
ar
X

iv
:1

90
8.

06
33

4v
1

 [
cs

.I
T

]
 1

7
A

ug
 2

01
9

Energy-Efficient Proactive Caching for Fog

Computing with Correlated Task Arrivals

Hong Xing∗, Jingjing Cui§, Yansha Deng†, and Arumugam Nallanathan§

∗College of Information Engineering, Shenzhen University, Shenzhen, China
§School of EECS, Queen Mary University of London, London, U.K.

†Department of Informatics, King’s College London, U.K.

E-mails: hong.xing@szu.edu.cn, j.cui@qmul.ac.uk, yansha.deng@kcl.ac.uk, nallanathan@ieee.org

Abstract—With the proliferation of latency-critical applica-
tions, fog-radio network (FRAN) has been envisioned as a
paradigm shift enabling distributed deployment of cloud-clone
facilities at the network edge. In this paper, we consider proactive
caching for a one-user one-access point (AP) fog computing
system over a finite time horizon, in which consecutive tasks of
the same type of application are temporarily correlated. Under
the assumption of predicable length of the task-input bits, we
formulate a long-term weighted-sum energy minimization prob-
lem with three-slot correlation to jointly optimize computation
offloading policies and caching decisions subject to stringent
per-slot deadline constraints. The formulated problem is hard
to solve due to the mixed-integer non-convexity. To tackle this
challenge, first, we assume that task-related information are
perfectly known a priori, and provide offline solution leveraging
the technique of semi-definite relaxation (SDR), thereby serving
as theoretical upper bound. Next, based on the offline solution,
we propose a sliding-window based online algorithm under
arbitrarily distributed prediction error. Finally, the advantage of
computation caching as well the proposed algorithm is verified
by numerical examples by comparison with several benchmarks.

Index Terms—Fog computing, mobile edge computing, com-
putation caching, computation offloading, online algorithm.

I. INTRODUCTION

Unprecedented growth of computation-extensive services

(such as video streaming analysis, virtual reality (VR), and

autonomous driving) prohibits the cloud-radio access network

(CRAN) from continuously satisfying their latency-critical

demands due to increasing transmission delay over long

distance between the cloud and the users. To resolve such

challenges, fog-radio access network (FRAN), as an evolution

of CRAN, is paving its way to provide ultra-reliable and

low-latency (uRLLC) services for future wireless networks

by pushing cloud-like capabilities, namely, fog computing and

edge caching, to the network edge [1], [2].

Fog computing, also known as mobile edge computing

(MEC), endows the edge access points (APs) with computing

and storage capacities, such that low-power wireless devices

can seek nearby APs that are integrated with edge servers for

task offloading, thus enabling energy-saving computation in

real time. In the literature, a large amount of efforts have been

devoted to achieving satisfied trade-offs between the cost of the

network and latency by joint management of computation and

communication resource as well as task offloading decisions

(see e.g., [3]–[5]).

Meanwhile, edge caching allows users to fetch popular

contents from near by APs and/or users, thus alleviating

the growing over-the-air traffic. Existing works have mainly

focused on improving the efficiency of cache-enabled content

distribution (see [6] and the references therein), whereas,

caching aimed for saving the edge servers from repeated

computing is less studied. The authors in [7] investigated

proactive caching for achieving uRLLC in fog networks.

However, they assumed that the popular computation tasks

that had been cached a priori can be completely reused when

requested later, which is too ideal in practice, since unlike

content distribution, computation services usually adopt one-

time data sets that are hardly rendered the same later on.

Hence, it is crucial to understand what to cache by carefully

exploiting the intrinsic data correlation among task arrivals.

Note that although [8] and [9] considered joint service caching

and task offloading, they did not model how the computation

offloading can benefit from dynamic caching of correlated (not

necessarily the same) task results.

