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Abstract–To keep massive MIMO systems cost-efficient, power
amplifiers with rather small output dynamic ranges are em-
ployed. They may distort the transmit signal and degrade the
performance. This paper proposes a distortion aware precoding
scheme for realistic scenarios in which RF chains have nonlinear
characteristics. The proposed scheme utilizes the method of reg-
ularized least-squares (RLS) to jointly compensate the channel
impacts and the distortion imposed by the RF chains.

To construct the designed transmit waveform with low compu-
tational complexity, an iterative algorithm based on approximate
message passing is developed. This algorithm is shown to track
the achievable average signal distortion of the proposed scheme
tightly, even for practical system dimensions. The results demon-
strate considerable enhancement compared to the state of the art.

Index Terms—Precoding, nonlinear power amplifiers, approxi-
mate message passing, regularized least-squares, massive MIMO.

I. INTRODUCTION

Theoretical analyses depict that linear multiuser multiple-

input multiple-output (MIMO) precoding techniques are effi-

cient in the large-system limit [1]. This result, along with the

low complexity of these schemes, has introduced linear pre-

coding as the dominant approach for signal pre-processing in

massive MIMO [2]. Investigations in this respect however rely

on the characteristics of transceiver components which are of-

ten described by simplified models. An exemplary component,

which is the focus of this paper, is the power amplifier (PA)

used in the transmit radio frequency (RF) chains.

For sake of simplicity, PAs are often treated as linear com-

ponents. The linear model, however, is not valid in general.

In fact, such a characterization is a rather good approxima-

tion when the peak-to-average power ratio (PAPR) of the sig-

nal is less than the input back-off of the PA. Such a constraint

can be easily violated in massive MIMO systems. In fact, the

expense of a PA is proportional to its linearity characteristics.

To keep massive MIMO settings cost-efficient, RF chains are

implemented via PAs with low back-offs. This increases the

nonlinear distortion on the RF transmit signal and degrades the

performance.

The nonlinear distortion caused by PAs can be effectively re-

solved via signal pre-processing. In this respect, one can pre-

distort the transmit waveform, either on the sample or symbol
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basis, such that the receive signal will be of the desired shape.

For given characteristics of PAs, this approach is analytically

tractable with standard signal processing techniques, e.g. [3].

In multiuser MIMO settings, the transmit signal can be directly

pre-distorted at the precoding stage. To this end, one can in-

clude the RF chains in the channel model, and design the pre-

coder for the end-to-end channel. An example of this approach

was studied in [4] where the authors developed a symbol-level

precoding scheme [5] for MIMO settings with nonlinear PAs.

Another example is [6] in which the end-to-end precoding was

studied in sample domain considering waveform optimization

and pulse shaping. Despite the promising performance, this

approach often results in high computational complexity, due

to the nonlinearity of the end-to-end channel.

Contributions

Regardless of the channel model, precoding is effectively

addressed via the method of regularized least-squares (RLS).

For the classic linear model, RLS leads to generalized least

square error (GLSE) scheme introduced and analyzed in [7]–

[9]. This paper extends this RLS-based methodology to MIMO

settings with nonlinear RF front-ends. To this end, a multiuser

MIMO setting is considered in which the transmit RF chains

have a generic input-output characteristic. For this setting, end-

to-end precoding is addressed by the RLS method considering

a general set of constraints on the transmit signal.

The computational complexity of such an approach may be

rather high for a large MIMO system, if it is implemented in a

straightforward manner. To address this issue, we develop an

algorithm based on approximate message passing (AMP) [10].

The complexity of this algorithm scales linearly with the num-

ber of transmit antennas, and it tightly tracks the large-system

performance of the proposed scheme for practical dimensions.

