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Abstract—Hinging on ideas from physical-layer network cod-
ing, some promising proposals of coded random access systems
seek to improve system performance (while preserving low
complexity) by means of packet repetitions and decoding of
linear combinations of colliding packets, whenever the decoding
of individual packets fails. The resulting linear combinations
are then temporarily stored in the hope of gathering enough
linearly independent combinations so as to eventually recover
all individual packets through the resolution of a linear system
at the end of the contention frame. However, it is unclear
which among the numerous linear combinations—whose number
grows exponentially with the degree of collision—will have low
probability of decoding error. Since no analytical framework
exists to determine which combinations are easiest to decode,
this makes the case for a machine learning algorithm to assist
the receiver in deciding which linear combinations to target. For
this purpose, we train neural networks that approximate the
error probability for every possible linear combination based on
the estimated channel gains and demonstrate the effectiveness of
our approach by numerical simulations.

I. INTRODUCTION

With the increasing importance of machine-to-machine

communication in the context of the Internet of Things (IoT),

many ad hoc wireless networks are witnessing a drastic densi-

fication. In typical massive machine-to-machine communica-

tion settings, numerous terminals with bursty traffic demands

and scarce coordination seek to convey information packets to

a central node. Early concepts of random access such as the

legacy ALOHA scheme [1], [2] were, like most medium access

schemes in packet-switched networks, based on the paradigm

of collision avoidance [3], [4]. However, the more crowded

the wireless medium, the more necessary it becomes to devise

protocols that are capable of resolving collisions rather than

discarding them. In addition, harsher delay constraints and

limitations on feedback capabilities in many IoT-related appli-

cations (Industry 4.0, vehicle-to-vehicle communication, etc.)

make retransmissions impractical or costly at best. As a result,

rather than treating collisions as losses, modern proposals of

grant-free random access protocols have evolved towards the
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use of more sophisticated forward error correction techniques,

often referred to as multipacket reception (MPR) [5]–[10].

Of notable importance among well-known MPR techniques

is successive interference cancellation (SIC) for its low com-

plexity as compared to joint decoding: when one user expe-

riences a substantially stronger channel gain than others, its

packets can be decoded and subtracted (cancelled) from the

received signal [11], [12], thereby potentially allowing more

subsequent decoding operations or conflict resolutions. Liva’s

work [11] on Contention Resolution Diversity Slotted ALOHA

(CRDSA) shows that the contention resolution with SIC is

analogous to iterative belief-propagation (BP) erasure decod-

ing and can thus be built upon established BP code designs. In

the context of ultrareliable low-latency communications, [13]

characterizes the reliability–latency performance of frameless

ALOHA with SIC decoding.

Beyond SIC, another promising strategy, which is inspired

by physical-layer network coding (PLNC), consists in encod-

ing and decoding linear combinations of packets [14]–[17]. By

collecting enough linearly independent packet combinations

within a contention period (frame), the receiver might be able

to resolve all individual packets. The motivation behind this

approach is that, where SIC fails, the decoding of linear com-

binations might still succeed and unlock useful information for

contention resolution. As another advantage over CRDSA, this

PLNC random access scheme effectively implements some

form of fast frame-level contention resolution, yet without

the need of storing raw receive signals until the end of the

contention period. The authors of [18], [19] also verified a

notable performance advantage of PLNC random access over

purely SIC based schemes.

However, given the large number of possible linear

combinations—which is exponential in the number of col-

liding packets—and the fact it is unclear a priori which

ones can be reliably decoded, the brute-force approach of

attempting to decode them all is prohibitive. In this article, we

propose to enhance the decoding architecture with a machine

learning algorithm based on deep neural networks (DNN) that

determines the linear combinations that can be most reliably

decoded. Such an algorithm is a necessary step in making

PLNC random access practically feasible.
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II. SYSTEM DESCRIPTION

A. PLNC coded random access scheme

We focus on the coded random access scheme from [15],

which was adapted and proposed for massive access connectiv-

ity within European project [20], [21]. We generally adopt the

corresponding numerology, though all considerations in this

paper can be straightforwardly extended to different parameter

values.