In this work, we study proactive caching for a fog comput-

ing system consisting of one user terminal (UT) and one AP

over a finite time horizon leveraging the correlation among

delay sensitive task sequence such that the task results cached

at the current slot can facilitate future computing. To our best

knowledge, this is the first work aimed for minimizing the

long-term weighted-sum energy by jointly optimizing com-

putation offloading policies and caching decisions. With the

correlation lying among three consecutive slots and imperfect

task-input prediction, first, we provide an offline solution

based on semi-definite relaxation (SDR), which serves as an

performance upper bound. Next, we propose a sliding-window

inspired online solution taking causally known prediction

error into account. Finally, numerical results show striking

performance gains brought by computation caching as well

as the effectiveness of the proposed online algorithm.

We use the upper case boldface letters for matrices and

lower case boldface ones for vectors. The superscripts (·)T

and (·)∗ represent, respectively, the transpose and the optimum

solution of vectors or matrices. We also denote the trace of a

matrix by Tr(·).

http://arxiv.org/abs/1908.06334v1

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a fog computing system consisting of one

UT equipped with one single antenna, and one access point

(AP) equipped with M antennas, an edge server and cache

facilities. During slot i, the UT solicits the nearby AP for

computation task offloading. In this paper, we focus on a finite

slotted-time horizon with each slot lasting T seconds, denoted

by N = {1, . . . , N}, over which sequential tasks featuring

temporally correlated input data arrive at the UT as shown in

Fig. 1. We assume that each task has to be executed by the

end of the time slot. Since the computing results obtained

at the current slot are also correlated with those at future

slots, current task results can be cached at the AP to facilitate

the future computation1. Due to the extra overhead caused

by caching (delay, energy, storage), it may not be optimal to

cache all the execution results at the edge server. Therefore,

we introduce the following variable Ii, i ∈ N , to indicate

whether the AP decides to cache the results at the end of slot

i:

Ii =

{

1, if the BS decides to cache the results,

0, otherwise.
(1)

As a result, the workflow of the cache-enabled fog com-

puting system in consideration can be described as follows.

The UT offloads a proportion of the task to the AP while

performing local computing for the rest of the task. If the

AP decides not to cache the task results of the current slot,

the UT just need to receive the execution results from the

AP, otherwise the UT is also required to upload its local

computing results to the AP at the end of the current slot. Since

the AP is usually of sufficient communications resource. e.g.,

high transmitting power, we ignore the delay/energy caused

by results downloading at the UT in the sequel.

12N-1 11221

...

NN 1:2:

Two correlated tasks:

Offloading

Uploading

Task arrives

Computing Cache

Downlink

transmission

New results

Discard previous

results

Fig. 1. System model of the one-user one-server fog computing system.

A. Local Execution, Task Offloading and Computation Up-

loading at the UT

We assume that the length of task-input bits at slot i ∈ N ,

denoted by Li’s, is predictable but with finite estimation error

shown as Li = L̂i+∆Li, in which {∆Li} can be an arbitrary

(deterministic or stochastic) sequence. At any slot i ∈ N , the

exact task-input length up to slot i, i.e., Lk’s for k ≤ i, is

1A typical example is matrix-vector multiplication of y
i
= Axi, i ∈ N ,

where xi’s is the encoded task-input data. Supposing xi = xi−1 + ε with a
sparse error ε, the current computation can benefit from caching at slot i− 1
by executing only ε with much shorter input length.

known to the AP, while only the predicted task-input length,

i.e., L̂k’s for k > i, is available for all future slots. We model

the task-input bits that are required to be executed at slot i in

terms of previous caching decisions as follows:

Di = Li

(

(Ii−1τ1 + . . .+

k−1
∏

j=1

(1− Ii−j)Ii−kτk + . . .

+

r−1
∏

j=1

(1− Ii−j)Ii−rτr +

r
∏

j=1

(1− Ii−j)
)

, (2)

where τ = [τ1, . . . τr]
T with increasing τj ∈ [0, 1], j =

1, . . . , r, is a prescribed vector capturing the diminishing effect

of the previously cached results on reducing the current task-

input length. Note that only the latest cached results are useful.

(E.g., if Ii−1 = 0 and Ii−2 = 1, (2) reduces to Di = Liτ2 in

spite of the values that Ii−k for k ≥ 3 take.) In addition, any

results cached far more than r slots before are assumed to be

no longer exploitable.

