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Abstract

In this paper, we propose a low-complexity method to approximately solve the SINR-constrained optimization problem of
symbol-level precoding (SLP). First, assuming a generic modulation scheme, the precoding optimization problem is recast as a
standard non-negative least squares (NNLS). Then, we improve an existing closed-form SLP (CF-SLP) scheme using the conditions
for nearly perfect recovery of the optimal solution support, followed by solving a reduced system of linear equations. We show
through simulation results that in comparison with the CF-SLP method, the improved approximate solution of this paper, referred to
as ICF-SLP, significantly enhances the performance with a negligible increase in complexity. We also provide comparisons with a
fast-converging iterative NNLS algorithm, where it is shown that the ICF-SLP method is comparable in performance to the iterative
algorithm with a limited maximum number of iterations. Analytic discussions on the complexities of different methods are provided,
verifying the computational efficiency of the proposed method. Our results further indicate that the ICF-SLP scheme performs quite
close to the optimal SLP, particularly in the large system regime.

Index Terms

Downlink MU-MIMO, NNLS optimization, SINR-constrained power minimization, symbol-level precoding.

I. INTRODUCTION

In wireless multiuser multi-input multi-output (MU-MIMO) broadcast channels, precoding techniques can be employed in

order to mitigate the channel-induced multiuser interference (MUI) via spatially pre-processing the users’ data stream prior to

transmission. This pre-processing, in the optimal case, is shown to achieve the capacity of the MU-MIMO broadcast channel

[1]. Beyond simple linear precoding schemes, such as (regularized) zero-forcing (ZF) [2], in a practical scenario the precoding

design usually aims at optimizing a certain objective function subject to some given system/user requirements; this kind of

design is often called objective-oriented precoding optimization [3]. Within a wide variety of objective-oriented design criteria,

two closely-related formulations are frequently addressed, namely, signal-to-interference-plus-noise ratio (SINR)-constrained

power minimization [4]–[6], and the max-min SINR with power constraints [6], [7], where “power” may refer to either total or

per-antenna transmit power.

From a different point of view, multiuser precoding schemes can be classified broadly into two groups, namely, block-level

(conventional) and symbol-level techniques. The conventional precoding typically exploits the channel state information (CSI) to

mitigate the MUI, regardless of the instantaneous users’ data symbols; see e.g. [4]. The precoder then may be redesigned according

to the channel coherence time. On the other hand, symbol-level precoding (SLP) takes advantage of the readily-available data

information (DI) by converting the instantaneous MUI into a constructive signal component, lying onto the so-called constructive

interference (CI) regions [8], [9]. The symbol-level design, therefore, requires to be specifically optimized for every instantaneous

realization of the users’ symbols. In delay-sensitive wireless applications, online precoding computation may suffer from high

computational complexity of the symbol-level design. Rather, an offline computation also leads to an unfavorable computation cost

for high-order modulation schemes even with moderate number of users [10], [11]. Nonetheless, the considerable performance

improvement offered by a symbol-level precoder is motivating to find a more practical solution with a reasonable complexity.

Recently, a promising effort has been made towards low complexity (sub-optimal) solutions for various types of the SLP

design problem. The authors in [12] propose an iterative method with a closed-form update equation for the max-min SINR SLP,

where the algorithm is shown to converge to the optimal solution in a few iterations. In [13], a closed-form sub-optimal solution

is obtained for the SINR-constrained power minimization SLP using the Karush-Kuhn-Tucker (KKT) optimality conditions.

In another recent work [14], the SINR-constrained power minimization SLP is addressed with strict phase constraints on the

received signals, and a low complexity approximate method is suggested for this particular case. However, the major drawback

of the two latter methods is poor performance of the approximate solution for large numbers of transmit antennas and users.

In this paper, we revisit the SINR-constrained power minimization SLP problem assuming a generic modulation scheme with

distance-preserving CI regions (DPCIR) (Section II). The original formulation can be transformed into an equivalent non-negative

least squares (NNLS) problem (Section III). The NNLS representation enables us to derive a low-complexity approximate solution

in a systematic way (Section IV). This solution, which improves the method presented in [13], simply applies a validation step
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before calculating the final solution. Despite a slight increase in complexity, the new method shows noticeable performance

gains. In particular, unlike [13], the gap to the optimal SLP remains almost steady with enlarging the system. It is further shown

that the new method can be used as an alternative to (even fast-converging) NNLS algorithms, especially when complexity is a

practical design limitation.

