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Abstract—Base station (BS) architectures for massive multi-
user (MU) multiple-input multiple-output (MIMO) wireless
systems are equipped with hundreds of antennas to serve tens of
users on the same time-frequency channel. The immense number
of BS antennas incurs high system costs, power, and interconnect
bandwidth. To circumvent these obstacles, sophisticated MU
precoding algorithms that enable the use of 1-bit DACs have
been proposed. Many of these precoders feature parameters that
are, traditionally, tuned manually to optimize their performance.
We propose to use deep-learning tools to automatically tune
such 1-bit precoders. Specifically, we optimize the biConvex 1-bit
PrecOding (C2PO) algorithm using neural networks. Compared
to the original C2PO algorithm, our neural-network optimized
(NNO-)C2PO achieves the same error-rate performance at 2×
lower complexity. Moreover, by training NNO-C2PO for differ-
ent channel models, we show that 1-bit precoding can be made
robust to vastly changing propagation conditions.

I. INTRODUCTION

Massive multiuser (MU) multiple-input multiple-output
(MIMO) will be a core technology in fifth-generation (5G)
wireless systems [1]–[3]. By equipping the base station (BS)
with hundreds of antennas, massive MU-MIMO permits
communication with tens of user equipments (UEs) in the
same time-frequency resource using fine-grained beamforming.
However, such systems with hundreds of BS antennas, in which
each antenna is connected to a high-precision radio frequency
(RF) chain, would result in prohibitively high system costs,
power consumption, and interconnect bandwidth between
the baseband processing unit and the remote radios. Thus,
novel BS architectures, in combination with efficient baseband-
processing algorithms, are necessary to reduce the cost, power,
and interconnect bandwidth of massive MU-MIMO systems,
while preserving high reliability and spectral efficiency.

A. Massive MU-MIMO with Low-Precision BS Architectures

The cost, power, and interconnect bandwidth of massive
MU-MIMO BSs can be greatly reduced by using low-precision
digital-to-analog converters (DACs). Such an architecture
tolerates decreased linearity and noise requirements for the
RF circuitry, enabling the use of low-cost and power-efficient
analog circuits. However, advanced baseband algorithms are
needed to attain high spectral efficiency.

The work of ABS was supported by the Swiss NSF under projects #184772
and #182621. The work of OC and CS was supported in part by Xilinx Inc. and
by the US NSF under grants ECCS-1408006, CCF-1535897, CCF-1652065,
CNS-1717559, and ECCS-1824379.

In the downlink (i.e., when the BS transmits to the UEs),
linear precoders (e.g., maximal-ratio transmission (MRT) or
zero-forcing (ZF) precoding) followed by quantization result
in low complexity algorithms that suppress MU interference
using low-precision DACs, at the cost of a significant bit
error-rate (BER) performance degradation [4]–[6]. In contrast,
sophisticated nonlinear precoders [7]–[16] achieve superior
BER performance (especially in the extreme case where
a pair of 1-bit DACs per RF chain is used), at the cost
of a higher complexity. Existing nonlinear precoding algo-
rithms require manual parameter tuning to optimize the BER
performance [13]. Parameter tuning is time-consuming and
may yield suboptimal results in realistic systems with vastly
changing propagation conditions. Furthermore, most existing
precoders have only been evaluated in idealistic Rayleigh-
fading conditions, and it remains unclear whether they also
provide a satisfactory performance in realistic channels.

B. Contributions

In this paper, we propose to use neural-network optimization
tools to tune the algorithm parameters of the nonlinear
biConvex 1-bit PrecOding (C2PO) algorithm proposed in [13].
Specifically, we unfold the C2PO iterations and use backpropa-
gation for parameter tuning. We show that the resulting neural-
network optimized C2PO (NNO-C2PO) algorithm delivers
significantly improved performance when compared to C2PO
for the same number of iterations, for a range of channel
models. More interestingly, we show that NNO-C2PO can
use the same set of learned per-iteration parameter values on
vastly different channel models at a negligible performance
loss compared to the case where the algorithm is separately
trained for each channel model. In contrast, the original C2PO
algorithm is unable to deal with different channel models,
even when its single set of parameters is trained in the same
way as NNO-C2PO. Overall, our results illustrate that, by
using machine learning techniques, existing iterative nonlinear
precoders can significantly improve their BER performance,
while also becoming robust to changing channel conditions.

