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Abstract—We investigate the interfering channel estimation in
radar and communication coexistence, where a multi-input-multi-
output (MIMO) radar is operated in a “search and track” mode,
and a MIMO base station (BS) is attempting to acquire the
interfering channel state information (ICSI) between them, which
is required for the precoding designs. In contrast to conventional
training based techniques, we exploit radar probing waveforms
as pilot signals, which requires no coordination between the
systems. As the radar randomly transmits searching and tracking
waveforms, it is challenging for the BS to directly obtain the ICSI.
We therefore propose a Rao test approach to firstly identify the
working mode of the radar, and then estimate the channel. We
further provide theoretical performance analysis for the Rao
detector. Finally, we assess the effectiveness of the proposed
approach by numerical simulations, which show that the BS is
able to estimate the ICSI with limited information from the radar.

I. INTRODUCTION

Radar systems are nowadays deployed in various fre-
quency bands worldwide, with extensive usage on environment
sensing, navigation, surveillance and localization, etc. Below
6GHz, radar applications are allocated primary use of a
significant portion of the spectrum, e.g., airborne navigation
radars close to the 3.4GHz band, shipborne and Vessel Traffic
Service (VTS) radar at 5.6GHz. It is worth noting that these
bands have seen increasing cohabitation with commercial
wireless systems such as LTE and Wi-Fi. With the allocation
of available spectrum to newer communication technologies,
the interference in radar bands is on the rise, and has raised
concerns from governmental and military organizations on
the safeguarding of critical radar operations [1]. Accordingly,
there is a growing interest into reliable solutions to enable the
spectral coexistence of communication and radar transmission.

By exploiting the multi-antenna nature of modern commu-
nication and radar systems, existing approaches mainly focus
on designing precoders to eliminate the mutual interference
between the two systems. In [2], the radar signals are precoded
by a so-called null-space precoder, which is formulated via
singular value decomposition (SVD), thus the interference
generated to the BS can be zero-forced. To further improve
the system performance, the works of [3], [4] have employed
optimization based techniques to design the precoders and
waveforms at either radar or communication’s side, such that
certain performance metrics can be optimized.

While the aforementioned methods are well-designed, they

require the knowledge of the interfering channel between
the radar and the BS. Such information would have to be
acquired by sending known training symbols from the TX
to the RX [2], or via the coordination of a control center
connected to radar and communication systems [3]. It is worth
noting that these methods require the full cooperation between
both systems, which inevitably occupy extra computational
and signaling resources of the radar. Moreover, since it is
the cellular operator who exploits the spectrum of the radar,
it is the performance of the latter that should be primarily
guaranteed, i.e., the radar resources should be allocated to
target detection rather than obtaining the ICSI.

In this paper, we consider a more practical line of work that
involves the interfering channel estimation in the coexistence
of a MIMO BS and a MIMO radar performing “search and
track”, where the BS estimates the ICSI by exploiting the radar
probing waveforms as the pilot signals. The radar is assumed
to be agnostic to the interference or even the operation of
the BS. Due to the stochastic motion of the target, the radar
randomly transmits searching and tracking waveforms during
each pulse repetition interval (PRI), which makes it difficult
for the BS to acquire the ICSI. To resolve this issue, a Rao test
based framework is proposed to identify the working mode of
the radar before estimating the channel, followed by a compre-
hensive performance analysis. Finally, simulation results are
provided to validate our theoretical analysis, showing that the
proposed approach is effective in obtaining the ICSI between
the two systems.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a MIMO radar that is
detecting targets located in the far field. For simplicity, we
assume that the MIMO radar employs an M-antenna array for
both transmission and reception. Meanwhile, an N-antenna BS
operating in the same frequency band is receiving interference
from the radar and trying to acquire the ICSI between them.
Below we provide the system models for both the radar and
the BS.

A. Radar Signal Transmission - Search and Track

It is widely known that by employing incoherent waveforms,
the MIMO radar achieves higher Degrees of Freedom (DoFs)
and better performance than the conventional phased-array
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Fig. 1. MIMO radar and BS coexistence.

radar that transmits correlated waveforms [5]. By denoting
the MIMO radar probing waveform as X ∈ CM×L, its spatial
covariance matrix can be given as [5]

RX =
1

L
XXH , (1)

where L is the length of the radar pulse. Throughout the
paper we consider L ≥ N ≥ M , and assume uniform linear
arrays (ULA) at both the radar and the BS. The corresponding
beampattern can be thus given in the form [5]

Pd (θ) = aH (θ) RXa (θ) , (2)

where θ denotes the azimuth angle, and a (θ) =[
1, ej2π∆ sin(θ), ..., ej2π(M−1)∆ sin(θ)

]T ∈ CM×1 is the steer-
ing vector of the transmit antenna array with ∆ being the
antenna spacing normalized by the wavelength.