Local Execution The cache-enabled task-input bits Di’s

will be divided into li and Di − li for local and remote

execution, respectively, where li ∈ [0, Di]. The required CPU

cycles for UT’s local execution at slot i is given by clocli [3],

where cloc in cycles per bit depends on the application type

and the CPU architecture of the UT. Assuming constant CPU

frequency floc adopted by the UT, the corresponding energy

consumption for local computation at slot i is expressed as

[10]

Eloc
c,i = κloccloclif

2
loc, (3)

where κloc is the effective capacitance coefficient of the UT’s

CPU chip.

Task Offloading By applying maximum ratio combing

(MRC) at the AP, the achievable offloading rate at slot i,
i ∈ N , is thus given by roffi = Boff log2(1 + pihi), where

hi is the normalized channel gain from the UT to the AP at

slot i, and Boff is the pre-assigned transmission bandwidth

(BW) for task offloading2. It thus takes toffi = (Di − li)/r
off
i ,

for task offloading, and the associated energy consumption for

task offloading is given by

Eoff
i =

pi(Di − li)

roffi
. (4)

Computation Uploading Suppose that there is little cache

capacity allocated for computation caching at the UT. When

the current task results are decided to be cached at the end

of slot i, i ∈ N , the UT needs to upload its locally executed

results to the AP so as to maintain the integrity of computation

results for future use. Given the UT’s uploading rate, rupi ’s,

the consumed energy for computation uploading at the UT is

thus given by

Eup
i = Ii

piRi

rupi
, (5)

2We assume that frequency division multiple access (FDMA) is adopted
for task offloading and computation results uploading, respectively.

where Ri is the length of the task-output bits, which is

assumed to have been perfectly profiled given the type of

application (c.f. footnote 1).

B. Remote Execution and Computation Caching at AP

In the considered model, the AP is responsible for profiling

the task information (L̂i’s and Ri’s) as well as the channel state

information (CSI) (hi’s gi’s), and collecting other required

information a priori. Based on these information, the AP will

dynamically make and inform the UT of the caching decisions

and the offloading policies.

Remote Execution Similar to (3), the energy consumption

for remote execution is expressed as

Ee
c,i = κece(Di − li)f

2
e , (6)

where κe and ce denote the effective capacitance coefficient,

and the number of cycles required for executing one task-input

bit at the edge server’s CPU, respectively.

Computation Caching If the AP decides to cache the task

results at the current slot, it then expects to receive UT’s

uploading of its local computing results before combining

them with the remotely executed task to form an integrated

copy of the task results ready for caching.

C. Problem Formulation

We are interested in minimizing the total weighted-

sum energy consumption over the finite horizon N , i.e.,
∑

i∈N (α1(E
loc
c,i + Eoff

i + Eup
i) + α0E

e
c,i), where α1 and α0

satisfying α1 + α0 = 1 are the coefficients balancing the

energy saving priority between the UT and the AP. Under the

per-slot deadline constraint for each task, we aim to jointly

optimize the computation offloading policies {li} and the

binary caching decisions {Ii}. Combining (3), (4), (5), and (6),

the long-term energy minimization problem is thus formulated

as:

(P1) : Min
{li,Ii}

∑

i∈N

(

α1

(

κloccloclif
2
loc + Ii

piRi

rupi

+
pi(Di − li)

roffi

)

+ α0κece(Di − li)f
2
e

)

s.t.
Di − li

roffi
+

ce(Di − li)

fe
≤ T, ∀i ∈ N , (7a)

clocli
floc

+ Ii
Ri

rupi
≤ T, ∀i ∈ N , (7b)

0 ≤ li ≤ Di, ∀i ∈ N , (7c)

Ii ∈ {0, 1}, ∀i ∈ N . (7d)

III. OFFLINE COMPUTATION OFFLOADING AND CACHING

In this section, we consider offline solution for problem (P1)

by assuming that the predictable task-input length {Li} are

perfectly known a priori at the AP. The offline solution thus

serves as fundamental performance upper bound for all other

online schemes that are designed for practical implementation.

In this paper, we focus on a special case of r = 2 (c.f. (2)).