Notations: We use uppercase and lowercase bold-faced letters to denote matrices and vectors, respectively. The sets of real and

complex numbers are represented by R and C. For a matrix AAA, R(AAA) represents the column space of AAA. diag(·), or blkdiag(·),
represents a square (block) matrix having main-diagonal (block) entries and zero off-diagonals. For a set S, |S| denotes the

cardinality of S. Given two vectors xxx and yyy with equal dimensions, xxx � yyy (or xxx ≻ yyy) denotes the entrywise inequality. ‖ · ‖2
represent the vector Euclidean norm. III and 000 respectively stand for the identity matrix and the zero matrix (or the zero vector,

depending on the context) of appropriate dimensions. The operator ⊗ stands for the Kronecker product.

II. SYSTEM MODEL AND CI CONSTRAINTS

We consider an MU-MIMO broadcast channel in which a common transmitter (e.g., a base station), equipped with N antennas,

serves K single-antenna users by sending independent data streams, where K ≤ N . We denote by row vectors hhhk ∈ C1×N , k =
1, ...,K, the instantaneous (frequency-flat) fading channels of the transmit/receive antenna pairs. Focusing on a specific symbol

instant, in the downlink transmission, independent data symbols {sk}Kk=1 are intended for different users, where the symbol sk
corresponds to the kth user.

The set of desired symbols for all K users needs to be mapped to N transmit antennas, yielding the transmit signal uuu =
[u1, . . . , uN ]T ∈ CN×1. This mapping is done by means of a multiuser precoding module. In this paper, we adopt a symbol-level

precoding (SLP) scheme. Thereby, the optimal transmit vector uuu is directly obtained as a result of an objective-oriented precoding

optimization on a symbol-level basis. At the receiver of the kth user, the observed signal can be expressed as

rk = hhhkuuu+ zk, k = 1, ...,K, (1)

where zk represents the additive circularly symmetric complex Gaussian noise distributed as zk ∼ CN (0, σ2
k). The k-th user

may use the maximum-likelihood (ML) single-user detector to optimally detect its desired symbol sk; nevertheless, the structure

of the receiver is independent of the precoder design. In the rest, we adopt the equivalent real-valued notations

ũuu=

[

Re{uuu}
Im{uuu}

]

,HHHk=

[

Re{hhhk} − Im{hhhk}
Im{hhhk} Re{hhhk}

]

, sssk=

[

Re{sk}
Im{sk}

]

,

where ũuu ∈ R2N×1, and HHHk ∈ R2×2N and sssk ∈ R2×1 for all k = 1, ...,K . Clearly, HHHkũuu = [Re{hhhhuuu}, Im{hhhhuuu}]T .

To exploit the DI in a symbol-level precoded broadcast, one needs to design the transmit signal such that each (noise-free)

received signal HHHkũuu is observed within a pre-defined region corresponding to the intended symbol, called constructive interference

region (CIR). The CIRs, which are modulation-specific regions, have been defined in several ways in the literature; see, e.g., [8],

[9], [15]. As mentioned earlier, we focus on the so-called DPCIRs [15], which are presented in a generic form that is applicable

to any given (two-dimensional) modulation scheme.

For the sake of simplicity of analysis, and without loss of generality, we assume that identical modulation schemes are

employed for all K users. The associated symbol constellation is represented by X = {xxxm : xxxm ∈ R2×1}Mm=1, where X is an

equiprobable set with unit average power. We denote by bd(X) and int(X), respectively, the sets of boundary and interior points

of X. It has been shown in [11] that any xxx ∈ R2×1 belonging to the DPCIR of xxxm satisfies

AAAm (xxx− xxxm) � 000, if xxxm ∈ bd(X), (2)

or AAAm (xxx− xxxm) = 000 otherwise, where AAAm = [aaam,1,aaam,2]
T = [xxxm −xxxm,1,xxxm −xxxm,2]

T ∈ R2×2 contains the normal vectors of

distance-preserving boundaries, with xxxm,1 and xxxm,2 denoting two (specific) neighboring constellation points of xxxi. Let δδδm ∈ R
2×1
+

be a non-negative vector, then the representation in (2) can be equally expressed by

AAAm (xxx− xxxm) = δδδm, where

{

δδδm � 000, xxxm ∈ bd(X),

δδδm = 000, xxxm ∈ int(X),
(3)

For a detailed discussion on the characteristics of DPCIRs, the interested readers are kindly referred to [11].

