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Abstract—In practical content delivery, when the time-
frequency resources are limited, it is a challenging task to satisfy
terminals’ data demand in a heavy-traffic and mutual-interfered
scenario. In this paper, we investigate time-efficient and energy-
efficient solutions for content delivery at the network edge. We
formulate two resource allocation problems, aiming at minimizing
the total transmission time/energy in content delivery. The
problems are formulated as mixed-integer linear programming.
We obtain the global optimal solution by the branch-and-bound
algorithm which typically incurs long computational time. To
enable a computationally-efficient solution for fast and high-
quality decision making, we resort to learning-based approaches
to tackle the difficult combinatorial-optimization part. We inves-
tigate two deep-learning approaches, i.e., fully-connected deep
neural network (FC-DNN) and convolutional neural network
(CNN), to solve the problems. The FC-DNN and CNN are trained
to learn and predict the discrete decisions. We compare the
performance among FC-DNN, CNN, and the optimal solution.
The numerical results illustrate that the proposed learning-
based resource allocation approaches can achieve significant time-
saving gains in computation and have promising performance in
optimality approximation.

Index Terms—Resource optimization, convolutional neural net-
work, machine learning, content delivery networks.

I. INTRODUCTION

In a content delivery network, the system can usually be

fully-loaded, e.g., in presence of severe interference among a

large number of terminals with excessive data traffic requested

[1], [2]. In this scenario, the use of limited available resources

to efficiently serve the terminals at the cell edge is challenging.

As one of the solutions, popular contents can be cached at

the edge, such that most of the edge-terminals can be served

directly from the local cache. Otherwise, more resources, e.g.,

energy, time, are consumed if the terminals have to get the

service from the macro base station (MBS) remotely [3].

In the literature, extensive studies have been devoted to

develop advance algorithmic solutions to enable efficient

content-delivery schemes, e.g., aiming at reducing transmis-

sion delay [4], network energy consumption [5], and transmit

power [2]. As a matter of fact, most of the solutions are

offline, that is, the algorithms need long time to output the opti-

mized results with satisfactory performance. This considerable

computational delay impairs the algorithms’ applicability for

practical systems. The issue is that if the adopted algorithm

in a real-time environment cannot provide the optimization

results timely, when the new inputs or requests arrive, the

system has to wait, which is undesirable for network resource

management. As an emerging research area, integrating ma-

chine learning to resource optimization has received consider-

able research attention [6]–[9], [11]. In [7], [11], the authors

investigated machine-learning based approaches, e.g., training

a full-connected deep neural network (FC-DNN) or a logistic-

regression model, to address the resource scheduling problems

in caching, multi-antenna, and non-orthogonal multiple access

systems, respectively. As shown in [8], considerable efforts

have been devoted to apply reinforcement learning to resource

management in complex wireless networks. Recently, the

authors in [9] used convolutional neural network (CNN) as a

heuristic method to provide a fast solution for transmit power

control.

In this paper, content caching at the edge is firstly per-

formed. We then focus on two content-delivery problems,

minimum-time and minimum-energy, and solve the two prob-

lems under a unified learning-based framework. The optimiza-

tion decisions to be made in both problems are the same, i.e.,

determining the best strategy for grouping mobile terminals

(MTs) and allocating the time resources among the selected

groups. The problems are mixed-integer linear programming

(MILP). Conventionally, the global optimum can be obtained

by the branch-and-bound (B&B) algorithm but it is typically

time consuming. To significantly reduce the computational

time, we develop a learning-based resource allocation ap-

proach. Firstly by analysis, we identify the features to be

learned in resource allocation. Secondly, two deep-learning

models, CNN and FC-DNN, are trained to learn the mapping

between the channel gains and the optimal discrete decisions.

Unlike [9], the outputs from the CNN or FC-DNN cannot

directly provide a complete and feasible solution for solving

the formulated MILP. In addition, from the literature, how

to use machine learning to address constrained combinatorial

optimization problems is challenging and studied in a limited

extent [10]. We then rely on the deep-learning model to

tackle the combinatorial part in optimization which is most

difficult and computational-heavy in resource allocation. We

combine the predictions from CNN or FC-DNN with the

optimal B&B algorithm to enable a near-optimal, feasible, and
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fast solution. The numerical results show that for large-scale

instances, the designed CNN achieves better performance than

FC-DNN, in terms of prediction accuracy and computational

time. Compared to the conventional iterative algorithm B&B,

both the learning-based approaches demonstrate satisfactory

performance in computational efficiency and optimality ap-

proximation.

