph consisting of multiple neurons with connections
only to neurons of the subsequent layer. Each neuron sums up
all weighted inputs and optionally applies a non-linear acti-
vation function, e.g., the rectified linear unit (ReLU) function

gReLU(x) = max{0, x},

before forwarding the output to all connected neurons.
Let layer i have ni inputs and mi outputs, then it performs

the mapping f (i) : Rni → Rmi defined by the weights and
biases as parameters θi. Consecutively applying this mapping
from input v of the first layer to the output w of the last layer,
leads to the function

w = f (v;θ) = f (L−1)
(
f (L−2)

(
. . .
(
f (0) (v)

)))
(1)

where θ is the set of parameters and L defines the depth of
the net, i.e., the total number of layers.

Training of the NN describes the task of finding suitable
weights θ for a given dataset and its corresponding labels
(desired output of the NN) such that a given loss function
is minimized. This can be efficiently done with the stochastic
gradient descent algorithm [10] as implemented in many state-
of-the-art software libraries. We use the Tensorflow library
[12]. In principle, the universal approximation theorem found
in [13] states that such a multi-layer NN can approximate any
continuous function on a bounded region arbitrarily closely for
L ≥ 2, given non-linear activation functions and a sufficiently
large amount of neurons.
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Fig. 1: System model under investigation.

B. System Model

Fig. 1 shows the basic system model, where a linear antenna
array (i.e 8 antennas on a line) is used. As indicated by
the model, each antenna sees a slightly different single-tap
complex channel coefficient hi for any user position and
the NN needs to learn to estimate the user’s position based
on these inter-antenna channel differences. During the first
training step the NN is initially trained on random user
positions within the blue area in front of the antenna array.
Since the 3D-spatial channel coefficients for any user position
can be calculated by a LoS channel model, this training phase
can be done with an unlimited amount of training data and with
an arbitrarily large initial training area. The only limitation is
that the initial training area should include that area which the
NN is later tested and finetuned on. The initial training step
is completed once the NN reaches a sufficient accuracy. An
evaluation on the pre-trained NNs performance for different
numbers of antennas and additive noise samples is shown in
Section III.

The second training step uses measured datapoints taken
from the green area (Fig. 1) to finetune the pre-trained NN
for the actual testing area. In Section IV, we evaluate the
required amount of finetuning datapoints and their respective
positions. Note that this system model is only described for
a 2-dimensional area, but can be extended to a 3D system
straightforwardly. We use this system setup since all of our
measurements are done in a 2D area with a 16-antenna
linear array. Due to the antenna positions’ symmetry, such
a linear antenna array cannot distinguish between frontside
and backside of the array. Therefore, a system that covers all
positions of a 2D-plane also needs a 2-dimensional antenna
array; accordingly for a 3D-area a 3-dimensional antenna array
would be required.

1) Simulated Channels: The channel model can generate a
complex channel coefficient hi for each spatial user position
and antenna in a 3D area, as the (baseband) phase and
amplitude of an LoS-channel can be computed using

hi,LoS =

(
λ

4πd

)
ej2π

d
λ , (2)

where d is the distance between the transmitter antenna
(TX) and the receiver antenna (RX), and λ is the free-space
wavelength. In this case a carrier frequency of fc = 2.35 GHz
is used. With this LoS channel model an infinite number of
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Fig. 2: Spatial energy map over testing area, sim. LoS vs meas.
LoS vs meas. NLoS for MR precoding with a target user (black
circle) at x = 0.31m, y = 2.96m, 16-antenna linear array.

training points can be generated to pre-train the NN for the
LoS scenario.

2) Measured Channels: The spatial consistent channel
measurements conducted in [11] will be briefly explained. A
spider antenna is used to move a software-defined radio as a
transmitter in the x,y-plane to measure a spatially consistent
channel in two spatial dimensions, and to study linear transmit
precoding. In Fig. 2, the spatial energy over the area is shown
for the simulated LoS and the measured LoS and NLoS case
for a spatial precoding: 16 antennas in a line with a distance of
λ/2 are precoded with respect to the user position at x=0.31m
and y=2.96m using a maximum ratio (MR) precoder. The
single purpose of Fig. 2 is to show that there are only slight
differences between the simulated and the measured LoS case,
whereas there are huge differences to the NLoS case.