III. SINR-CONSTRAINED POWER MINIMIZATION SLP

In this section, we overview the instantaneous (per-symbol) power minimization problem constrained by CIRs and given SINR

requirements γk, k = 1, ...,K . The users’ intended symbols {sssk}Kk=1 are taken from the set of points {xxxm}Mm=1 in X. We denote

by mk the index of the constellation point that corresponds to sssk, i.e., sssk = xxxmk
where xxxmk

∈ X and mk ∈ {1, ...,M}. By

assuming DPCIRs, the convex representation in (3) can be used to imply the CI constraint in the optimization problem. By



substituting HHHkũuu for xxx and replacing the scaled symbol σk
√
γk xxxmk

, the joint CI/SINR constraint for the k-th user is expressed

by

AAAmk
(HHHkũuu− σk

√
γk xxxmk

) = δδδmk
, δδδmk

� 000, (4)

where δδδmk
= 000 is imposed for xxxmk

∈ int(X). Let WWW be a square binary weighting matrix defined as

WWW , diag(wm1
, ..., wmK

)⊗ III2, wmk
=

{

1, xxxm ∈ bd(X),

0, xxxm ∈ int(X).
(5)

By stacking the constraints in (4) for all k ∈ {1, ...,K} into a compact matrix form, we have

AAA(H̃HHũuu−ΣΣΣΓΓΓ1/2 x̃xx) =WWWδδδ, δδδ � 000, (6)

where H̃HH , [HHHT
1 , ...,HHH

T
K ]T , AAA , blkdiag(AAAm1

, ...,AAAmK
), ΣΣΣ , diag(σ1, ..., σK) ⊗ III2, ΓΓΓ , diag(γ1, ..., γK)T ⊗ III2, x̃xx ,

[xxxm1
, ...,xxxmK

]T , δδδ , [δδδm1
, ..., δδδmK

]T , and (·)1/2 denotes the matrix square root. Then, the optimal symbol-level precoded

transmit vector can be obtained by the following lemma [11].

Lemma 1. The minimum-norm vector satisfying the DPCIR constraint of (6) is given by

ũuu∗ = H̃HH†
(

ΣΣΣΓΓΓ1/2x̃xx+AAA−1WWWδδδ∗
)

, (7)

where δδδ∗ is the optimal solution to the following non-negative least squares (NNLS) problem

min
δδδ�000

‖H̃HH†ΣΣΣΓΓΓ1/2x̃xx+ H̃HH†AAA−1WWWδδδ‖2. (8)

It follows from Lemma 1 that the design problem of interest can be tackled through solving the NNLS optimization in (9).

Furthermore, denoting BBB , −H̃HH†AAA−1WWW and yyy , H̃HH†ΣΣΣΓΓΓ1/2x̃xx, the NNLS problem (8) can be written in the standard form as

min
δδδ�000

‖yyy −BBBδδδ‖2, (9)

The NNLS problem, unlike its unconstrained counterpart, does not in general admit a closed-form solution due to the non-

negativity constraints. Various efficient algorithms to solve an NNLS can be found in the literature on iterative optimization,

such as the well-known active set based method proposed by Lawson and Hanson [16], the fast NNLS algorithm (FNNLS) [17],

and those based on projected/proximal gradient method [18]–[20]. However, an NNLS algorithm, in the best known case, requires

tens of iterations to converge. For instance, the accelerated gradient method have a linear convergence rate of O(n−2), where

n is the number of iterations. With a convex objective function, this translates to a worst-case complexity bound of O(ǫ−1/2)
to reach an ǫ-optimal solution. As an illustrative example, using the accelerated projected gradient descent, it takes nearly 100
iterations to have a residual of 10−3 with respect to the optimum. In a symbol-level design application, this process needs to be

done as repeatedly as either the frame length or the total number of possible symbol realizations for K users, i.e., MK . This

motivates us to still be looking for a more computationally efficient, though possibly approximate, solution for the SLP design

problem.

