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Abstract—Interference Management is a vast topic present in
many disciplines. The majority of wireless standards suffer the
drawback of interference intrusion and the network efficiency
drop due to that. Traditionally, interference management has
been addressed by proposing signal processing techniques that
minimize their effects locally. However, the fast evolution of future
communications makes difficult to adapt to new era. In this
paper we propose the use of Deep Learning techniques to present
a compact system for interference management. In particular,
we describe two subsystems capable to detect the presence of
interference, even in high Signal to Interference Ratio (SIR), and
interference classification in several radio standards. Finally, we
present results based on real signals captured from terrestrial
and satellite networks and the conclusions unveil the courageous
future of AI and wireless communications.

Index Terms—Artificial Intelligence, Deep Learning, Interfer-
ence Management, Satellite Communications, Terrestrial Net-
works

I. INTRODUCTION

The exponential growth of more demanding needs and more

resources has a major impact in the spectrum management.

Thanks to recent advances, such as narrower filtering with

shaped envelopes [1], [2] or cognitive spectrum [3], [4], more

services and verticals can coexist smoothly to accommodate

new paradigms.

However, these systems are far to be perfect and may inter-

fere to others. Actually, detecting and managing interference

is a paramount task in order to preserve the full efficiency

of the operator’s network. Detection of interfering signals is

a well-studied topic addressed in the last decades [5], [6].

These methods rely on the decision theory of hypothesis

testing where a specific knowledge of the signal structure and

the channel model is required. Bearing in mind the myriad

of current different wireless standards, the development of

specific detectors for each signal class becomes a cumbersome

task.

In this paper we consider a data driven approach where we

aim to perform the signal classification by directly processing

the IQ samples. Inspired by the recent applications of deep
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learning in many fields and, in particular, in signal classifica-

tion [7], [8], this paper proposes the use of Deep Learning for

interference classification in satellite systems. Considering an

incumbent DVB-S2 satellite signal, we provide an interference

classifier able to classify the interference from the well-known

cellular standards; namely, LTE, UMTS and GSM.

With the mentioned approach, we avoid the development of

different classifiers for each interfering signal which yield to

high complex computations and mathematical models. In this

context, the suggested procedure might be deployed with low

cost equipment in any satellite teleport, satellite user terminal

or even on the payload. Numerical results using real data show

the potential of the designed deep learning scheme in detecting

and classifying the different interfering signals.

To sum up, the contributions of the paper are two. First,

we provide a design of an interference detector based on deep

neural network coder architecture able to detect an arbitrary

signal in presence of a satellite transmission. Second, we

introduce the design of deep neural network classifier of

cellular transmissions in presence of satellite ones.

II. SYSTEM MODEL

We aim at detecting and classifying the interferences that are

present in satellite communications in different scenarios. We

consider the downlink between the satellite and the ground

terminal. Without loss of generality, we consider single an-

tenna satellite terminals. In general, we do not perform any

assumption on the type of interference. We denote the system

model as

y(t) =
√
ρ
(

x(t) +
√

γ−1i(t)
)

+ w(t), (1)

where y(t) is the received signal, x(t) is the conveyed signal

(the intended signal) with unitary power, i(t) is the interfer-

ence signal from interfering source with unitary power, w(t)
is the Additive White Gaussian Noise (AWGN) with unitary

power, ρ is the signal to noise ratio (SNR) and γ is the signal

to interference ratio (SIR).

Before classifying the interference among the considered

Radio Access Technologies (RAT), first we need to detect

whether the interference is present or not.

http://arxiv.org/abs/1906.03012v1


III. DEEP LEARNING FOR INTERFERENCE DETECTION

In this case we analyse the probability of detecting an inter-

ference. Due to the physical characteristics of broadcast trans-

missions, it is possible that other signals from other sources

interfere with the intended signal. Detecting an interference

is not always an easy task, since no information is available

neither to the transmitter nor the receiver. Examining the

Power Spectrum Density (PSD) may reveal some information

on the frequency being interfered. However, this is not always

true if the interferences power is equal or below the power of

the intended signal. In those cases, it is extremely complicated

to detect whether an interference exists or not. To circumvent

this problem, we propose the use of Machine Learning /

Artificial Intelligence (ML/AI) techniques to detect it at the

receiver side. In particular, we employ a technique based on

Deep Neural Network (DNN) Autoencoder (AE), which uses

autoencoders to achieve the objective as we propose in the

previous use-case.