C. Relevant Prior Art

Several recent works have explored the application of
machine-learning techniques to different problems that arise
in the context of massive MU-MIMO. The majority of results
have focused on data detection [17]–[23], while some have
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Fig. 1. Simplified view of a massive MU-MIMO downlink system with
low-resolution DACs: A BS with B antennas uses a finite-alphabet precoder
to transmit data to U single-antenna UEs through a wireless channel.

tackled channel estimation [18], [24], and only [25] has
considered the case of (non-quantized) downlink precoding.
However, most of these results [17]–[20], [25] consider deep
learning models that are highly parametrizable (e.g., containing
multiple dense layers), and thus, both difficult to train and
too complex to implement in practice. The methods proposed
in [21], [22] are the most closely related to our work, since
they also unfold iterative algorithms and learn a small set
of algorithm parameters from training data. We note that
some of the parameters that are trained in [21], [22] are
introduced arbitrarily into the algorithm, while the C2PO
algorithm that we use already contains tunable parameters by
design. To our knowledge, the unfolding technique has not
been examined in the context of 1-bit precoding in massive
MU-MIMO systems before. Moreover, the robustness of the
learned communications systems (particularly, 1-bit massive
MU-MIMO systems) to changing channel conditions is a
practically-relevant issue that has not been addressed to date.

II. SYSTEM MODEL AND 1-BIT PRECODING

A. System Model

We focus on the downlink of a single-cell, narrowband
massive MU-MIMO system as shown in Figure 1, where a
BS equipped with B antennas serves U � B UEs with one
antenna each. This system is modeled as y = Hx+n, where
y = [y1, . . . , yU ]

T ∈ CU comprises the signals received by
each UE, H ∈ CU×B is the downlink MIMO channel matrix
(which is assumed to be perfectly known at the BS), n ∈ CU
models i.i.d. circularly-symmetric complex Gaussian noise
with variance N0 per complex entry, and x ∈ XB is the
precoded vector with entries chosen from the discrete set X
determined by the DAC outputs. We assume that the precoded
vector satisfies an instantaneous power constraint ‖x‖22 ≤ P .

B. 1-bit Precoding

For the case of 1-bit precoding, where both the in-phase
and quadrature paths are fed by 1-bit DACs, we have X =
{+υ+ jυ,+υ− jυ,−υ+ jυ,−υ− jυ}, where υ ∈ R+ is set
to satisfy the power constraint. The objective of the precoder
at the BS is to take a symbol vector s = [s1, . . . , sU ]

T ∈ OU
and to map it to a precoded vector x ∈ XB that is transmitted
through the BS antennas. The vector x is chosen so that, after
transmission through the wireless channel, the received signal
yu at the uth UE is proportional to the transmitted symbol su.
We assume that each UE is able to rescale the received signal

yu by a common scalar β ∈ C to estimate the symbol su, i.e.,
the UEs compute ŝu = βyu. For mean-squared error (MSE)-
optimal precoders, the optimal precoding problem (OPP) can
then be formulated as [13]:

(OPP) {x̂, β̂} = arg min
x∈XB, β∈C

‖s− βHx‖22 + |β|2UN0. (1)

As shown in [8], the users can accurately estimate β̂. For 1-bit
massive MU-MIMO systems, several algorithms have been
proposed to approximately solve (OPP) using convex [7], [8]
and nonconvex [13] relaxations.