More general cases will be studied in our future work.

The major difficulty for solving (P1) lies in the binary

variables Ii’s. To tackle this challenge, first, we equivalently

formulate (7d) as Ii(Ii − 1) = 0, ∀i ∈ N), and then trans-

form the problem into a quadratically constrained quadratic

program (QCQP) in terms of I = [I1, . . . , IN]T . Next, we

convert the QCQP into a semi-definite programming (SDP)

as follows. First, we define F
′ = [(1 − τ2)F , 1

2v;
1
2v

T , 0],

where F =
N
∑

i=3

piLi

roff
i

Gi−2,i−1, Gi−2,i−1 is a symmetric matrix

with only Gi−2,i−1(i − 2, i − 1) and Gi−2,i−1(i − 1, i − 2)

being 1
2 , v = (τ1 − 1)

N
∑

i=2

piLi

roff
i

ei−1 + (τ2 − 1)
N
∑

i=3

piLi

roff
i

ei−2,

and ej denotes a vector with only the jth element being 1;

W = [0N×N , 1
2w; 1

2w
T , 0], where w = [p1R1

r
up
1

, . . . , pNRN

r
up
N

]T ;

u = [p1

roff1
, . . . , pN

roff
N

]T , G′ = [(1 − τ2)G, 1
2s;

1
2s

T , 0], where

G = ce
N
∑

i=3

LiGi−2,i−1, and s = (τ1 − 1)ce
N
∑

i=2

Liei−1 +

(τ2 − 1)ce
N
∑

i=3

Liei−2; Ei = [0N×N , 1
2ei;

1
2e

T
i , 0]; and U i =

[diag(ei),−
1
2ei;−

1
2e

T
i , 0]. Next, we introduce a = [I; 1] and

A = aaT . Then, by relaxing the rank-one constraint for A

[11] and some manipulations, problem (P1) is recast into an

SDP as shown in the following proposition.

Proposition 3.1: By relaxing the rank-one constraint, prob-

lem (P1) is equivalent to an SDP shown below:

(P1′) : Min

A,l
α1 (Tr(AF

′) + Tr(AW)− u
T
l+

κlocclocf
2
loc1

T
l
)

+ α0κef
2
e

(

Tr(AG
′)− ce1

T
l
)

s.t.
(1

roffi
+

ce
fe

)

(Di(A)− e
T
i l) ≤ T, ∀i ∈ N , (8a)

Ri

rupi
Tr(AEi) +

cloc
floc

e
T
i l ≤ T, ∀i ∈ N , (8b)

e
T
i l−Di(A) ≤ 0, ∀i ∈ N , (8c)

Tr(AU i) = 0, ∀i ∈ N , (8d)

A(N + 1, N + 1) = 1, (8e)

l ≥ 0, A � 0. (8f)

Proof: Due to the space limitation, we only provide a key

step in the proof, i.e., to express Di’s in terms of A. Since

Di = Li((τ1 − 1)Ii−1+(τ2− 1)Ii−2+(1− τ2)Ii−1Ii−2+1),
i ≥ 3, it follows that Di = LiTr(AH i), i ≥ 3, where Hi =
[(1 − τ2)Gi−2,i−1,

1
2 ((τ1 − 1)ei−1 + (τ2 − 1)ei−2);

1
2 ((τ1 −

1)ei−1 + (τ2 − 1)ei−2)
T , 1].

As (P1′) is an SDP, we can solve (P1′) by some off-the-

shelf convex software tools, such as CVX [12]. Since there

is no guarantee that A∗ for (P1′) is rank-one, it in general

only serves as a lower-bound solution for (P1). To construct

the binary caching decisions, we need to retrieve I from

A
∗. Specifically, if rank(A∗) = 1, I∗ can be recovered by

singular-value decomposition (SVD) such that A∗ = a∗a∗T .

Otherwise, we propose to approximate Ii’s as follows.

Iappi = round(A∗(i, N + 1)), i ∈ N , (9)

which is based on the following lemma [4].

Lemma 3.1: The optimum A
∗ for problem (P1′) satisfies

A
∗(i, N + 1) ∈ [0, 1], i ∈ N .