Consider an L-user slotted random access channel with a

user index set [L] = {1, . . . , L}. All signals are in real-valued

baseband representation and indexed by discrete time indices

t ∈ Z which are structured as follows: a slot is a group of

Ts = 168 consecutive time instants, whereas a frame is a

group of Tf = 10 consecutive slots. We assume that a control

loop allows the terminals to time their transmissions in such

way that the received signals are precisely synchronized on

symbol, slot and frame level.

In each frame, a random subset A ⊆ [L] of so-called active

users attempt to convey their payload data, while other users

remain silent. Each active user is set to transmit r replicas of

a packet1 in r randomly chosen slots out of the Tf slots that

compose the frame, while remaining silent in other slots.2 A

packet consists of a preamble of length Tp = 40 symbols that

carry a unique user signature that serves simultaneously for

user identification and channel estimation3 (e.g., via orthogo-

nal matching pursuit at the receiver), and a payload of length

n = 128, which contains the codeword to be transmitted. As

a result, in each slot, a random subset T ⊆ A of active users

will be simultaneously transmitting their packets.4 We say that

|T | is the collision degree in that slot, where |·| denotes set

cardinality. The resulting transmission pattern is depicted in

Figure 1.

At time instant t ∈ Z pertaining to a slot in which users

T are transmitting payload data, we have that, conditioned on

transmit symbols Xℓ = xℓ ∈ R, ℓ ∈ T , the channel output is

given by

Y (t) =
∑

ℓ∈T

hℓxℓ(t) + Z(t) (1)

where Z(t) ∼ N (0, 1) is additive white Gaussian noise.

We assume BPSK signaling with power P , hence Xℓ ∈
{−

√
P ,+

√
P}. The channel gains hℓ ∈ R are drawn from

some random distribution (to be specified) and are assumed

to stay constant over the duration of a slot, but they vary

independently from one slot to the next.

1The number r of packet repetitions can be optimized in line with [11].
2We talk of coded random access due to this repetition coding, which the

receiver can exploit at frame level to resolve collisions.
3In general, the tasks related to the preamble processing (multiuser detec-

tion, user identification, collision detection, channel estimation) impact overall
performance and resource allocation strategies. Thus, some works treat them
as an essential part of the random access scheme. For simplicity however, in
this work we assume that they are genie-aided, so we can focus entirely on
payload decoding and leave a joint detection–decoding perspective for future
work.

4Hence T varies from slot to slot, and A from frame to frame, yet we
refrain from specifying the slot/frame indices so as to not encumber notation.

preamble payload

packet (Ts symbols)

frame (TfTs symbols)

user 1
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.
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Fig. 1. Exemplary illustration of the slot and frame traffic pattern in the
PLNC coded random access system under study. For this picture, we have set
Tf = 10 and r = 2. Every row in the above grid-like structure depicts the
activity of one user over time. Frames in which a user is idle are blanked out.

B. Coding and modulation

All users employ the same rate-1/2 short LDPC code with

message size k = 64 bits and codeword length n = 128
bits [22]. Since linear binary codebooks are closed under

modulo-2 addition, any linear combination

wa =
⊕

ℓ∈T

aℓuℓ (2)

of codewords uℓ ∈ {0, 1}n (as row vectors) with binary

coefficients aℓ ∈ {0, 1}, ℓ ∈ T , belongs to the codebook. The

received payload signal can be expressed in vector notation as

y =
∑

ℓ∈T

hℓx(uℓ) + z. (3)

The modulation mapping x(uℓ) =
[

x(uℓ,1), . . . , x(uℓ,n)
]

is

such that code bits are mapped to BPSK symbols as x(0) =
−
√
P and x(1) = +

√
P .

C. Decoding

The decoding procedure is performed at slot level and at

frame level.