II. SYSTEM MODEL

A. Cellular Systems and Edge Caching

We consider downlink transmission in a multiple-input

single-output (MISO) cellular system, where a cache-enabled

small base station (SBS) equipped with L antennas is deployed

at the cell edge serving up to U single-antenna MTs. Due to

the limited storage capacity, the SBS follows standard caching

policy [1], [4], and proactively cache part of the most popular

files at the edge. The SBS can directly transmit a requested

file to its associated MT if the file is currently available in

the cache. Otherwise, the MT has to request the file from

the core network via the MBS remotely or from other nearby

cache-enabled devices at the edge. According to the cached

files at the SBS and the MTs’ requested files, the set of MTs

served by the SBS and the MBS can be divided as U and Ū ,

respectively.

In data transmission, the time domain is slotted. We suppose

that there are T time slots, i.e., a transmission frame, available

in the system. All the content delivery tasks should be finished

within T time slots in order to avoid extra transmission delay

at the MTs side. To reduce the signaling overhead, the channel

state information is collected once at each frame. We assume

the SBS occupies a dedicated channel with bandwidth B Hz,

which is orthogonal to the channel allocated to the MBS. All

the transmission links SBS-to-MTs share the same channel but

are sequentially scheduled in different time slots. We consider

quasi-static block fading channels, such that the channel fading

coefficients are fixed during a transmission frame. We remark

that the SBS are allocated by a dedicated channel in this work,

then the content delivery as well as the optimization task for

serving the MTs in U and Ū can be carried out independently.

We assume that the majority of the content delivery tasks are

from the SBS, thus we focus on the transmission in SBS-to-

MTs. The scheduling for the MTs in Ū follows analogously.

B. Transmission Model

At each time slot, one or multiple MTs can be scheduled

simultaneously. Let g denote a group, and Ug denote the MTs

included in group g, where |Ug| ≤ L on each time slot. In total,

we consider G = C1
U + . . . ,+CL

U possible candidate groups

by enumeration. For example, when U = 3 and L = 2, all

the candidate groups are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3},

and the group {1, 2, 3} is excluded. The channel vector of

MT u is denoted by hu ∈ C
L×1. We assume hu fol-

lows circular-symmetric complex Gaussian distribution hu ∼
CN (0, σ2

hu
IL), where σ2

hu
is the parameter of path-loss be-

tween the SBS and MT u. The SBS performs precoding before

transmitting data to MTs. Denote xg
u as the modulated signal

and wg
u ∈ C

L×1 as the precoding vector for MT u in group

g. The received signal for MT u ∈ Ug can be expressed as

ygu = hH
u wg

ux
g
u +

∑
i∈Ug\{u}

hH
u wg

i x
g
i + nu, (1)

where the first and second terms in (1) represent the desired

signal and the inter-MT interference respectively. nu is Gaus-

sian noise with zero mean and variance σ2. The signal-to-

interference-plus-noise ratio (SINR) for MT u ∈ Ug is given

by

SINRug =
|hH

u wg
u|2∑

i∈Ug\{u}
|hH

u wg
i |2 + σ2

. (2)

The achievable data rate can be expressed as

Rug = B log2 (1 + SINRug) , u ∈ Ug. (3)

We consider minimum mean square error (MMSE) precod-

ing for each group. We collect all the channels vectors hu

for the MTs in group g, and form a |Ug| × L matrix Hg .

Under MMSE, the beamformer vector for MT u in group g
is of the form wg

u =
√
puĥu, where pu is the transmit power

for MT u and ĥu is the column corresponding to MT u in

HH
g (σ2I+HgH

H
g )−1. In this work, a suboptimal algorithm,

iterative water-filling [12], is adopted to obtain the power

p1, . . . , pU among MTs. Denote αg
u,i = |hH

u ĥi|2, ∀u, i ∈ Ug ,

by the interference factor caused to MT u from the MT i’s
beamforming vector. The total power consumption in group g
is pg =

∑
u∈Ug

αg
u,upu, which is predefined for each group.

III. PROBLEM FORMULATION

In this section, we formulate two resource allocation prob-

lems, aiming at efficiently delivering all the required data in a

resource-constrained scenario. The optimization task amounts

to determining which MTs should be scheduled on a time slot,

and the time-slot allocation in content delivery. We introduce

integer variables xg ∈ {0, 1, . . . , T} to indicate the number of

used time slots for group g. We formulate two content delivery

problems with different objectives. To save time resources

for the system, a time-efficient content delivery problem is

formulated in P1.

P1: min
xg∈Z

G∑
g=1

xg (4a)

s.t.

G∑
g=1

xgRug ≥ Qu, ∀u = {1, . . . , U} (4b)

xg ∈ {0, 1, . . . , T}, ∀g ∈ {1, . . . , G} (4c)

P1 is to minimize the number of used time slots, such that each

MT’s data traffic Qu can be delivered in a timely manner.

Next, following the same structure, we consider an energy-

efficient delivery problem in P2 to minimize the total energy
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consumption with limited time resources, such that all the

content delivery tasks can be completed within T .