Notations

Throughout the paper, scalars, vectors and matrices are rep-

resented with non-bold, bold lower case and bold upper case

letters, respectively. IK is a K×K identity matrix, and HT is

the transpose of H. The real axis and the complex plane are

denoted by R and C, respectively. For s ∈ C, ℜ{s}, ℑ{s}
and s := [ℜ{s} ,ℑ{s}]T are the real part, imaginary part and

augmented vector, respectively.E {·} is the statistical expecta-

tion. For simplicity, {1, . . . , N} is abbreviated by [N ]. For any
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differentiable function f(x) = [f1(x), . . . , fn(x)]
T

, the gradi-

ent is defined as ∇x f(x) := [∇x f1(x), . . . ,∇x fn(x)]
T.

II. PROBLEM FORMULATION

We consider downlink transmission in a Gaussian broadcast

MIMO channel with a single base station (BS) and K single-

antenna users. The BS is equipped with an antenna array of

size M , L ≤ M nonlinear RF chains, and a switching network

which connects each subset of L antennas to the RF chains.

In the n-th transmission interval, the BS intends to transmit

data symbols s1 [n] , . . . , sk [n] to the user terminals (UTs). To

this end, it constructs the transmit signal x [n] ∈ XM with L
non-zero entries via a precoding scheme. Here, X ⊆ C is the

precoding support and contains all possible points which can

be selected as constellation points by the transceiver. For in-

stance, in the case of per-antenna constant envelope precoding,

the precoding support is X =
{

x ∈ C : |x|2 = P
}

.

The m-th entry of the transmit signal represents the symbol

which is intended to be sent over antenna element m. Hence,

the indices of non-zero entries in x [n] correspond to those an-

tennas which are set active in transmission time interval n. Let

L [n] ⊆ [M ] denote the index set of non-zero entries in the

transmit signal x [n]. The switching network connects the RF

chains to the antennas indexed by L [n]. The precoded signal

is then transmitted via the RF chains.

The system operates in the time division duplexing (TDD)

mode which means that the uplink and downlink channels are

reciprocal. It is assumed that the channel state information

(CSI) is estimated at both the transmit and receive sides at the

beginning of each coherence interval within an estimation loop

whose duration is much shorter than the coherence interval.

Hence, the BS knows the CSI prior to transmission.

A. Nonlinear RF Chains

The main component of an RF chain is the PA which has

nonlinear input-output characteristics, in general. Several ex-

amples of nonlinear PA models can be followed in the liter-

ature; e.g. [11], [12]. For sake of generality, we consider a

generic input-output characteristic for the RF chains: Let x be

the symbol which is fed to an RF chain. The output of the RF

chain is given by w = fRF (x) with fRF (·) : X 7→W for some

W ⊆ C.W describes the set of all possible constellation points

after being distorted by the RF chain. We refer to fRF (·) as

the RF conversion function. This function is considered to be

of a general form describing various nonlinear PA models,

e.g. the well-known amplitude-to-amplitude and amplitude-to-

phase distortion model. Noting that the output of an RF chain,

which is not fed by any signal, is zero, we have fRF (0) = 0.

Considering the RF conversion model, the signal entry that

is observed on an active antenna reads wm = fRF (xm), where

m ∈ L [n]. For passive antennas, we further have

wm = 0 = fRF (0) = fRF (xm) , (1)

where m ∈ [M ]\L [n]. As a result, we can compactly represent

the signal on the transmit antennas as w [n] = fRF (x [n]). To

distinguish between x [n] and w [n], we refer to w [n] as the

RF transmit signal in the transmission interval n.

Remark 1: The RF conversion function is often derived via

interpolating methods. Hence, actual outputs slightly deviate

from fRF (xm [n]). As a result, one can write

|wm [n]− fRF (xm [n])|2 ≤ ǫ

where ǫ ↓ 0 in the ideal case.