Once the input data is similar to the trained data, the

autoencoder will also produce similar output data. Thus, the

mean squared error (MSE) between the input data and output

data provides a metric to decide whether the output is similar

or not. The main idea of autoencoding detection is to exploit

this feature by training the autoencoder with a signal that does

not contain any interference, testing the autoencoder with other

signals without interference to obtain useful thresholds and,

finally, using it with signals with interference (or not).

In the presence of different signals (i.e., signals with in-

terference), the MSE produced by the autoencoder is higher

compared with the output corresponding to input signals with-

out interferences. In these cases, the autoencoder is not able

to produce the same output signal with the same fidelity and,

hence, we can exploit it to detect the presence of interference.

Under these circumstances, we employ two sets of data

based on baseband samples (namely, IQ samples) as input data.

The first set does not contain any interference and the second

set does contain a small interference placed in the centre of

the transmitting band. Fig. 1a depicts the PSD of the set of

data without interference. Fig. 1b depicts the PSD of the set

of data with interference. The interference is observable in the

middle of the left wide band.
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Fig. 1. PSD of the employed sets of real IQ samples.

A. Methodology

First, we divide the first data set in several segments. The

first segment is used for the training of the autoencoder,

and the rest (test segments) are used to obtain the different

averaged thresholds. The rest of segments are used as inputs

and we measure the Mean Square Error (MSE) between the

input and the produced output.

The autoencoder is composed by an encoder and a decoder,

stacked contiguously at the receiver side. Both functions have

the capability to sparse and extract some useful information

and, as expected, will depend on the number of hidden

layers. Introducing more hidden layers in the autoencoder, will

produce an output with less MSE. However, it will increase

the probability of false positives since it will be very sensitive

to the input data. Hence, for our purpose, we will use a small

hidden number of layers.

Among these aspects, there also exist other parameters

that may produce different results. The encoder and decoder

transfer functions are with the encoder and decoder, respec-

tively, and are used for avoidance of saturation or smooth the

input. Other parameters, such as L2 weight regularizer, sparsity

proportion or sparsity regularization coefficient, weight the

sparsity of the network. Finally, there is the training function

used by the autoencoder for the training. To implement this

function, we use the approach described by [9], which is

referred as scaled conjugate gradient descent function. The

regularizer function is used as a cost function to increase

the sparsity of the autoencoder. In our case, we use the cost

function detailed by [10].

Obviously, if we use the training segment, the MSE tends

to 0. But it is not the case when we use the rest of segments,

since the signals in the inputs are different from the training.

For each test segment we measure the MSE and, at the end of

the calibration process, we collect all the values and obtain a

vector of several MSE. We call it MSE vector.

IV. DEEP LEARNING FOR INTERFERENCE CLASSIFICATION

Upon an interference detection, it is also important to

classify the interference to narrow the search of possible

interfering sources. This task is not always easy since it

requires hard dedication to identify the source of interference.

Usually, this task is performed manually by operators. The

transmission of allowed signals is stopped during this task

in order to maximize the chance of identifying the source.

Obviously, stopping the communication while this task is

carried is not the optimal solution. Hence, we propose the

implement this task by using a DNN model trained previously

with different waveforms corresponding to different Radio

Access Networks, such as LTE, UMTS or GSM. By training

a DNN with a DVB-S2 signal interfered with LTE, UTMS

or GSM, we are able to perform classification based on these

patterns. For this purpose, we design a Neural Network with

a single layer based on Long Short-Term Memory (LSTM)

Network. This network is suitable for training networks based

on time series signals, such as radio signals[11].



LSTM networks manage to keep contextual information

of inputs by integrating a loop that allows information to

flow from one step to the next. In contrast to Convolution

Neural Networks (CNN), LSTM networks do not use neurons

as processing units, but elementary cells. Fig. 2 displays the

unrolled loop composing the elementary cell composing these

type of neural networks. The input vector is denoted by xt,

the output vector is denoted by ht and the hidden states, ct,

are propagated jointly with the output to the next cell.

In LSTM, there are three gates to control the flow of

information: the input gate, the output gate and the forget gate.