P2: min
xg∈Z

G∑
g=1

xgpg (5a)

s.t.

G∑
g=1

xgB log2(1 + SINRug) ≥ Qu, ∀u = {1, . . . , U}

(5b)

G∑
g=1

xg ≤ T (5c)

xg ∈ {0, 1, . . . , T}, ∀g ∈ {1, . . . , G} (5d)

Both P1 and P2 are mixed-integer linear programming

problems. Their NP-hardness has been discussed in [5], [11].

Conventionally, the B&B algorithm is a straightforward way to

obtain the global optimum, where a linear relaxation problem

is solved at each node of the branch-and-bound tree. Since the

computational complexity of the optimal algorithm increases

exponentially with the input size, the required computational

time also dramatically increases. For dealing with this issue

in real-time applications, next, we propose a learning-based

approach to provide a fast, feasible, and near-optimal solution

for P1 and P2.

IV. PROPOSED LEARNING-BASED APPROACHES

A. Features to be Learned

The optimization decisions in P1 and P2 consist of two

parts. One is to select the best MT groups from an exponential

number of candidates. The other is to determine how many

time slots to be allocated to these selected groups. We remark

that the major difficulties are from the first part which is

computationally heavy. Once the scheduled groups have been

decided, the remaining problem is relatively easy to solve. By

analyzing the optimal decisions, we observe that there exists

a pattern between the spatial features of channel coefficients

and the decisions of optimal groups. For example, two MTs

located distantly with weak mutual interference, or with signif-

icant difference in channel coefficients, are more likely to be

grouped together in the same time slot at the optimum. Thus,

we treat the grouping information, i.e., the most promising

groups with high probability to be scheduled, as the feature

to be learned and predicted by the deep-learning models.

In training-data generation, we obtain the optimal groups by

applying the optimal B&B algorithm. we organize the optimal

grouping information in a binary vector with number of U
elements, i.e., v = [v1, . . . , vi, . . . , vU ], where “1” in the i-th
element stands for that at least one i-cardinality group (the

groups containing exact i MTs) is scheduled, otherwise “0”.

For example, if U = 3 and the optimal scheduled groups

are {1,3}, {2}, then the vector reads v = [1, 1, 0]. In the

output layer of FC-DNN or CNN, the predicted information

is organized as same as the U -dimension vector v.

B. CNN-Based Structure

To establish a predicting system to produce v, in this paper

we adopt CNN to learn the relations between channel coeffi-

cients and the optimal groups. CNN has been widely used to

extract spatial features for image classification [13]. We use

CNN to exploit the spatial features from channel coefficients.

FC-DNN can be effective to capture the nonlinear input-output

relations. However, with the increased network scale, the

computational efficiency of FC-DNN might decrease. More-

over, parameter explosion due to its fully-connected structure

may result in over-fitting issues [14]. Unlike FC-DNN, in

CNN, only part of nodes are connected between two adjacent

convolution layers. As a result, CNN is able to use fewer

parameters to extract relevant features at a low computational

cost.

 

 

Input layer 
(channel matrix ) 

Convolution layer-1 
Pooling layer-1 

Full-connected layers  

Output layer  

Hidden 
layer-1  

Convolution kernel 
Pooling filter 

Convolution layer-2 
Pooling layer-2 

Hidden 
layer-2  

Figure 1. The designed CNN’s structure

Fig. 1 illustrates the structure of the adopted CNN which

consists of the following five main components.

• Input layer. In CNN, the input data is reorganized as an

image-like 3-dimension matrix. The first two dimensions

represent the image’s length and width while the last

dimension refers to the depth. For P1 and P2, the input

data refers to the channel matrix H below. To facilitate

training process, the channel coefficients can be further

normalized and converted to dB [9].

H =

⎡
⎢⎣

h1,1 · · · h1,U

...
. . .

...

hL,1 · · · hL,U

⎤
⎥⎦ . (6)

As the depth of the matrix H is 1, the size of the input

is L× U × 1.

• Convolution layer. As shown in Fig. 1, each neuron in

the convolution layer only connects a squared part of

the previous layer. This squared core is called filter or

convolution kernel. By our design, we use two convolu-

tion layers with a 3 × 3 and a 2 × 2 convolution kernel

respectively. The processing depth is set to 3. It means

that the kernel enables to transfer the node matrix into

a 3-tier unit node by convolution. Then the kernel will

move around to cover all the image with a fixed step.

The convolution layers try to analyze the data of each

kernel for obtaining the features with a higher level of

abstraction. More than that, since the weights are shared

via the convolution kernel, the number of parameters can

be significantly reduced in the neural network.
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Figure 2. Energy consumption in P2: Comparisons among CNN, FC-DNN, and the optimum
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Figure 3. Delivery time in P1: Comparisons among CNN, FC-DNN, and the optimum

• Pooling layer. Pooling layer is used to further decrease

the size of the output matrix from the previous convolu-

tion layer. Similar to the convolution layer, pooling layer

also adopts a filter to convert a node matrix as a unit node.