B. Channel Model

The RF transmit signal is sent to the UTs over a Gaussian

broadcast MIMO channel which experiences quasi-static fad-

ing. The receive signal at user k for n-th interval is hence

yk [n] =
√

βk gT

kw [n] + zk [n] (2)

for k ∈ [K]. Here, gk ∈ CM contains the fading coefficients

of the uplink channel between user k and the BS. Moreover,

βk describes the path-loss and shadowing in the channel which

is the same for all antenna elements at the BS. The random

variable zk [n] denotes additive white Gaussian noise (AWGN)

and is assumed to be zero-mean with variance σ2.

Considering the channel model, the vector of receive signals

at the UTs in transmission interval n, i.e. y [n] = [y1 [n] , . . . ,
yK [n]]T, is compactly represented as

y [n] = HT
w [n] + z [n] (3)

where z [n] = [z1 [n] , . . . , zK [n]]T is the noise vector and

H = [h1, . . . ,hK ] (4)

with hk =
√
βk gk represents the uplink channel vector.

III. RLS-BASED PRECODING SCHEME

The ultimate aim of precoding is to pre-process signals, such

that data can be recovered from the receive signal at UTs with

minimal post-processing. This means that the vector of noise-

free receive signals, i.e. HT
w [n], is desired to be close to the

data vector, i.e. s [n] = [s1 [n] , . . . , sK [n]]T. To formulate this

interpretation of precoding, consider the following definition:

Definition 1 (RSS): Let s be a data vector and v represent its

corresponding RF transmit signal. For a given scaling factor ρ,

the residual sum of squares (RSS) at the UTs is defined as

RSS (v|ρ, s,H) = ‖HT
v − √

ρ s‖2. (5)

The RSS determines the squared of the Euclidean distance

between the noise-free receive signals and data symbols. Using

this definition, the precoding problem is interpreted as

x [n] = argmin
u∈XM

RSS (fRF (u) |ρ, s [n] ,H) s.t. C (u) (6)

for some ρ. In (6), C (u) denotes the signal constraints required

to be satisfied by the transmit signal. For example, when the

number of the RF chains L is less than M , C (u) includes the

sparsity constraint ‖u‖0 ≤ L. The formulation in (6) describes

the RLS method which we discuss in the following sections.

For simplicity, we drop the time index n in the sequel.
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Fig. 1: An RF conversion function given by Saleh’s model with α =
2.092 and β = 1.247 [11].

A. GLSE Precoding at the RF Stage

The RF transmit signal w is directly found by solving

w = argmin
v∈WM

RSS (v|ρ, s,H) s.t. C̃ (v) (7)

where C̃ (v) contains the signal constraints in C(u) projected

on WM with respect to the RF conversion function. Following

the RLS method, this problem is equivalently solved by

w = argmin
v∈WM

‖HT
v − √

ρ s‖2 + c (v) (8)

for some penalty c (·). The precoder in (8) recovers the GLSE

precoding scheme at the RF stage [7]–[9]. The key differences

here are: 1) The penalty c (v) is chosen with respect to the RF

conversion function fRF (·). 2) The entries of the RF transmit

signal should be projected back on the precoding support X.

As the RF conversion function is known to the BS, the first

task is tractable. However, the backward projection of the RF

transmit entries to the precoding support cannot be uniquely

done, as the fRF (·) is not necessarily bijective.

B. Projecting RF Signals on the Precoding Support

Consider the precoded signal at the RF stage, i.e. w. To pro-

ject back the RF transmit entries on the precoding support, we

need to solve wm = fRF (xm) for m ∈ [M ]. Considering the

typical characteristics of PAs, it is clear that there are multiple

solutions for xm. We hence need to select a desired solution

among the available ones with respect to a metric. To clarify

this latter statement, let us consider a simple RF conversion

function. In Fig. 1, the output amplitude, i.e. |wm| of a sample

PA is sketched against the amplitude of input symbol xm using

Saleh’s model in [11] with α = 2.0922 and β = 1.2466. As the

figure depicts, log|wm| = −2 dB is achieved at the output of

the PA, when the input amplitude is set either log|xm| = −4.6
dB or log|xm| = 3.65 dB. This behavior comes from the

significant nonlinearity of the PA in the saturation region. As

we wish to restrict the power consumed in the system, we set

the input symbol to the one whose amplitude is smaller, i.e.,

we set log|xm| = −4.6 dB.