When the orthogonal waveform is transmitted by the MIMO
radar, it follows that [6], [7]

RX =
PR
M

IM , (3)

where PR is the total transmit power of the radar, and IM is
the M-dimensional identity matrix. It is easy to see from (2)
that the covariance matrix (3) generates an omni-directional
beampattern, which is typically used for searching when there
is limited information about the target locations [5]. Once a
target is detected, the radar switches to the tracking mode,
where it will no longer transmit orthogonal waveforms and
will generate a directional beampattern that points to the
specific location, thus obtaining a more accurate observation.
This, however, results in a non-orthogonal transmission, i.e.,
RX 6= PR

M IM . Given the random motion of the target, we
assume in this paper that the MIMO radar changes its probing
waveform X randomly within each PRI, which makes it
challenging for the BS to estimate the interfering channel
between them.

B. BS Signal Reception Model

Denoting the interfering channel as G ∈ CN×M , the
received signal matrix at the BS can be given as

Y = GX + Z, (4)

where Z = [z1, z2, ..., zL] ∈ CN×L is the noise matrix, with
zl ∼ CN (0, N0IN ) ,∀l. In the proposed hypothesis testing
framework, the noise power N0 plays an important role for
normalizing the test statistic. Note that when radar keeps silent,
the BS will receive nothing but the noise, and N0 can be

measured at this stage. Since the radar antenna number and
its transmit power are fixed parameters, they can also be easily
known to the BS operators. Therefore, it is reasonable to
assume that the BS knows the value of N0, M and PR.

In order to estimate the channel and the noise power N0, the
BS needs to know when the radar is transmitting, i.e., it must
synchronize its clock with the radar pulses. During one PRI,
the radar only transmits for a portion of the time, typically
below 10%, and employs the remaining 90% for receiving,
during which the radar remains silent. Such a ratio is called
duty cycle. By exploiting this property, the BS is able to blindly
estimate the beginning and the end of a radar pulse by some
simple methods, such as energy detection. Hence, we adopt
the assumption that the BS can perfectly synchronize its clock
with the radar pulses, i.e., it is able to know the beginning and
the end of each radar pulse.

III. PROPOSED APPROACH BASED ON RAO TEST

In light of the above discussion, the channel estimation
procedure at the BS is to firstly identify the working mode
of the radar based on the received radar interference, i.e.,
whether the radar is searching or tracking, and then estimate
the interfering channel by exploiting the limited knowledge
about the radar waveforms. In the following, we will develop
the approach for the BS to acquire the ICSI when radar is
randomly changing its probing waveform.

A. Preliminaries

Consider the ideal case where the BS knows exactly the
waveform sent by the radar in each PRI. Recalling (4), the
well-known maximum likelihood estimation (MLE) of the
channel G is given as [8]

Ĝ = YXH
(
XXH

)−1
, (5)

which is also known as the Least-Squares estimation (LSE)
for G. Since the radar changes its waveform randomly at
each PRI, (5) can not be directly applied and it is difficult
to estimate the channel directly.

Let us denote the searching and tracking waveforms as X0

and X1, respectively, where X0 is spatially orthogonal. In a
realistic scenario, the tracking waveform X1 may vary from
pulse to pulse. This is because the target to be detected may
move very fast, which results in rapid changes in its parameters
such as the distance, velocity and the azimuth angle. Hence, it
is far from realistic to assume the BS knows X1. Nevertheless,
as an omni-directional searching waveform, there is no reason
for X0 to be changed rapidly. Indeed, in some cases, the radar
may only use one waveform for omni-searching. Based on the
above, to assume that the BS only knows X0 seems to be a
more practical choice1. This leads to the following hypothesis

1Note the fact that such information exchange can be easily performed
once prior to transmission, since the searching waveform of the radar remains
unchanged. In contrast, conventional training based techniques require a much
tighter cooperation between both systems.



testing (HT) problem [8]

H0 : X = X0,G,

H1 : X 6= X0,G.
(6)

In (6), the channel G to be estimated is called the nuisance
parameter [8].