Once I
app is ready, the corresponding offloading policies lapp

can be easily obtained by solving (P1′) with A = aappaappT

fixed (aapp = [Iapp; 1]), which then turns out to be a linear

programming (LP) problem in terms of l.

As per Lemma 3.1, when A
∗ is rank-one, the approximation

is tight because I∗i = a∗i = a∗i a
∗
N+1 = A∗(i, N + 1). It thus

implies that the effectiveness of the approximated caching

decisions primarily depends on the rank property of A
∗.

The following proposition reveals a sufficient condition for

achieving low-rank A
∗ that is easily satisfied in practice [4].

Proposition 3.2: When the constraints given by (8c) are

all inactive, i.e., non-zero task offloading at all the slots,

rank(A∗) ≤ 2.

Proof: Please refer to Appendix A.

IV. ONLINE COMPUTATION OFFLOADING AND CACHING

In the previous section, we have provided an SDR-based of-

fline solution under the ideal assumption that the random task-

input length Li’s is perfectly predicted without error. In this

section, inspired by the offline solution, we propose a sliding-

window based online scheme that applies to error sequence

{∆L1, . . . ,∆LN} following arbitrary stochastic process [13].

Specifically, as stated in Section II, at any slot i, the

exact task-input length is perfectly known up to the current

slot, i.e., {L1, . . . , Li}, whereas only the predictable task-

input length, i.e., L̂i+1, . . . , L̂N , is available for all future

slots. First, we define a set S = {1, . . . , S}, where S is the

length of the sliding-window. Note that since the parameter S
balances between exploitation of the long-term prediction and

accuracy of the algorithm, it is required to be carefully chosen

in practice. Second, we focus on minimizing the weighted-

sum energy over the span of the sliding-window from slot

i, i.e., slots {i, . . . , i + S − 1}. Then, by specifying the

parameters using their consecutive S-slot values from slot

i3, e.g., {L
(i)
1 , L

(i)
2 , . . . , L

(i)
S } = {Li, L̂i+1, . . . , L̂i+S−1}, we

sequentially solve the following problem for all the slots.

(P1-ol) : Min

A
(i)

,I
(i)
α1

(

Tr(A(i)
F

′(i)) + Tr(A(i)
W

(i))− u
(i)T

l
(i)

+ κlocclocf
2
loc1

T
l
(i)
)

+ α0κef
2
e

(

Tr(A(i)
G

′(i))− ce1
T
l
(i)
)

s.t.
(1

r
off(i)
j

+
ce
fe

)

(D
(i)
j (A(i))− e

T
j l

(i)) ≤ T, ∀j ∈ S,

R
(i)
j

r
up(i)
j

Tr(A(i)
Ej) +

cloc
floc

e
T
j l

(i) ≤ T, ∀j ∈ S,

e
T
j l

(i) −D
(i)
j (A(i)) ≤ 0, ∀j ∈ S,

Tr(A(i)
U j) = 0, ∀j ∈ S,

A
(i)(N + 1, N + 1) = 1,

l
(i) ≥ 0, A

(i) � 0,

3When the last index of the sliding-window exceeds N , we substitute the
(prediction) values of the parameters from slot 1 to S− 1 for those from slot
N + 1 to N + S − 1.

where ej , j ∈ S, is similarly defined as in (P1′), and so

are Ej’s and U j’s through proper dimension modification.

Next, by reconstructing I
app(i) and l

app(i) from the solution to

(P1-ol), we attain the proposed online computation offloading

policies {l̃i} and caching decisions {Ĩi} by l̃i = l
app(i)
1 and

Ĩi = I
app(i)
1 , i ∈ N , respectively. The above procedure for the

online scheme is summarized in Table I.