C. C2PO: Biconvex 1-bit Precoding

In this work, we will follow the C2PO algorith put forward
in [13], as it leads to a simple, yet efficient, algorithm that has
been implemented in hardware. To arrive at low-complexity
approximate solutions to (OPP), C2PO assumes that the system
operates in the high-SNR regime, so that N0 → 0. Then, with
an additional approximation [13, Eq. (2)], (OPP) is re-written:

(OPP∗) {x̂, α̂} = arg min
x∈XB , α∈C

‖αs−Hx‖22 . (2)

The optimal value for α, can be computed in closed form as
α̂ = sHHx/‖s‖22. Substituting this result into (OPP∗) leads
to the following equivalent form:

(OPP∗∗) x̂ = arg min
x∈XB

1
2‖Ax‖22 , (3)

where A =
(
IU − ssH/‖s‖22

)
H. The finite-alphabet con-

straint x ∈ XB is then relaxed to the convex hull B of the
points in X . To avoid the trivial all-zeros solution, a concave
regularizer − δ2‖x‖22 with δ > 0 is added to the objective:

x̂ = arg min
x∈BB

1
2‖Ax‖22 − δ

2‖x‖22. (4)

C2PO uses forward-backward splitting (FBS) [26], [27]
to solve (4), an efficient numerical method for convex
optimization problems. As the objective in (4) is nonconvex,
FBS is not guaranteed to converge to an optimal solution.
However, C2PO has been shown to yield excellent performance
in practice [13]. After applying FBS to (4), the C2PO algorithm
is obtained (see [13] for a detailed explanation). To present
C2PO, we need to introduce some auxiliary notation. Let
ρ = 1

1−τδ with δ ∈ R, ξ =
√

P
2B , and the proximal-operator:

proxg(z; ρ, ξ)=clip(ρ<{z}, ξ) + j clip(ρ={z}, ξ) , (5)

where the clipping function clip(z, γ) applies the operation
min(max(zi,−γ), γ) to each element of the vector z.

Algorithm 1 (C2PO). Initialize x(0) = HHs. Fix τ (t)

and ρ(t). For every iteration t = 1, 2, . . . , tmax compute:

z(t) = x(t−1) − τ (t)AHAx(t−1) (6)

x(t) = proxg(z
(t); ρ(t), ξ), (7)

Finally, quantize the output x(tmax) to the set XB .



Fig. 2. Computation graph of the iteration-unfolded version of NNO-C2PO. All trainable parameters are highlighted in red color.

We note that in the original reference [13], constant values
were used for τ = τ (t) and ρ = ρ(t) at every iteration because
manually tuning 2tmax distinct parameters seemed impractical.

III. NEURAL-NETWORK OPTIMIZED C2PO

Analogous to [21], [22], the idea behind our approach
is to unfold the iterations of C2PO and to learn distinct
parameters τ (t) and ρ(t) for each iteration t = 1, . . . , tmax.
These parameters are learned offline using deep-learning
methods, and then used in the C2PO algorithm as described
in Algorithm 1. We refer to the overall procedure as neural-
network optimized C2PO (NNO-C2PO).

A. Unfolding the Algorithm

As shown in Figure 2, the unfolded algorithm forms a com-
putation graph, which can be described using standard deep
learning frameworks (e.g., Keras or PyTorch). If all operations
in the computation graph have well-defined gradients, then
the gradients of the cost function with respect to τ (t) and
ρ(t) can be calculated efficiently (and easily, due to automatic
differentiation) using backpropagation. These gradients can
then be used to learn the values of τ (t) and ρ(t).