At first glance, the conventional generalized likelihood ratio
test (GLRT) seems to be applicable to (6), which requires the
MLE of G under both hypotheses. It can be trivially seen that
the MLE of G under H0 can be obtained by substituting X0

into (5). However, note that to obtain the MLE of G under H1

is equivalent to solving the following optimization problem

min
G,X
‖Y −GX‖2F s.t. ‖X‖2F = LPR, (7)

where the constraint is to ensure the power budget of the
radar-transmitted waveform. While the above problem is non-
convex, it yields trivial zero solutions with a high probability.
This is because the problem (7) is likely to have more
than enough degrees of freedom to ensure a zero objective
function, since the channel matrix is unconstrained, and the
norm constraint can be always satisfied by scaling X, where
the scaling factor can be incorporated in G. Therefore, the
likelihood function under H1 will always be greater than that
of H0, which makes the HT design meaningless.

B. Proposed Rao Test

Realizing the fact above, we propose to use the Rao test
(RT) to solve the HT problem (15), which does not need the
MLE under H1. Based on [9]–[11], let us define

Θ =
[
vecT (X) , vecT (G)

]T
,
[
θTr ,θ

T
s

]T
. (8)

Then, the RT statistic for the complex-valued parameters can
be given in the form

TR (Y)

= 2
∂ ln p (Y;Θ)

∂ vec (X)

∣∣∣∣T
Θ=Θ̃

[
J−1

(
Θ̃
)]

θrθr

∂ ln p (Y;Θ)

∂vec* (X)

∣∣∣∣
Θ=Θ̃

H1

≷
H0

γ,

(9)

where Θ̃ =
[
θTr , θ̂

T
s

]T
=
[
vecT (X0) , vecT

(
Ĝ0

)]T
is the

MLE underH0, and
[
J−1

(
Θ̃
)]

θrθr

is the upper-left partition

of J−1
(
Θ̃
)

, with J (Θ) being the Fisher Information Matrix
(FIM). Substituting X0 into (5), it follows that

Ĝ0 = YXH
0

(
X0X

H
0

)−1
=

M

LPR
YXH

0 . (10)

It should be highlighted that the Rao test only lets the BS
determine if the radar is using the searching mode, i.e.,
whether the searching waveform X0 is transmitted in the
current radar PRI. In that case, the BS could obtain the MLE
of the channel by use of (10). Otherwise, the BS is required to
wait until an orthogonal waveform is transmitted by the radar.

C. Closed-form Expression of the Rao Detector

To analyze the performance of the proposed approach, it
is necessary to derive the closed-form expression of the Rao
detector. First of all, note that the probability density function
(PDF) of the received signal matrix can be given as

p (Y)

= (πN0)
−NL

exp

(
− 1

N0
tr
(

(Y −GX)
H

(Y −GX)
))
(11)

The logarithm PDF (log-PDF) can be accordingly obtained as

ln p = −NL lnπN0 −
1

N0
tr
(

(Y −GX)
H

(Y −GX)
)
.

(12)
According to [8], the FIM can be partitioned as

J (Θ) =

[
Jrr Jrs
Jsr Jss

]
. (13)

where we have

Jrr = E
(

∂ ln p

∂vec* (X)

∂ ln p

∂vecT (X)

)
, (14)

Jss = E
(

∂ ln p

∂vec* (G)

∂ ln p

∂vecT (G)

)
, (15)

Jrs = E
(

∂ ln p

∂vec* (X)

∂ ln p

∂vecT (G)

)
= JHsr, (16)

By some algebraic computations, the FIM can be expressed
as

J (Θ) =
4

N0

[
IL ⊗GTG∗ XH ⊗GT

X⊗G∗ XXH ⊗ IN

]
. (17)

By recalling the definition of Θ̃, and noting that X0X
H
0 =

LPR

M IM , ρIM , we have[
J−1

(
Θ̃
)]

θrθr
=
(
Jrr

(
Θ̃
)
− Jrs

(
Θ̃
)

J−1
ss

(
Θ̃
)

Jsr
(
Θ̃
))−1

=
N0

4

((
IL − 1

ρ
XH

0 X0

)
⊗
(
ĜT

0 Ĝ∗
0

))−1

,

(18)
where ρ = LPR

M , and Ĝ0 is given by (10). By using (9), (10)
and (18), the Rao test statistic can be expressed as

TR (Y) =
2

N0
tr


(

IL −
M

LPR
XH

0 X0

)
YHYXH

0

×
(
X0Y

HYXH
0

)−1

X0Y
HY

H1

≷
H0

γ.