IV. LOW-COMPLEXITY SOLUTION FOR NNLS-BASED SLP

The main goal of this section is to obtain a low-complexity solution for the NNLS design formulation of SLP in (9). We first

proceed by reviewing some basic mathematical analysis on the NNLS problem.

Let δδδ∗ = [δ∗1 , ..., δ
∗
2K ]T denote the minimizer corresponding to the standard NNLS formulation in (9). We refer to the set of

indices j for which δ∗j > 0 as the support of δδδ∗, or the optimal support, denoted by Λ∗ = {j : δ∗j > 0}. Given the optimal

support Λ∗, the minimizer of (9) can be simply computed by (BBBΛ∗)†yyy with appropriate zero-padding, where BBBΛ∗ denotes the

matrix composed of those columns of BBB associated with the indices in Λ∗. In other words, finding Λ∗ is as complex as solving

(9) for the optimal solution. Therefore, one may attempt to solve (9) equivalently by perfectly identifying Λ∗. This is in fact

the underlying idea of active set methods, where at each iteration some constraints are set to be active (i.e., zero-valued in our

context), while the other constraints are used in the update equation. However, here we are interested in having an estimate

of Λ∗, say Λ̂, obtained in a non-iterative manner. This allows us to derive an approximate solution δ̂δδ in an explicit form. Our

proposed method is essentially based on the following lemma which states sufficient conditions for nearly perfect recovery of

the optimal support [21].

Lemma 2. Let Λ be a subset of column indices of the matrix BBB with |Λ| ≤ 2K , and the columns associated with the indices

in Λ are linearly independent. Let δδδ∗ � 000 be the minimizer of ‖yyy −BBBδδδ‖2. Then, Λ coincides with the support of δδδ∗ if

C1 : BBBΛ
†yyy ≻ 000, and C2 : yyyTPPP⊥

Λbbbi < 000, ∀i ∈ Λc,

where PPP⊥
Λ is the projector onto the orthogonal complement of R(BBBΛ), bbbi denotes the ith column of BBBΛ, and Λc = {1, ..., 2K}−Λ.



Algorithm 1 APGD algorithm for the SLP NNLS problem (9)

1: input BBB,yyy, nmax

2: initialize ϑϑϑ0=δδδ0∈R
2K×1
+ ,QQQ=III − BBBTBBB

‖BBBTBBB‖F

,φφφ= BBBTyyy
‖BBBTBBB‖F

3: set η = 1−√
κ

1+
√
κ
, κ = σmax(BBB)

σmin(BBB) , n = 0
4: while n < nmax do

5: n = n+ 1
6: δδδn = max {QQQϑϑϑn−1 +φφφ,000}
7: ϑϑϑn = δδδn + η(δδδn − δδδn−1)
8: end while

note: σmax(·) and σmin(·) respectively denote the maximum and minimum singular values of an input matrix.

Based on Lemma 2, both the conditions C1 and C2 together are sufficient for a candidate support Λ to be optimal. In fact,

C1 measures if the resultant solution satisfies the positivity constraint (notice that the constraint cannot be satisfied with equality

due to the definition of support), while the projection in C2 can be read as the deviation of yyy from the column space of BBBΛ. In

other words, C1 is required to validate the columns already indexed in Λ, whereas C2 assesses the possibility of including any

of the columns belonging to Λc. Armed with these two conditions, we are ready to approximately solve the NNLS problem in

(9), as will be explained in the sequel.

A. The Proposed Approximate Solution

First, we exploit the projection condition C2 to produce a rough estimate of Λ∗. Let

di , yyyTPPP⊥
Λbbbi, i = 1, ..., 2K,

where

PPP⊥
Λ = III −BBBΛ

(

BBBΛ
TBBBΛ

)−1

BBBΛ
T .