For a generic fRF (·), the backward projection of RF trans-

mit entries on the precoding support can be formulated via the

RLS method. Considering the pre-amplifier power constraint

as the selection measure, the approach for choosing the input

symbol in the given example is formulated as

xm = argmin
u∈X

|u|2 s.t. wm = fRF (u) . (9)

Following Remark 1, one can reformulate (9) as

xm = argmin
u∈X

|u|2 s.t. |wm − fRF (u)|2 ≤ ǫ. (10)

The approach in (10) is equivalently given in form of a scalar

RLS problem. The regularization term in this problem is quad-

ratic, as the metric for choosing the input symbol is its power.

Nevertheless, in a generic case, the metric can be of a different

form taking into account also the phase of the input symbol.

Following the above discussion, the projection approach in

(10) is represented in a general form as

xm = argmin
u∈X

|wm − fRF (u)|2 + θ r (u) (11)

where r (·) is a regularization term describing the metric. For

instance, in the case that we choose the transmit symbol based

on its power, we have r (u) = |u|2. θ is a tunable factor which

controls the consumed power.

Remark 2: Note that the signal power before and after ampli-

fication defines two different parameters which are implicitly

related. The power of transmit entries, i.e. signal before ampli-

fication, specifies the power consumed in the system while the

power at the output of transmit RF chains mainly quantifies

the multiuser interference at each UT. The RLS approach in

(11), along with the GLSE scheme in (8), guarantees that both

of these parameters are minimized given the set of available

constraints on the transmit signal. In this respect, θ can be seen

as a Lagrange multiplier which tunes the trade-off between the

consumed power and the RSS.

IV. ALGORITHMIC IMPLEMENTATION VIA AMP

The computational complexity of the proposed scheme is

dominated by the precoding in the RF stage. In fact, the pro-

jection on the precoding support deals with M parallel copies

of a scalar optimization problem which is addressed tractably.

The calculation of the RF transmit signal, however, requires to

solve an optimization problem of size M within each transmis-

sion interval1. In massive MIMO settings with large antenna

arrays, such a task is not computationally tractable in prac-

tice. To address this issue, we propose an iterative algorithm

based on AMP whose complexity scales linearly with M .

A. RF Stage Precoding via AMP

The GLSE precoding in (8) is mathematically equivalent to

a max-sum problem in the Bayesian framework. This equiva-

lence was studied in [13] where an iterative algorithm based

on generalized AMP (GAMP) [10], [14] was proposed. This

algorithm is adapted to the problem in (8) in Algorithm 1. In

this algorithm, w is constructed after T iterations. Here,

1In practice, the update rate can be reduced to once per coherence time in-
terval by block-wise precoding; see [7].



Algorithm 1 AMP-based Precoding in the RF Stage

Initiate For k ∈ [K], let yk (0) = 0. For m ∈ [M ], set

wm (1) = argmin
v∈W

c (v) (12a)

Rw
m
(1) =

[

∇2 c (wm (1))
]−1

(12b)

while 1 ≤ t < T

for k ∈ [K] and m ∈ [M ] update

Rv
k (t) =

M
∑

m=1

QmkR
w
m (t)QT

mk (13a)

vk (t) =

M
∑

m=1

Qmkwm (t)−Rv
k (t)yk (t− 1) (13b)

yk (t) = gout (vk (t) , sk,R
v
k (t)) (13c)

R
y
k
(t) = −∇v gout (vk (t) , sk,R

v
k
(t)) (13d)

Ru
m (t) =

[

K
∑

k=1

QT

mkR
y
k
(t)Qmk

]−1

(13e)

um (t) = wm (t) +Ru
m (t)

[

K
∑

k=1

QT

mkyk (t)

]

(13f)

wm (t+ 1) = gin (um (t) ,Ru
m
(t)) (13g)

Rw
n
(t+ 1) = [∇u gin (um (t) ,Ru

m
(t))]Ru

m
(t) (13h)

end for

end while

Output: wm (T ) for m ∈ [M ].