(19)

D. A Special Case

It is clear from (19) that we do not need any information
about X1 for solving the HT problem (6), which makes it
a suitable detector for the practical scenario where the BS
only knows X0. Nevertheless, it is very difficult to analytically
derive the CDF of (19) due to the highly non-linear operations
involved. Here we only focus on a special case where the
distribution becomes tractable. Note that if L ≥ M = N
holds true, YXH

0 ∈ CN×N and X0Y
H ∈ CN×N become the



invertible square matrices with a high probability, in which
case we have

YXH
0

(
X0Y

HYXH
0

)−1

X0Y
H

=

((
X0Y

H
)−1

X0Y
HYXH

0

(
YXH

0

)−1
)−1

= IN .

(20)

It follows that

TRs (Y) =
2

N0
tr

((
IL −

M

LPR
XH

0 X0

)
YHY

)
=

2

N0
tr

(
Y

(
IL −

M

LPR
XH

0 X0

)
YH

)
H1

≷
H0

γ

(21)

is the Rao detector under this special case. It can be seen that
(21) is a quadratic form in Gaussian variables. The matrix
P , IL − M

LPR
XH

0 X0 is a projection matrix, which projects
any vector to the null-space of XH

0 . Therefore, we have

tr
(
GX1PXH

1 GH
)
≥ 0 = tr

(
GX0PXH

0 GH
)
. (22)

The above equation (22) can be viewed as the hypothesis
testing for the noise-free scenario, where we see that the Rao
detector (21) is effective in differentiating the two hypotheses.
By adding the Gaussian noise to GX1 and GX0, it can
be inferred that TRs (Y;H1) ≥ TRs (Y;H0) with a high
probability in the high SNR regime, which makes the detector
(21) valid.

According to [8], (21) subjects to non-central chi-squared
distribution under both hypotheses. Under H0, the non-
centrality parameter is given by

µ0 =
2

N0
tr

(
GX0

(
IL −

M

LPR
XH

0 X0

)
XH

0 GH

)
= 0,

(23)
which indicates that TRs (Y;H0) is in fact central chi-squared
distributed. Under H1, the non-centrality parameter is

µ =
2

N0
tr

(
GX1

(
IL −

M

LPR
XH

0 X0

)
XH

1 GH

)
. (24)

The DoFs of the two distributions are given by

K = 2 rank (IN ⊗P)

= 2N rank (P) = 2N tr (P) = 2N (L−M) ,
(25)

where we use the property of the idempotent matrix that
rank (P) = tr (P).

Following the above, TRs satisfies that

TRs ∼

{
H0 : X 2

K ,

H1 : X 2
K (µ) .

(26)

Hence, the decision error probability for the special Rao
detector (21) is given by

PRs =
(

1−FX 2
K

(γ)
)
P (H0) + FX 2

K(µ) (γ)P (H1) , (27)

where FX 2
K

and FX 2
K(µ) are the CDFs of central and non-

central chi-squared distributions, respectively, and P (Hi) , i =
0, 1 denotes the a priori probabilities of the two hypotheses.

IV. CHANNEL ESTIMATION PERFORMANCE

By denoting the estimated channel as Ĝ =

YXH
(
XXH

)−1
, the squared error can be given in the

form

φ =
∥∥∥Ĝ−G

∥∥∥2

F
=
∥∥∥YXH

(
XXH

)−1 −G
∥∥∥2

F

=
∥∥∥(XXH

)−1
XYH −GH

∥∥∥2

F
.

(28)

Let us define

ȳ = vec
(
YH

)
∼ CN

(
vec
(
XHGH

)
, N0INL

)
,

T = IN ⊗
(
XXH

)−1
X, ḡ = vec

(
GH

)
.

(29)

Then, (28) can be simplified as

φ = ‖Tȳ − ḡ‖2. (30)

Based on basic statistics and linear algebra, we also have

yeq , Tȳ − ḡ ∼ CN
(
0, N0TTH

)
, (31)

where

TTH = IN ⊗
(
XXH

)−1
X · IN ⊗XH

(
XXH

)−1

= IN ⊗
(
XXH

)−1
.