1) Slot-level decoding: The slot-level decoding is per-

formed in two successive stages:

a) Successive interference cancellation (SIC): Within

each time slot, based on a vector of channel gains h and a

receive vector y, the slot-level decoder attempts to recover

as many individual codewords uℓ as possible by means of

BP decoding. The users are decoded in order of decreasing

channel gains and their interference is successively subtracted

from the observation y.

b) Sum decoding (SD): Suppose that after some SIC

iterations, a subset T ′ ⊆ T of packets remains undecoded

and the BP decoding fails for the next packet in line. Based

on the channel coefficients h and the remaining signal y′ =
y − ∑

ℓ∈T \T ′ hℓx(ûℓ), the sum decoder now attempts to



recover as many codeword combinations wa as possible,

where the weight vector a =
[

a1, . . . , aT ′

]

∈ {0, 1}|T ′| is

varied through all possibilities. There are 2|T
′| − |T ′| − 1

such weight vectors to be considered, since we exclude the

all-zero vector and the |T ′| singleton vectors (which are not

decodable due to the SIC routine having terminated). This

sum decoding is done by a variation of the BP decoder (see

Section 4.4 in [15] and Section III in [23] for details). The

usefulness of sum decoding is best visualized by the histogram

in Figure 2, which makes it evident that even when SIC fails,

a large amount of codeword combinations can still be reliably

decoded and are potentially helpful for frame-level decoding.
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Fig. 2. Counts of successful decoding for slot-level decoding of |T | = 6

colliding packets, based on a simulation with 400 000 slots, user-symmetric
Rayleigh fading and average SNR of 15 dB. The degree of linear combination

(ordinate axis label) stands for the Hamming weight of a.

In the experiment from Figure 2, the receiver proceeds

as follows: in the first iteration, it exhaustively attempts to

decode all 2|T | − 1 = 63 combinations (including singleton

vectors), then cancels whatever packets he might have fully

decoded (corresponding to singleton vectors), and moves on

to repeating the exhaustive decoding attempts on the remaining

set of packets (second iteration), etc. We observe that the third

iteration provides negligible decoding progress if any.5 In turn,

the mass of linear combinations counts (degrees 2 through 6
combined) is rather substantial when compared to degree-1
counts, with degree-2 combinations yielding highest counts.

This hints at the significant potential of the PLNC approach.

2) Frame-level decoding: After the slot-level decoder has

been run for all Tf slots that constitute a frame, a collec-

tion of decoded codeword combinations ŵa(1) , ŵa(2) , . . . are

available, with different weight vectors a(j) = {0, 1}|A|. Let

us stack these row vectors into a weight matrix

A =







a(1)

a(2)

...






(4)

and denote A(i) the i-th ordered entry of the set of active

users A ⊆ [L], e.g., A = {2, 4, 5, . . .} would yield A(1) = 2,

A(2) = 4, A(3) = 5, etc. Choosing the matrix of decoded

5For linear combination degrees 1 through 6, the third iteration counts were
2, 19, 4, 0, 0, 0, respectively, and are thus barely visible on the histogram.

linear combinations Ŵ = [ŵT
a(1) , ŵ

T
a(2) , . . . ]

T as an estimator

for the true linear combinations

W =







wa(1)

wa(2)

...






= A







uA(1)

uA(2)

...






, (5)

the frame-level decoder attempts to recover the individual

messages. If A has rank |A|, the linear system can be fully

solved by means of

û = (ATA)−1ATŴ , (6)

all operations being performed in the binary field.

In general, even if the rank of A is less than |A|, the decoder

may still be able to recover some subset of the codewords.

For a systematic treatment of these situations, it is convenient

to put A into reduced row echelon form ARREF = RA by

Gaussian elimination via elementary row operations described

by a square full-rank matrix R. In RREF, the first 1 of each

row (called the pivot) is located strictly to the right of the pivot

of the previous row, and every pivot is the only non-zero entry

in its corresponding column. For example,

ARREF =









1 1 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 1 1 0 1
0 0 0 0 0 1 0









(7)

is in RREF. If in addition, a pivot is the only non-zero entry

of its row, then the corresponding codeword can be recovered.

In the above example, uA(3) and uA(6) can be recovered,

whereas uA(1),uA(2),uA(4),uA(5),uA(7) cannot.