The first balances the amount of information that goes into

the cell; the second, the amount of information that goes out

from the cell; the third, the amount of information that remains

inside the cell. Usually, the hyperbolic tangent function, tanh,

is employed to update the cell and hidden states. The sigmoid

function is used for the activation of the three gates. Both are

denoted by Θ and σ, respectively.

Fig. 2. Long Short Term Memory Network schema.

A. Methodology

Under these circumstances, we employ two sets of sampled

data. The first set is used for the training and the second is

used for the testing. Both sets are composed by real DVB-S2

signal at baseband. Additional to the DVB-S2 signal, which

is used as intended signal, we also captured LTE, UMTS and

GSM signals at different bands.

All captured signals span 50 MHz of bandwidth and contain

radio signals from different operators. The sets are composed

by different sample vectors of 512 size that contain only one

type interference. For instance, the first vector contains a DVB-

S2 signal plus a scaled (β) LTE signal. The second vector

contains the DVB-S2 plus a scaled UMTS signal. The third

contains the DVB-S2 plus a scaled GSM signal. And it repeats

cyclically.

The scale parameter is used to obtain a range of different

SIRs, denoted by γ in 1. Hence, each set contains the same

vector scaled by different values of SIR. It is important to

remark that, since all the signals are commercial signals

captured in civil environments, these signals contain the typical

noise present in all devices. Thus, for the sake of formality,

the SIR is expressed as

γ̂ =
PDVB-S2 +NDVB-S2

β (ILTE/UMTS/GSM +NLTE/UMTS/GSM)
(2)

where PDVB-S2 is the power of the intended signal, NDVB-S2

is the noise of the captured DVB-S2 signal, β is the scale

parameter to obtain different SIRs, ILTE/UMTS/GSM is the power

of the interference and NLTE/UMTS/GSM is the noise of the

terrestrial captured signal.

Fig. 3 display the PSD of the captured signal corresponding

to DVB-S2, LTE, UMTS and GSM bands, respectively. DVB-

S2 is in the Ku band. LTE bands are in the 800 and 1800 MHz.

UMTS bands are in the 700 and 2600 MHz. GSM bands are

in the 700 and 1900 MHz.
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-20 -15 -10 -5 0 5 10 15 20 25

Frequency (MHz)

-135

-130

-125

-120

-115

-110

-105

-100

-95

-90

-85

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

Power Spectral Density

(b) LTE
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(c) UMTS
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(d) GSM

Fig. 3. PSD of the employed sets of real IQ samples for each waveform.

As reported before, for this use-case we propose to use a

LSTM ML model. The network is configured to use 3 classes

(LTE, UMTS and GSM) and 128 hidden units. The output

of the LTSM is connected to a fully connected layer, with 3
classes. Finally, the output is connected to a soft-max layer in

order to obtain the probabilities of interference classification.

Based on these probabilities, the output is tagged with the type

of interference.

The most critical part is the feature extraction, which is

used as the input of the Neural Network. This task aims at

pre-processing the data to obtain different metrics, which are

used later by the LSTM. In our scenario, since we manipulate

baseband digital radio signals, 4 features are used:

• Magnitude of the temporal signal.

• Phase of the temporal signal.

• Magnitude of the spectrum.

• Phase of the spectrum.

V. RESULTS

In this section, we describe the results that we obtained in

both use cases: interference detection by using autoencoding

and interference classification by using LSTM networks.

A. Interference Detection

As aforementioned, the MSE vector contains an error devi-

ation between the input and output of autoencoder. Since it is



trained to produce a signal with the same statistical properties,

when the input is altered, the output is also altered. Thus, the

statistical properties of the MSE vector are affected.

However, visual inspections of the MSE vector or examina-

tions of PSD (Fig. 1b) are hard to use since are too vague and

subjective. Instead, we use the statistical information of the

MSE vector. Fig. 4 depicts the Probability Density Function

(PDF) and Cummulative Density Function (CDF) of the MSE

vector for signals with and without interferences.
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Fig. 4. PDF and CDF of MSE vector.

It is clear that PDF and CDF of signals with and without

interference are different and we can exploit these differences

to define a detector. Aiming at producing an automatized

process, we extract the statistical differences of MSE vector.

Thus, we obtain the first four statistical moments of the MSE

vector. Table I describes the first four moments, where κn is

the nth sample of MSE vector and N is the length of MSE

vector.