TABLE I
PROPOSED ONLINE ALGORITHM FOR PROBLEM (P1)

Require: i← 1
1: repeat

2: Solve (P1-ol) at slot i, and obtain its optimal solution A(i)∗;

3: Reconstruct Iapp(i) based on A(i)∗ by similar means of (9);

4: Given Iapp(i) , solve the reduced LP associated with (P1-ol) to obtain

lapp(i);

5: Ĩi ← I
app(i)
1 and l̃i ← l

app(i)
1 ;

6: i← i+ 1.
7: until i = N

Ensure: {Ĩi, l̃i}

V. NUMERICAL RESULTS

In this section, we verify the effectiveness of our proposed

online computation offloading and caching scheme against

theoretical performance upper bound and other benchmark

schemes through numerical simulations. Specifically, ‘Lower-

bound’ shows the optimal solution to (P1′) based on SDR,

which is only achievable when the approximation is tight;

‘Random caching’ is obtained by setting {Ii} as a 1
2 -Bernoulli

process; ‘No caching’ refers to the results ignoring the corre-

lation among task-input data; and “All caching” provides the

case when {Ii = 1}. At each slot, we consider Rayleigh fading

channel models with the distance-dependent pathloss set as

−117dB (0.5km) over transmission BWs of Boff = Bup =
2.5MHz. The estimation of the task-input length follows a

uniform distribution, denoted by L̂i ∼ U [105, 106]bits, i ∈ N ,

and the profile of the associated task-output length is set as

Ri ∼ U [105, 106]bits. Other parameters are set as follows

unless otherwise specified: M = 3; α1 = 0.85, α0 = 0.15;

{τ1 = 1
2 , τ2 = 3

4}; {pi = 24}dBm; floc = 800MHz, fe =
2GHz; Cloc = Ce = 103 cycles/bit; and κloc = κe = 10−28.

The results shown below are obtained by averaging over 500-

time realizations of the predication error sequence {∆Li}, in

which ∆Li’s is modelled as i.i.d. Gaussian variables with zero

mean and variance of σ2.

Fig. 2 shows the average weighted-sum energy versus the

computation deadline T with σ2 = 104. It is observed

that the weighted-sum energy for all the schemes gradually

goes down as the per-slot deadline gets extended, which is

intuitively true, since the longer T is, the higher the chances

that more of the task-input bits can be executed locally

within the deadline, which thus saves UT’s energy for task

offloading. The approximate offline solution is also shown to

approach the lower-bound SDR solution with negligible gap.

Furthermore, the proposed online joint computation offloading

and caching scheme outperforms all the other fixed-caching

schemes, which corroborates the importance of computation

caching in latency-critical scenarios.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Per-slot deadline constraints (in seconds)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
ve

ra
ge

 w
ei

gh
te

d-
su

m
 e

ne
rg

y
(in

 J
ou

le
)

 Lower-bound
 Offline
 Random caching
 No caching
 All caching
 Online, S=8

Fig. 2. Average weighted-sum energy versus the per-slot deadline constraint.

0 2 4 6 8 10
Prediction error standard variance (bits) 104

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
ve

ra
ge

 w
ei

gh
te

d-
su

m
 e

ne
rg

y
(in

 J
ou

le
)

 Lower-bound
 Offline
 Online, S=4
 Online, S=6
 Lower-bound
 Offline
 Online, S=4
 Online, S=6

T=.3

T=.4

Fig. 3. Average weighted-sum energy versus standard variance of the task-
input length prediction error.

Fig. 3 demonstrates the average weighted-sum energy versus

the standard variance of the prediction error ∆Li’s. It is seen

that our online algorithms under different deadline constraints

are overall robust against a wide range of standard variance. In

both cases of T = 0.3 and T = 0.4 seconds, the performance

of the online scheme with a window length of S = 6 is inferior

to that with a window length of S = 4 with noticeably larger

gap in the more strict deadline constraint of T = 0.3, which is

due to the advantage of the short-size window in coping with

uncertainties. Furthermore, the online algorithm with S = 6
becomes worse off when σ exceeds about 5×104 (7×104) in

the case of T = .3 (T = .4) seconds, since the effectiveness

of the long-term prediction starts being compromised by the

increasing estimation error.