III. DECODING DECISIONS VIA DEEP NEURAL NETWORKS

The main difficulty in the SD step stems from the fact

that the number of linear combinations to attempt increases

exponentially with the degree of collision. As argued before,

there are 2|T
′|− |T ′| − 1 relevant combinations, which makes

exhaustive trials impractical.

Unlike SIC, in which it is well known that users should be

decoded in order of decreasing channel gains, for SD there

is no such simple rule of thumb, nor any known analytical

way to evaluate or sort the probabilities of decoding success.

Thus, using a machine learning algorithm to learn to predict

which linear combinations can be reliably decoded appears as

a promising approach to this problem. The machine learning

approach is suitable in this context for several reasons: (i) the

computation complexity is shifted to the training phase and

allows for highly efficient real-time implementation, (ii) the

structure of the problem will remain very similar when the

number of users or the distribution of the channel changes,

thus offering an opportunity to transfer the trained models,6

(iii) the function to be approximated is expected to be fairly

smooth and well-behaved, and hence easy to learn.

We introduce a function p = g(h) which takes the channel

gains hℓ, ℓ ∈ T ′ as inputs and returns the vector p containing

6Note however that this aspect lies beyond the scope of this paper and will
be investigated in future work



the 2|T
′|−1 probabilities of successful decoding corresponding

to each linear combination, i.e.,

pi = Pr
{

ŵa(i) = wa(i)

∣

∣h
}

, i = 1, . . . , 2|T
′| − 1 (8)

where a(i) denotes the length-T ′ binary expansion (as a row

vector) of i.7

If cognizant of p, the decoder will only attempt to decode

the most promising combinations according to some heuristic.

For instance, the decoder could choose those combinations

a(i) whose probabilities pi lie above a given threshold τ , or it

could choose the topmost (in terms of high pi) ν combinations

(where ν is a fixed parameter) which are guaranteed to increase

the rank of A by ν.

We will approximate g using a DNN with parameter θ and

we will denote the obtained function by gθ. Beforehand, we

will give a very concise introduction to supervised learning

using DNNs in order to explain the general approach, before

describing the training procedure in further detail.

A. Refresher on supervised learning with DNNs

A DNN is a function that can be expressed as the concate-

nation of several non-linear functions—so-called layers, where

the j-th layer produces nj real-valued outputs (nodes). Each

of these nj outputs is obtained from a so-called neuron, which

takes a linear combination of the outputs of the previous layer,

followed by the application of a non-linear activation function.

Specifically, let us denote the output of the i-th node of layer j
by yji and the activation function by Φ. The output yji is then

given by

yji = Φ

(

nj−1
∑

i=1

αj−1
i yj−1

i + βj−1
i

)

(9)

where αj
i and βj

i are the so-called weights are biases, which

constitute the parameters of the DNN (collectively referenced

by θ) that need to be trained.

In supervised learning, we aim to learn a mapping xi 7→
g(xi) from a training data set {(xi, g(xi))}i=1,2,.... For super-

vised deep learning, we choose a neural network size (number

of layers and nodes) and activation function(s) and then seek

to adjust (train) parameters θ so that gθ approximates g well.

Clearly, the input dimension of the first layer and the output

dimension of the last layer have to be compatible with the

input-output dimensions of the function g to be approximated.

The inner layers are referred to as hidden layers. Ideally,

activation functions are chosen so as to reach the desired

approximation accuracy at the fastest rate. A very popular

activation function is the so-called rectified linear unit function

ReLU(z) = max(z, 0) (10)

due to the simplicity of its derivative (which facilitates training

via the backpropagation algorithm) and the fact that it has

proven to be highly efficient in a large number of applications.

7Note that this representation of successful decoding probabilities only
accounts for marginal probabilities, although the binary variates of the
underlying random vector may not be independent. We limit this analysis
to marginal probabilities for the sake of simplicity.

In fact, DNNs have been known for many years but were

notoriously difficult to train until recent breakthroughs both in

terms of hardware and algorithmic efficiency of training [24].