• wm (t) and sk are the augmented forms of the m-th RF

symbol in iteration t, i.e. wm (t), and sk, respectively.

• Rw
m (t), Rv

k
(t), Ry

k
(t) and Ru

m (t) are two-dimensional

real square matrices, and Qmk is defined as

Qmk :=

[

ℜ{hmk} −ℑ{hmk}
ℑ {hmk} ℜ {hmk}

]

(14)

where hmk is the entry (m, k) of H.

• gout (·) is the output thresholder given by

gout (v, s,R) := ∇v min
z∈C

Gout (z,v, s,R) (15)

where Gout (·) is

Gout (z,v, s,R) = q (z− v,R) + ‖z−√
ρ s‖2 (16)

with q (·) being q (x,R) =
(

xTR−1x
)

/2.

• gin (·) is the input thresholding function and reads

gin (u,R) := argmin
w∈W

Gin (w,u,R) (17)

where Gin (·) is given by

Gin (w,u,R) = q (u−w,R) + c (w) . (18)

B. Projection on the Precoding Support

To project the precoded RF signal w back on the precoding

support, we follow the approach proposed in Section III-B. To

this end, transmit entry xm for m ∈ [M ] is calculated via (11)

for some θ and regularization term r (·). To tune θ, we note

1) As θ ↓ 0, (11) determines the minimizer of r (·) over the

set of points u at which wm = fRF (u). This tuning is sui-

table for RF conversion functions which accurately model

the input-output characteristic of the RF chains, i.e. when

ǫ ↓ 0 in Remark 1.

2) For θ ↑ ∞, (11) finds the minimizer of r (·) over C. Such

a setting corresponds to RF conversion models with high

error, i.e. when ǫ is significantly large.

As a result, θ is tuned such that it monotonically increases with

ǫ, where ǫ is error of the analytic model given by fRF (·).

V. NUMERICAL INVESTIGATIONS

In this section, we investigate the performance of the pro-

posed algorithm through numerical simulations. For this aim,

we first specify the configuration which is being simulated.

A. System Configuration

We consider the case in which independent and identically

distributed (i.i.d.) zero-mean and unit-variance Gaussian data

symbols s1, . . . , sK are to be transmitted over the downlink

channel. It is assumed that the channel experiences i.i.d.

Rayleigh fading. This means that the entries of H are i.i.d.

Gaussian with zero-mean and variance 1/M . The characteris-

tics of each system component are illustrated in the sequel.

1) RF chains: The conversion function of an RF chain is as-

sumed to be fully described via its PA, and the input-output

characteristics of the PA is represented by the amplitude-to-

amplitude and amplitude-to-phase model which reads

fRF (x) = fA (|x|) exp {jfΦ (|x|)} x

|x| . (19)

In this model, fA (·) is the amplitude-to-amplitude conversion

function which specifies the amplitude of the RF signal at the

output of the PA. fΦ (·) further determines the nonlinear phase

shift at the output which is a function of the input amplitude.

Well-known analytic formulations for fA (·) and fΦ (·) are

given by Saleh’s model [11], [12] in which

fA (ω) =
αAω

1 + βAω2
, fΦ (ω) =

αΦω
2

1 + βΦω2
. (20)

Here, (αA, βA) and (αΦ, βΦ) are non-negative scalars which

are determined for a specific PA numerically via the method of

least-squares. The model is assumed to have average error ǫ.
This means that for the true output symbol w, we have

Ex

{

|w − fRF (x)|2
}

≤ ǫ (21)

where x is the true input symbol, and Ex {·} averages over all

possible realizations of x.