The high-level architecture of the unfolded NNO-C2PO is
shown in Figure 2. The algorithm takes H, s, x(0), and AHA
as inputs and produces ŝ as an output. We note that x(0) and A
are functions of s and H, but they are pre-computed and given
as additional inputs for convenience. The input to the first
sub-block is x(0) = HHs. Each successive sub-block takes
x(t−1) as input and produces x(t) by means of (6) and (7).
The final sub-block quantizes x(tmax) to the finite alphabet
XB as:

x
(tmax)
Q = Q

(
x(tmax); ξ

)
, (8)

where Q(·) is a 1-bit quantization function that is applied
element-wise to x(tmax) and is defined as:

Q(x; ξ) = ξsign (<{x}) + j · ξsign (={x}) . (9)

Moreover, the final block also computes the scalar value
β̂ = ‖s‖22/sHHx

(tmax)
Q , and emulates the (noiseless, since

by assumption N0 → 0) transmission over the channel as:

ŝ = β̂ ·Hx
(tmax)
Q . (10)

B. Implementation Details

All operations involved in (6) are linear and thus have well-
defined gradients. However, care needs to be taken for the
operations in (7) as well as in the last stage in Figure 2. More

specifically, in (7), the gradient of the function clip(z, γ) that
is applied element-wise to z(t) has a discontinuity for z = γ
and z = −γ, but since the gradients are evaluated numerically,
this is not an issue in practice. Moreover, the gradient of
clip(z, γ) with respect to z is equal to 0 for z < −γ and
z > γ. However, as clip(z, γ) is applied to B elements of z(t)

concurrently and over several training samples, the probability
that the (averaged) gradient of clip(z(t), γ) with respect to
ρ(t) is equal to 0 is very low.

The quantization function Q(·) used in the last stage in
Figure 2 is not differentiable. There are several ways to include
quantization functions into deep-learning frameworks, such as
using a soft sign function [17] or a tanh(·) function [22].
Here, we follow the approach used by binarized neural
networks (BNNs) [28], which applies Q(·) only during the
forward propagation, and replaces Q(x; ξ) with a clipping
function clip(x; ξ) (as a straight-through estimator) during
backpropagation. All remaining operations in the last stage of
Figure 2 have well-defined gradients and can be differentiated
automatically.

We note that the updates in (6) and (7) are performed in the
complex domain. Most deep learning tools are unable to deal
with complex numbers. However, all complex operations in (6)
and (7) can be easily recasted as real-valued operations. For
example, the operation x = Hs can be equivalently performed
in the real domain by setting:

HR =

[
<{H} −={H}
={H} <{H}

]
and sR =

[
<{s}
={s}

]
, (11)

computing xR = HRsR and, finally, setting:

xb = xRb + j xRb+B , b = 1, . . . , B. (12)

C. Training

When unfolding the iterations of an iterative algorithm, the
corresponding computation graph can become very deep. As
such, the well-known problem of vanishing gradients may
make training difficult. This problem was identified in [22] in
the context of massive MU-MIMO and an incremental training
procedure was used to enable effective training. However,
since we unfold only a small number of iterations in our
experiments and we only learn a small set of parameters, we
did not encounter this problem. Hence, performing a one-
shot training of the entire network suffices. The training
set consists of (the real-valued equivalents of) K training
samples

{
s(k),H(k),x

(0)
(k),A

H
(k)A(k)

}
, where k = 1, . . . ,K.

The desired output is s(k) and, due to (1), the cost function
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to be minimized is the MSE between s(k) and ŝ(k):

C =
1

K

K∑
k=1

(∥∥s(k) − ŝ(k)
∥∥2
2

)
. (13)

Training the network essentially means choosing values for
τ (t) and ρ(t) that minimize (13). The parameters are initialized
to τ (t) = 2−8 and ρ(t) = 1.25, which have been shown to
work well in practice [13].