Treating the entire columns of BBB as candidate columns to be indexed in Λ, we assume Λc = {1, ..., 2K}, yielding PPP⊥
Λ = III .

Hence,

di = yyyTbbbi, i = 1, ..., 2K. (10)

With the inner products in (10), we define Λ̂ , {i : di > 0} with |Λ̂| = L1, which builds our initial estimate of Λ∗. Notice that

the conditions in (10) are similarly implied from the KKT optimality conditions, as discussed in [13]. Next, we validate this

estimate by excluding those columns in Λ̂ that result in negative elements for δδδ, i.e.,

ˆ̂Λ ,

{

l : l ∈ Λ̂,
[

(BBBΛ̂)
†yyy
]

l
> 0

}

, (11)

where [·]l denotes the lth element of an input vector. Clearly, we have | ˆ̂Λ| , L2 ≤ L1, which reduces the possibility of having

negative elements in the final solution as a result of the additional validation step in (11). Our simulations indicate that in most

cases ˆ̂Λ gives a more accurate estimate of the optimal support Λ∗, compared to that given by Λ̂, as we will see in the next section.

Notice, however, that the positivity constraints may still be violated even after the validation step in (11) since the remaining

set of columns in ˆ̂Λ does not necessarily guarantee that (BBB ˆ̂Λ
)†yyy ≻ 000. Therefore, one needs to ignore all the negative elements

in the final solution, if any. More precisely, due to the fact that R
(

BBB ˆ̂Λ

)

⊆ R
(

BBBΛ̂

)

, perfect recovery of the optimal support is

possible only if Λ∗ ⊆ Λ̂. In such case, we obtain (BBB ˆ̂Λ
)†yyy ≻ 000 and ˆ̂Λ is the optimal support. Consequently, the approximate

solution δ̂δδ = [δ̂1, ..., δ̂2K ]T can be represented as a zero-padded version of the vector (BBB ˆ̂Λ
)†yyy, i.e.,

δ̂l = max
{[

(BBB ˆ̂Λ
)†yyy

]

l
, 0
}

, l ∈ ˆ̂Λ, (12)

and δ̂l = 0 otherwise, for l = 1, ..., 2K . Having an explicit expression for δ̂δδ, the corresponding transmit vector is readily

computable by replacing δ̂δδ in (7).

B. Computational Complexity Analysis

We compare the computational complexity of the proposed method with an iterative NNLS algorithm. As our benchmark

for comparison, we consider the accelerated projected gradient descent (APGD) algorithm [18]. The pseudocode of APGD to

(approximately) solve the NNLS (9) via a limited number of iterations is given in Algorithm 1. We evaluate the worst-case

complexity in terms of the number of arithmetic operations. For an iterative method, this can be interpreted as the required

number of operations until the stopping condition is met.



The main loop of APGD is preceded by an initialization step performing two matrix multiplications and one singular value

decomposition (SVD) with complexity orders of K2N , KN and K3, respectively. Within the main loop, the per-iteration

complexity is dominated by a matrix multiplication of order K2. To be more accurate, the complexity of APGD depends also

on the convergence specifications, e.g., the condition number of BBB; however, we consider only those complexity terms directly

relating to the problem size. On the other hand, the dominant arithmetic operations in (10), (11) and (12), i.e., 2K vector

multiplications and two matrix pseudo-inversions, result in computation costs of order KN and N(L2
1 + L2

2), respectively, for

the proposed method. Remark that the closed-form solution in [13] can be implemented in an equivalent way using (10) and

(12); therefore we assess the complexity of [13] based on the method of this paper.

TABLE I
COMPLEXITIES OF DIFFERENT NNLS-BASED SLP SOLUTIONS.

Solution Method Complexity Order

APGD algorithm [18] K2.O (K +N) +O
(

K2
)

ǫ−1/2

Closed-form SLP [13] N.O
(

K + L2

2

)

Improved closed-form SLP N.O
(

K + L2

1
+ L2

2

)

In Table I, we summarize the dominating complexity orders of different methods, where that of the APGD corresponds to an

ǫ-optimal solution. Due to the sparsity-promoting nature of the NNLS problem [22], in practice we have L2 ≤ L1 ≪ 2K . Based

on this observation and the results in Table I, we conclude that both closed-form methods (potentially) decrease the computation

cost of the precoding design. In fact, even the complexity of the initialization step in APGD (without any iterations) is higher

than the two closed-form methods.