The pooling filter applies the maximizing or averaging

operations instead of convoluting operations.

• Fully-connected layer. The convoluting and pooling can

be regarded as a process of automatic feature extraction.

After that, full-connected (FC) layers are also needed to

generate the final output. The structure of FC layer is

identical with DNN.

• Output layer. By design, the output carries the estimated

information for the optimal grouping decisions, which is

referred to as binary vector v.

Once the predicted vector v is obtained from the CNN’s

output layer, we round the fractional values to binary. Then the

predicted groups can be derived by reading the “1” elements

from the rounded v. We use set G′ to denote the union of

the predicted groups from CNN, where |G′| ≤ U . Replacing

the original groups {1, . . . , G} by restricted set G′ in P1 and

P2, we can efficiently solve the restricted problems to enable a

feasible solution since the number of variables is now reduced

from an exponential number G to a small number which is

computationally light in general.

Table I
SYSTEM SETTINGS

Parameter Value
Number of edge MTs 5 – 15
Cell radius 300 m
Power allocation Iterative water-filling [12]
Dimension in input layer L× U × 1
Convolution layer-1 kernel 3× 3
Convolution layer-2 kernel 2× 2
Convolution layer step 1
Convolution layer depth 3
Pooling layer filter 2× 2
Pooling layer step 2
Pooling method Max pooling [6]
Nodes in hidden layer-1 200
Nodes in hidden layer-2 200
Nodes in output layer U
Active function ReLU [6]
Optimizer Adam optimization [14]
Training set size 5000
Test set size 100
Optimization Solver Python, Gurobi 8.0
DNN Implementation Python, TensorFlow

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the CNN

and FC-DNN based approaches for P1 and P2. Following the

same structure in Fig. 1, we extract an FC-DNN consisting

of an input layer, two hidden layers, and an output layer.

By comparing with the optimal B&B algorithm, we show the

performance of the DNN- and CNN-based methods in terms

of prediction accuracy and computation time. The simulation
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parameters are summarized in Table I.

A. Comparison in Prediction Accuracy

Fig. 2(a) and 2(b) demonstrate the energy consumption

by performing the CNN-based approach, the DNN-based

approach and the optimal algorithm for the cases of U =10 and

15 in P2, respectively. As shown in the results, 100 test sets are

used for evaluation. The average accuracy of the predictions

in CNN and FC-DNN is evaluated as follows,

1

100

100∑
i=1

V i
dl − V i

opt

V i
opt

, (7)

where Vdl and Vopt are the derived objective values, i.e., en-

ergy in P2 and time in P1, from the deep-leaning approaches,

i.e., FC-DNN and CNN, and the optimal algorithm, respec-

tively. From Fig. 2(a) and 2(b), the consumed energy in all

the cases increases with more MTs in the system. In average,

the prediction accuracy of the CNN-based approach is 96.90%

and 94.47%, while those of FC-DNN are 92.13%, 89.20%, for

U =10 and 15, respectively. Next, we evaluate the performance

for solving P1. The comparison for the content-delivery time

among FC-DNN, CNN, and optimal B&B, are shown in Fig.

3(a), and 3(b), for the cases of U=10, and 15, respectively.

The prediction accuracy of the CNN-based approach in P1

(analogous to the metric in Eq. (7)), achieves 97.27%, and

96.08% in the cases of U=10, and 15, respectively, whereas

the performance in FC-DNN slightly drops to 95.16%, and

93.78%.
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Figure 4. Computational time with respect to number of MTs

B. Comparison in Computational Time

The average computational time of optimal method ex-

ponentially increases in terms of the number of MTs. For

CNN and FC-DNN based methods, the computational time

consists of two parts, i.e., the time for CNN/DNN testing

and the post-processing time. Specifically, the testing phase

starts from giving a test set to the well-trained CNN/DNN,

until obtaining the predicted vectors v. The post-processing

time counts for resolving the small-scale optimization problem

by using restricted set G′. We observe from Fig. 4 that the

CNN and FC-DNN based approaches present much higher

computational-efficiency than the optimal method which in-

creases exponentially in computational time.

VI. CONCLUSIONS

We developed a CNN based approach for resource allo-

cation to enable a fast, feasible, and near-optimal solution

for both time-efficient and energy-efficient content delivery.

We formulated two resource allocation problems for min-

imizing delivery time and energy consumption in serving

MTs’ requests. We adopted an optimal algorithm B&B as

the performance benchmark. We designed FC-DNN and CNN

based approaches to approximate the combinatorial decisions.

Numerical results demonstrate the promising performance of

the developed learning-based resource allocation, in terms of

prediction accuracy and computational time.
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