IV. RESULTS

We now compare the performance of the proposed NNO-
C2PO algorithm with the C2PO algorithm. For C2PO, we learn
its parameters using the same procedure as for NNO-C2PO,
but we constrain the weights so that τ (t) = τ and ρ(t) = ρ
for all iterations t = 1, . . . , tmax. We provide BER results for
Rayleigh-fading channels, as well as for more realistic line-of-
sight (LoS) and non-line-of-sight (NLoS) channels generated
with the QuaDRiGa channel model [29] using transmission at
2GHz with a 6.8kHz bandwidth in the “Berlin UMa” scenario.
For all experiments, we consider a massive MU-MIMO system
with B = 128 BS antennas, U = 8 UEs, and 16-QAM. As
the number of trainable parameters is small, we generate a
small dataset of K = 500 training samples for each channel
model and we perform full batch training over 100tmax epochs.
The BER performance evaluation is carried out using Keval =
1000 evaluation samples that are distinct from the training
samples. The computation graph of Figure 2 is described using
Keras [30] with a TensorFlow backend [31]. We use the Adam
optimizer [32] with a learning rate of λ = 10−4.

A. Rayleigh-Fading Channel

The BER performance of NNO-C2PO is compared to that
of C2PO under Rayleigh-fading and for different values of
tmax in Figure 3, where we also show the infinite-precision
ZF solution for reference. We observe that NNO-C2PO with
tmax = 2 and tmax = 4 slightly outperforms C2PO with
tmax = 4 and tmax = 8, respectively. This means that NNO-
C2PO requires approximately 50% fewer iterations than C2PO
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to achieve similar BER performance. Moreover, even when
considering the case of tmax = 8 where NNO-C2PO delivers
diminishing returns, there is a difference of roughly 3 dB
between the two algorithms at a BER of 0.1%. Note that this
improvement comes at essentially no cost, since the C2PO
hardware architecture of [13] can be modified to support NNO-
C2PO with very little hardware overhead to operate with the
per-iteration values of τ (t) and ρ(t).

B. QuaDRiGa LoS and NLoS Channels

For the QuaDRiGa LoS and NLoS channel models, we
present performance results using a different metric. Specif-
ically, we fix the normalized transmit power, and then we
determine the minimum number of C2PO and NNO-C2PO
iterations that are required to achieve a target BER of 1%.
Moreover, in order to examine the robustness of C2PO and
NNO-C2PO to different channel conditions, we provide results
for two scenarios. In the single training scenario, C2PO and
NNO-C2PO are trained on a dataset that contains training data
from only one channel model, and they are tested on data



from the same channel model they were trained for. In the
joint training scenario, C2PO and NNO-C2PO are trained on
a dataset that contains training data from both channel models,
but they are tested on each channel model separately.

The results of the above experiments are shown in Figures 4
and 5, for the LoS and NLoS channels, respectively. We
observe that, in the single training scenario, NNO-C2PO
provides significant gains with respect to C2PO for both
channel models. For example, on the LoS and NLoS channels,
NNO-C2PO with tmax = 5 achieves the target BER at 9 dB
and 4 dB lower transmit power than C2PO, respectively. More
interestingly, we observe that in the joint training scenario, the
performance of C2PO on both channels becomes significantly
worse, while the performance of NNO-C2PO remains nearly
the same. The fact that NNO-C2PO is more parameterizable
seems to make it sufficiently robust so that it can learn to
operate on vastly different channel models with the same set
of parameters {τ (t), ρ(t)}. This also indicates that NNO-C2PO
may be robust to channel estimation errors.

V. CONCLUSIONS

We have shown that introducing per-iteration parameters to
the C2PO precoding algorithm for 1-bit massive MU-MIMO
systems and tuning them using deep-learning tools, enables
significantly improved error-rate performance compared to a
similarly-tuned C2PO variant that uses the same parameters
for all iterations. Such improved performance is achieved
without increasing the algorithmic complexity. Furthermore, by
learning the algorithm parameters for different channel models,
we have observed that our NNO-C2PO algorithm is robust to
vastly changing propagation conditions, unlike its traditional
C2PO counterpart. Our results indicate that tedious manual
parameter tuning of nonlinear 1-bit precoding algorithms can
be avoided in practice, while significantly improving their
performance at the same time.
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