V. SIMULATION RESULTS

In this section, we provide some simulation results to evaluate and compare the performances of various approaches to solve

the SINR-constrained SLP problem. Our simulation setup is as follows. We consider a downlink MU-MIMO system with N
transmit antennas and K (single-antenna) users, where N/K , β. For all users k ∈ {1, ...,K}, we assume unit noise variances

σ2
k = 1 and equal target SINRs γk , γ. The users’ channel vectors {hhhk}Kk=1 are independently generated following the standard

circularly symmetric complex Gaussian distribution, i.e., hhhk ∼ CN (000, III). The maximum number of iterations, nmax, for the

APGD algorithm is set to be 25. The results are all averaged over 103 channel coherence blocks each of length 103 symbols.

Later on in this section, we refer to the SLP methods of interest as:

- ZF-SLP: symbol-level ZF, assuming δδδ = 000 in (9).

- Optimal SLP: optimal solution to (9).

- NNLS-SLP (APGD): solving (9) via APGD algorithm.

- CF-SLP: closed-form approximate SLP solution of [13].

- ICF-SLP: Improved CF-SLP proposed in this paper.

In Fig. 1, the total transmit powers obtained from various precoding schemes are plotted as a function of target SINR, where

three different modulations are assessed in the whole range of depicted SINR. The results correspond to a fully-loaded system

with N = K . It can be seen that the ICF-SLP method improves the accuracy of the approximate solution by up to 3 dB,

compared to its naive counterpart CF-SLP. Further, ICF-SLP outperforms the NNLS-SLP method via APGD with nmax = 25.

The observations show that both the methods have nearly the same complexity in this range of K . The promising fact about

Fig. 1 is that ICF-SLP performs well close to the optimal SLP with a far less complexity, as we will see next.

In another set of simulations for an under-loaded system with β = 6/5, we evaluate the performance/complexity of different

solution approaches to the SLP problem (9). The results are presented in Fig. 2 as a function of the number of users K . The

optimal SLP solution is obtained using the lsqnonneg function of MATLAB, which uses the Lawson and Hanson active set

method to solve NNLS. As it can be seen, the resulting performance of CF-SLP noticeably degrades with increasing K , whereas

the proposed ICF-SLP shows a decreasing trend in transmit power (as that of the optimal SLP) for large system dimensions. The

optimality gap of ICF-SLP with K = 100 is just 0.15 dBW. This improvement becomes of great significance when we consider

also the time complexities of the two solutions; see Table I. Therefore, the time complexity results in Fig. 2 are consistent with

the analytical evaluations reported in Table I. This can be further verified through comparing ICF-SLP and the APGD-based

NNLS-SLP method. The latter method has a higher complexity growth rate, which is theoretically proportional to O(K2N) in

the limiting case. This might suggest a performance-complexity tradeoff. However, notice that with ηmax = 25, the dominating

complexity order of the APGD algorithm in the large system limit stems from the initialization step, which is higher than the

entire computation cost of ICF-SLP.
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Fig. 2. Transmit power and time complexity versus number of users, β = 6/5. Same line types and markers as those in the legend refer to the right axes but
with a different color.



VI. CONCLUSION

We proposed a low-complexity method to approximately solve the SLP power minimization problem with SINR constraints.

Due to the required per-symbol computation, solving the SLP optimization problem for the exact solution may lead to an

impractical transmitter complexity. To address this issue, we exploited the structure of an equivalent NNLS formulation of the

original problem. We modified an existing approximate solution by applying a computationally efficient validation step before

calculating the final solution. Based on our simulation results, this modification considerably reduces the loss with respect to the

optimal solution, particularly in the large system regime. Further, the new approximate solution is shown to be comparable with

the solution obtained from an iterative NNLS algorithm, from both performance and complexity points of view. It is, however,

concluded that as far as a low-complexity implementation of SLP with a close-to-optimal performance is of concern, the proposed

method provides a more efficient solution.
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