Remark: For this work, we only consider a single sub-
carrier of the OFDM system per antenna. We have additionally
trained NNs for all sub-carriers as input, but did not observe a
significant gain besides the expected gain due to an improved
SNR through averaging of the sub-carriers. However, the
training complexity (and the required net dimension) increases
drastically. The intuition behind is that the indoor channel
(room size) does not show a significant frequency selective
behavior for the measurement bandwidth of 40 MHz in our
scenario (also not for the indoor NLoS case). Thus, the NN
does not benefit from the increased amount of observations
as there is only little additional information contained in sub-
carrier interrelation and we conclude that one sub-carrier per
antenna is sufficient.

C. Performance metric

Due to the antennas’ beam pattern, a user position with a
large distance to the base station is more difficult to estimate
than a user close to the base station. Therefore, we propose a
performance metric to compare different measurement setups,
algorithms, reference scenarios etc. which is independent of
the user position. This metric is defined over the normalized

mean squared error (NMSE) as a “relative” accuracy metric

NMSE = E

[
‖p− p̂‖2

‖p‖2

]
, (3)

where the mean squared error (MSE) of the estimated position
p̂ to the actual position p is normalized with respect to the
distance d = ‖p‖2 (assuming the antenna array to be at
the origin and p is the user position in x-y-z coordinates).
For example, this metric returns a NMSE of 1% for a user
position with a distance of 1m and an error distance of 1 cm.
With increasing distance to the antenna array the difficulty of
estimating the channel increases, which is compensated by this
normalization.

III. INITIAL TRAINING ON SIMULATED LOS CHANNELS

TABLE I: Layout of the neural net

Layers: Parameters Output dimensions
Input 0 16 (antennas) x 2 (Re/Im)
Dense (relu) 33,792 1024
Dense (relu) 1,049,600 1024
Dense (relu) 1,049,600 1024
Dense (linear) 3075 3

In this section, we show a basic proof-of-concept, where
the NN is able to approximate the user position, by evaluating
the performance after the initial training step. Thus, the NN
is tested on noisy, simulated LoS channel coefficients of
random positions out of the blue area shown in Fig. 1. All
results presented in the following have been achieved with
a simple, non-hyperparameter-tuned NN, which has a total
of 2,136,067 trainable weights and is defined in detail in
Table I. Although the structure of the NN is quite simple as
it only consists of dense layers, it contains a large amount of
trainable parameters.1 Thus, its capacity already exceeds our
entire measured training data set (only 16×2 values per sample
of about 60,000 measured positions), which is why we focused
on preventing overfitting effects during finetuning. Note that
the capacity of the NN is no problem during the pre-training
stage, because we can train the NN with an infinite amount of
different samples and thereby outnumber the NN’s memory
capabilities. This can be considered as another benefit of a
pre-training stage, since it can obviate overfitting during the
finetuning stage.

We introduce a signal-to-noise-ratio (SNR) definition

SNR =

∑Nant
n=1 |hLoS(n)|2

σ2
(4)

which is independent on the distance for all possible user
positions. The notation, σ2 is the power of the complex ad-
ditive white Gaussian noise (AWGN), and Nant is the number
of antennas at the base station, i.e., the linear array. Fig. 3

1Remark: for the LoS scenario less weights are sufficient, however, the
idea of pre-training requires the same dimensions for the LoS and NLoS
scenario. Without considering complexity such a large structure turned out
to reach higher accuracy for the NLoS case than smaller NNs. However, we
cannot claim this observation to hold in general. Using CNNs may reduce the
number of trainable parameters if required (cf. [4]), but also requires further
hyper-parameter optimization.
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Fig. 3: Sweep over SNR and varying number of antennas for
the simulated LoS scenario.

shows that a system with only 4 antennas can estimate the
user position with an accuracy of 1% NMSE at an SNR of
30dB. Moreover, if the number of antennas is doubled, the
expected gain of 3dB due to gains in noise averaging shows
up. Note that, not the channel model function is learned by the
NN but the triangulation task as a whole, which may even be
more challenging. These results show that the NN is able to
estimate the user position within the training area sufficiently
well. But we also noticed that, if we test the NN on user
positions outside of the initial training area, the estimations
become rather bad. Apparently, the NN seems to learn an
interpolation between fingerprints rather than it finds a global
solution of the triangulation task itself. While this is not a
problem for the simulated LoS channel scenario, since we can
always generate the coefficients and train on all positions, it is
a problem for real-world applications, as it implies that the NN
needs to be trained on the whole area it is later used for and
generalization to “external areas” is limited. This raises two
key questions: How many labeled samples are needed, and
where do they have to be located? For this, we define three
reference scenarios for the second training step of finetuning
on actual measured data, described in the following section.