VI. CONCLUSION

This paper studied a one-UT one-AP fog computing system

over a finite time-slotted horizon, in which each computation

task was required to be executed by the end of the slot,

and dynamic computation caching was allowed such that the

AP could decide whether to cache the current task results

for relieving its computation burden in the future. Under the

assumption of three-slot correlation and imperfect estimation

of the task-input bit-length, a joint computation offloading and

caching optimization problem was formulated to minimize the

long-term weighted-sum energy consumption of the UT and

the AP. To tackle the challenging mixed-integer non-convex

problem, we approximated the problem by an SDP, based

on which an offline solution assuming perfect knowledge

of task-input length was provided, while a sliding-window

based online scheme was also developed to cater for unknown

prediction error of the future task arrivals. By comparison

with several benchmark schemes, the proposed online algo-

rithm with short-size window demonstrated striking robustness

against prediction error. In addition, the approximation was

also shown to be near-optimal by numerical examples under

practical settings.

APPENDIX A

Only a sketch of the proof is provided herein due to

the space limitation, and detailed proof will be presented

in the longer version of this paper. First, by providing the

(partial) Lagrangian of (P1′) in terms of A
∗ and the as-

sociated Karush-Kuhn-Tucker (KKT) conditions, show that

A
∗ ∈ R

(N+1)×(N+1) lies in the null space of a matrix

containing a tri-diagonal sub-matrix. Next, show that under

the above sufficient condition, he rank of this matrix is no

less than N − 1, and thus rank(A∗) ≤ 2 is proved.

REFERENCES

[1] R. Tandon and O. Simeone, “Harnessing cloud and edge synergies:
toward an information theory of fog radio access networks,” IEEE

Commun. Mag., vol. 54, no. 8, pp. 44–50, Aug. 2016.
[2] Y. Y. Shih, W. H. Chung, A. C. Pang, T. C. Chiu, and H. Y. Wei,

“Enabling low-latency applications in fog-radio access networks,” IEEE

Netw., vol. 31, no. 1, pp. 52–58, Jan. 2017.
[3] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing

optimization in wireless powered mobile-edge computing systems,”
IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1784–1797, Mar.
2018.

[4] M. Chen, B. Liang, and M. Dong, “Multi-user multi-task offloading
and resource allocation in mobile cloud systems,” IEEE Trans. Wireless

Commun., vol. 17, no. 10, pp. 6790–6805, Oct. 2018.
[5] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading

for mobile-edge computing with energy harvesting devices,” IEEE J.

Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.
[6] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role

of proactive caching in 5g wireless networks,” IEEE Commun. Mag.,
vol. 52, no. 8, pp. 82–89, Aug. 2014.

[7] M. S. Elbamby, M. Bennis, and W. Saad, “Proactive edge computing
in latency-constrained fog networks,” in Proc. European Conference on

Networks and Communications (EuCNC), Oulu, Finland, Jun. 2017.
[8] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offload-

ing for mobile edge computing in dense networks,” in Proc. IEEE

International Conference on Computer Communications (INFOCOM),
Honolulu, HI, USA, Apr. 2018.

[9] Y. Hao, M. Chen, L. Hu, M. S. Hossain, and A. Ghoneim, “Energy
efficient task caching and offloading for mobile edge computing,” IEEE

Access, vol. 6, pp. 11 365–11 373, Mar. 2018.
[10] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-

ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, third quart. 2017.

[11] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” IEEE Signal Process.

Mag., vol. 27, no. 3, pp. 20–34, May 2010.
[12] M. Grant and S. Boyd, “CVX: Matlab software for disciplined

convex programming, version 2.1,” Mar. 2014. [Online]. Available:
http://cvxr.com/cvx

[13] K. Rahbar, J. Xu, and R. Zhang, “Real-time energy storage manage-
ment for renewable integration in microgrid: An off-line optimization
approach,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 124–134, Jan.
2015.

http://cvxr.com/cvx

	I Introduction
	II System Model and Problem Formulation
	II-A Local Execution, Task Offloading and Computation Uploading at the UT
	II-B Remote Execution and Computation Caching at AP
	II-C Problem Formulation

	III Offline Computation Offloading and Caching
	IV Online Computation Offloading and Caching
	V Numerical Results
	VI Conclusion
	Appendix A
	References