TABLE I
EXPRESSIONS OF FIRST FOUR MOMENTS.

Moment Name Expression

1st Mean φ1 = 1

N

∑N
n=1

κn

2nd Variance φ2 = 1

N−1

∑N
n=1

(κn − φ1)
2

3rd Skewness φ3
1

√

φ3

2

∑N
n=1

(κn − φ1)
3

4th Kurtosis φ4
1

φ2

2

∑N
n=1

(κn − φ1)
4

We compute the statistics of MSE vector using the ex-

pressions of Table I. Results are summarized in Table II

and unveil interesting remarks. The first moment order, the

mean, does not show relevant aspects. In contrast to the mean,

the variance and, specially, the skewness depict an important

increase. When the input signal does not match with the

trained, the error of the autoencoder becomes more random

by increasing the spread of values (measured by the variance)

and the asymmetry (measured by the skewness). Finally, the

kurtosis does not have a relevant impact in the results. This is

because the tailedness of the PDF does not vary.

To conclude this section, we aim at remarking that inspect-

ing the error vector between the output and the input of the

autoencoder is not sufficient to decide the presence of an

interference. On the contrary, by inspecting the increase of the

variance and the skewness of the error vector shows important

TABLE II
RESULTS OF FIRST FOUR MOMENTS OF MSE VECTOR FOR SIGNALS WITH

AND WITHOUT INTERFERENCES.

Moment No interference With interference Relative increase

Mean 2.5× 10−7 2.6× 10−7 ↑ +5.3%
Variance 9.4× 10−16 1.4× 10−15 ↑ +44.3%
Skewness 7.5× 10−2 2.4× 10−1 ↑ +219%
Kurtosis 2.9 3 ↑ +3.1%

differences that enables to detect and decide the presence of

interferences.

B. Interference Classification

To train the LSTM network, we first segment the whole

set of samples. The minimum unit is 512 samples, which are

used to construct batches that are passed to the LSTM. The

solver for the training is the Adam optimizer [12]. In the next

section, we deploy this technique to classify interference by

using real captured signal.
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Fig. 5. Accuracy of the interference classification.

Fig. 5 depicts the accuracy (true positives and true negatives)

of the proposed framework. As expected, by the time that

SIR increases, the performance decreases. For high SIR,

the interference is weaker and, therefore, the classification

accuracy decreases. In contrast, for low SIR, the interference

is stronger and thus, the accuracy is near 100%.

In Fig. 5, the individual accuracy of different terrestrial in-

terferences is also depicted. Clearly, GSM obtains the highest

accuracy compared with LTE and UMTS. UMTS accuracy is

also important but drops more drastically for high SIR. Finally,

LTE decreases linearly with SIR.

Fig. 6 illustrates the overall Root-Squared Mean Error of

the proposed framework. As previously, the RMSE increases

with SIR. Also, the individual RMSE is also depicted. Clearly,

the GSM classification produces the less RMSE, followed by

UMTS. LTE is the most difficult classification.

The Confusion Matrix summarizes the performance be-

tween true positives, true negatives, false positives and false
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Fig. 6. RMSE of the interference classification.

negatives, and also accuracy and error rates. This matrix

provides information on how the classifier works and in which

circumstances fails. It is also helpful for identifying possible

biases in the prediction algorithm. Fig.7 plots the confusion

matrix of the classifier for SIR of 0dB and 20dB, respectively.

As seen in previous figures, the classifier obtains more accurate

results for low values of SIR and this can be examined in both

confusion matrices.
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Fig. 7. Confusion matrix of the classificator.

VI. CONCLUSIONS

In this paper we introduced Deep Learning algorithms to

radio communications for interference management. It is based

on two major areas: interference detection and interference

classification. The former uses autoencoding techniques in

order to decide whether interference is present or not. The

latter is employed when the interference detector decides and

it classifies the interference among predefined standards. The

classificator can be trained with different standards in order to

cope with as many types of interferences are considered. The

results show relevant aspects and are promising to deal with

the forecoming communications. In particular, the detector

is able to detect interferences regardless their bandwidth or

frequency position. The classificator is able to estimate which

type of interference is. Finally, we illustrate the performance of

both areas by different levels of the power of the interference.
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