2) Precoder: From the example in Fig. 1, we know that the

PA’s output is saturated at some level. This means that the RF

transmit entries always satisfy |wm|2 ≤ Pout for some power

Pout which is specified for each PA. As a result, we consider

the RF constellation set as W =
{

w ∈ C : |w| ≤
√
Pout

}

.

The precoding support X is further set to X = C. Following

the discussions in Section IV-B, we need to set θ in (11) mono-

tonically increasing in ǫ for backward projection of the RF

transmit signal on X. We consider the simple choice of θ = ǫ
and set r (u) = |u|2.

For the sake of simplicity, we assume full transmit complex-

ity, i.e. L = M , with limited average transmit power; hence,

c (w) = λ‖w‖2 for some λ. Nevertheless, scenarios with par-

tially active arrays, i.e. L ≤ M , are straightforwardly ad-

dressed by modifying c (·); see discussions in [7].

B. Performance Metrics

Following the discussions in Section III, we know that the

RSS defined in Definition 1 quantifies the performance of the

precoder, effectively. We hence define the performance metric

with respect to the RSS. To this end, let w ∈WM be the signal

precoded directly at the RF stage via (8). The transmit signal

x ∈ CM is calculated entry-wise from w using (11). The true

RF signal is then given by w̃ = fRF (x) which is in general

different2 from w. In this case, the average RSS predicted by

the RF-stage GLSE precoder is

D (ρ) =
1

K
‖HT

w − √
ρ s‖2

for the given scaling factor ρ. However, the average RSS which

is achieved in practice is

D̃ (ρ) =
1

K
‖HT

w̃ − √
ρ s‖2.

D (ρ) and D̃ (ρ) in general address the average distortion im-

posed by the multiuser interference at each UT. For effective

design of the precoder and small ǫ, we have D̃ (ρ) ≈ D (ρ).

C. Numerical Results

Fig. 2 plots D (ρ) and D̃ (ρ) against the number of transmit

antennas per user, i.e. ξ = M/K , for ρ = 1. The transmit array

size is set to M = 64, and the parameters of the PA read

(αA, βA) = (2.159, 1.152) , (αΦ, βΦ) = (4.003, 9.104)

with ǫ = 0.05. Considering the dynamic range of the PA, the

peak output power on the RF stage is set to Pout = 1.

To compare the results with the benchmark, λ is tuned, such

that the PAPR of the RF transmit signal is log PAPR = 5
dB. The results are given for Algorithm 1, as well as directly

solving (8) via CVX [15], [16].

It is observed that D (ρ) closely matches D̃ (ρ) which in-

dicates the efficiency of the backward projection. The figure

further depicts the accuracy of Algorithm 1, as its results are

tightly consistent with the direct simulations. For sake of com-

parison, we sketch two other plots: The first plot shows the

2Note that (11) solves exactly w = fRF (x) only when θ = 0.
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Fig. 2: AverageRSS vs. per-user number of antennas for ρ = 1. The
PAPR of the RF signal is set to log PAPR = 5 dB.

asymptotic value of D (ρ) derived in [7]. This plot is closely

tracked by the finite-dimension simulations. The second plot

shows D̃ (ρ) achieved via regularized zero forcing (RZF) pre-

coding [17]. The RZF precoder in this case is tuned, such that

the output PAPR remains log PAPR = 5 dB. As the plot

demonstrates, RZF precoding exhibits degraded performance.

This is a result of unwanted distortion imposed by nonlinear

characteristics of the RF chains. Due to the page limit, further

numerical investigations are skipped and will be given in the

extended version of the manuscript.

VI. CONCLUSIONS

The proposed precoding scheme for massive MIMO settings

with nonlinear front-ends utilizes the RLS method to jointly

invert the channel and compensate distortions caused by non-

linear RF chains. An AMP-based algorithm implements the

proposed scheme with low complexity. Numerical investiga-

tions show performance enhancement compared to the classic

precoding techniques. Although the main focus of this paper

was on the PA, the results are straightforwardly extended to

other non-ideal transceiver components.
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