It is important to understand that a DNN contains many

parameters (so-called hyperparameters) whose tuning is es-

sential for an efficient training (e.g., number of nodes, layers,

learning step, etc.). How to optimally design a DNN to learn a

specific task is the focus of current research efforts in the field.

In the present work, we show a new interesting application of

DNNs and showcase a first working scheme. Yet, our design

choices are led by a limited trial-and-error approach to improve

the accuracy of training. Fine-tuning of the method herein

presented will be the focus of future research.

B. Training Parameters

In the following, the function gθ will be obtained from

a DNN with 3 hidden layers each containing 50 neurons

each, initialized independently with samples from a zero-mean

Gaussian distribution with variance 0.05 to avoid saturation

of the coefficients. For convenience, since we will fix the

number of active users to 6 for our simulations, we train 6
separate DNNs, one for each degree of collision d (from 1 to

6). Each DNN is trained with a training set of 105 channel

realizations, each consisting of a real-valued vector hi ∈
R

d, i = 1, . . . , 105, d = 1, . . . , 6. The channel gains are

distributed according to a Rician distribution with a Rician

factor of |E[h]|2/E[|h|2] = 0.9. Each label in the training data

consists of a binary vector si ∈ {0, 1}2d−1 which records

success (one) or failure (zero) of one encoding–decoding

operation for each of the 2d − 1 possible linear codeword

combinations. Hence our training data set is {(hi, si)}10
5

i=1.

Note that this training set does not contain the output values

of the function g to be approximated. Instead, the training

samples contain realizations of a random binary vector whose

marginal probabilities are described by the outputs of g. By

large sampling, we manage to approximate the function g.

We have implemented the DNN using the Tensorflow library

which allows for an easy implementation of the DNN training,

in particular thanks to automated differentiation routines. The

training was carried out using the Adam-gradient descent

algorithm with 105 iterations and a gradient step size of 1.001.

To assess the DNN’s performance, we have computed the

empirical frequencies of false alarm and missed detection

(based on the training set statistics) as

PFA =

∣

∣{(i, j) : sij = 0, gθj (hi) = 1}
∣

∣

∣

∣{(i, j) : sij = 0}
∣

∣

(11a)

PMD =

∣

∣{(i, j) : sij = 1, gθj (hi) = 0}
∣

∣

∣

∣{(i, j) : sij = 1}
∣

∣

(11b)

respectively. The frequencies obtained are shown in the fol-

lowing table.

training validation

PFA 6% 7 %

PMD 18.21% 20.01%



Note that false alarms lead to wasted decoding efforts,

whereas missed detections negatively impact the system per-

formance in terms of increased packet loss. In Figure 3,

we have plotted the packet loss probabilities resulting from

exhaustive decoding against those obtained from a DNN-

assisted receiver. The number of active users is fixed to

|A| = 6 for all frames. The SNR is set to 10 dB and the

fading distribution is Rician with factor 0.9, both for training

data generation and in the validation phase.
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Fig. 3. Packet loss probability of the PLNC coded random access scheme for
varying number of repetitions r and slots per frame, with exhaustive decoding
attempts (solid curves), with DNN-aided decoding decisions (dashed curves)
and with SIC decoding only (dotted curves).

As expected, the performance of a DNN-aided receiver

does not fully match exhaustive search, but it still distinctly

outperforms pure SIC decoding while keeping the number of

decoding steps very low.

IV. CONCLUSION

In this work, we have demonstrated how a machine learning

algorithm based on deep learning can be a key enabler of a

PLNC coded random access system by helping the receiver in

making efficient decoding decisions. The main contribution of

this work is to showcase the potential of this machine learning

approach and to clarify the technical challenges still ahead in

order to harvest the full benefits of this DNN-aided decoding

approach. In extensions of this work, besides fine-tuning the

deep learning setup, it will be interesting to account for more

realistic conditions and factor in additional considerations,

such as the robustness to parameter variations (SNR, fading

distribution, imperfect channel knowledge), the adaptation of

code rates and modulation schemes, retransmission requests,

the scalability to very large collision degrees (in the context of

massive machine-type communication), joint slot- and frame-

level decoding decisions, etc. These are left for future inves-

tigation.
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