IV. FINETUNING ON MEASURED LOS/NLOS DATA

Next, we consider the green area outlined in Fig. 1 and
examine the required amount of datapoints and their spatial
distribution for achieving a specific accuracy.

A. Datapoint distribution

Fig. 4 schematically shows the three reference cases:
1) For the “random”-scenario, random datapoints taken

from the whole testing area are used for finetuning
training and, also, validation data to verify that the NNs
accuracy is picked randomly from the whole testing area.

2) The “left-right” scenario is based on the idea of having
trained a room (right side), but estimating on another
room (left side), and splits the testing area into two areas
where random datapoints from the left area are used for

Random Left-Right Border

Testing

Finetuning

Validation

Fig. 4: Reference scenarios; different colors mark the different
datasets.
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Fig. 5: NNs NMSE performance after finetuning on measured
LoS (solid) and NLoS (dashed) area for different reference
scenarios over the amount of used finetuning samples. 100
epochs are used for training.

finetuning training and datapoints from the right area are
used for validation.

3) In the “border”-scenario, which is motivated by the idea
of only measuring the edges of a room, the finetuning
datapoints are taken from a border area (here 30% of
the area), and the validation datapoints are from the
remaining (and unknown to the NN) center area.

Next, we use the NN, that has been pre-trained on the
simulated LoS channel, (see previous section) and finetune
it with actually measured LoS data according to the three
different scenarios of Fig. 4. .

Fig. 5 compares the NMSE performance of the NN for
the different scenarios in the LoS and NLoS case. Note that
the random case is always used as the (best-case) reference.
Apparently, for the “left-right” case, the NN does not converge
at all, which matches with our observations for the simulated
LoS channel. For the “border” case, the NN converges to a
reasonably good estimation accuracy. It appears that the pre-
trained NN only needs to see a few samples (about 400) from
the border area during finetuning training to converge and
estimate the positions reasonably well.

As expected, generally, the NLoS scenarios shows higher
prediction errors caused by the more complex channel be-
havior. Similar to the LoS measurements, the NN does not
converge in the “left-right” case, where the NMSE perfor-
mance remains at about 10.8%. Interestingly, the performance
of the “border” case performs similar to the random case up to
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about 1000 available finetuning samples. Intuitively, learning
the channel transfer function for both the whole area, as well as
for only the border area, is equally difficult since the channel
exhibits a sort of random pattern in the NLoS case, as can
be inferred from Fig. 2. After about 400 samples used for
finetuning training, an accuracy of λ is reached, which means
that if each spatial λ/2 a new channel is assumed, the room
has been fully learned by the NN. This shows that the pre-
trained NN system can easily be adjusted and trained with low
overhead and, therefore, is even a viable solution in the NLoS
case.

B. Effect of pre-training

To demonstrate the benefit of pre-training on a simulated
LoS channel, we compare the performance of the pre-trained
NN with that of a randomly initialized NN in the context of
the number of epochs needed to achieve a specific accuracy.

Fig. 6 shows the NMSE performance of a pre-trained NN
and a randomly initialized NN trained on 200 measured
samples for both the LoS and the NLoS case. Also the
final NMSE reached by the pre-trained NN in both cases
is lower than the final NMSE of the randomly initialized
NN. To be fair, the randomly initialized NN can reach the
NMSE performance of the pre-trained NN if it is trained
with much more measured samples and/or epochs, but we
consider the amount of available training data as a limiting
factor of a real world application. This leads to the conclusion
that pre-training of the NN on a simulated LoS channel is
advantageous, as the pre-trained NN requires less measured
and labeled training data and, also, converges faster for all
scenarios tested.

V. OUTLOOK AND CONCLUSION

In this work, we have shown that neural networks can be
used for user localization in MIMO-OFDM systems. We have
investigated the amount of required training positions and
showed that pre-training of the NN with simulated LoS data
significantly reduces the required amount of training samples.
As a result, an accuracy of less than 1% for real data can be

reached within our spatial test area. For future work a multi-
room measurement setup will be build to verify the results in
a wider and more general setting. The NN complexity (i.e.,
the number of trainable parameters) may be reduced by using
additional CNN layers. Through standards such as WLAN
082.11n [14] MIMO-OFDM systems are widely available
indoors and are an ideal candidate for systems where IPSs
are useful. Thus, we believe the proposed system shines for
its simplicity and comes with almost no additional cost.
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