(32)

Based on the above, the MSE of the channel estimation can
be obtained as

E (φ) = E
(
‖yeq‖2

)
= E

(
tr
(
yeqy

H
eq

))
= tr

(
E
(
yeqy

H
eq

))
= N0 tr

(
IN ⊗

(
XXH

)−1
)

=
N0N

L
tr
(
R−1
X

)
.

(33)
In the case that X0 is employed for channel estimation, the
MSE can be given as

E (φ) =
N0N

L
tr

((
PR
M

IM

)−1
)

=
N0M

2N

LPR
. (34)

V. NUMERICAL RESULTS

In this section, numerical results are provided to ver-
ify the effectiveness of the proposed approaches. We use
X0 =

√
LPR

M U as the radar searching waveform, where
U ∈ CM×L is an arbitrarily given unitary matrix. For the
tracking waveform X1, we firstly solve the classic 3dB beam-
pattern design problem to obtain the waveform covariance
matrix R ∈ CM×M , which is given in [5]. We then obtain
the tracking waveform X1 by the Cholesky decomposition of
R. The mainlobe of the radar focuses on the angle of 0◦, and
the desired 3dB beamwidth is 10◦.

Since the optimal threshold for Rao test is difficult to
obtain, we provide the ergodic empirical thresholds, which are
computed by Monte Carlo simulations with a large number
of channel realizations, and can guarantee that the average
error probability is minimized. Meanwhile, we also compute
the optimal threshold that corresponds to one single channel
realization for M = N , where the theoretical error probability
is given in (27). Note that such a threshold is not obtainable in
practical scenarios, as it requires the BS to know the channel
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Fig. 2. Error probability vs. SNR. M = {10, 16} , N = 16, L = 20.

a priori. In our simulations, the optimal threshold serves as the
performance benchmark for the Rao test. For simplicity, we
assume that the probability that radar is operating in searching
mode is 50%, i.e., P (H0) = P (H1) = 0.5. Without loss
of generality, we set PR = 1, and define the transmit SNR
of radar as SNR = PR/N0. Unless otherwise specified, we
fix L = 20, and assume half-wavelength separation between
adjacent antennas. Finally, we adopt a Rayleigh fading channel
G, i.e., the entries of G are independent and identically dis-
tributed (i.i.d.) and subject to the standard complex Gaussian
distribution.

We firstly show in Fig. 2 the detection performance for the
proposed approach, where we fix N = 16, and set M = 10
and M = 16 respectively. Since the analytical performance
for the nonequal-antenna case is intractable, we only show
the performance with empirical threshold for M = 10, which
is computed by Monte Carlo simulations. It can be observed
that the theoretical curves match well with the simulated ones,
which proves the correctness of our performance analysis.
When M = 10, the performance of the Rao detector is
superior to that of the case of M = 16, which is sensible
given that the BS exploits more DoFs for hypothesis testing
in the former case.

We study the channel estimation performance in Fig. 3,
where we fix the radar antenna number as M = 5, and increase
the BS antennas from N = 4 to N = 20. Note that the
hypothesis testing exploits the power of all the entries in the
received signal matrix to make the binary decision, which does
not require a high SNR per entry to guarantee a successful
outcome. This is very similar to the concept of diversity gain.
Nevertheless, for estimating the channel, we need to estimate
each entry individually, where the diversity gain does not exist.
For this reason, we fix the SNR at 15dB to achieve the normal
estimation performance. It can be seen from Fig. 3 that the
theoretical curves match well with the simulated ones, which
proves the correctness of (33) and (34). Secondly, the MSE
increases with the rise of the BS antenna number. This is
because the number of the matrix entries to be estimated is
increasing while the power available for estimation is fixed.

Antenna Number at BS (N)
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Fig. 3. MSE vs. number of antennas at the BS. M = 5, SNR = 15dB.

By further dividing (34) by MN , we see that the MSE per
entry keeps unchanged.

VI. CONCLUSION

In this paper, we have proposed an interfering channel
estimation method for radar and cellular coexistence, where
we assume that the radar switches randomly between the
searching and tracking modes, and the BS is attempting
to estimate the radar-cellular interfering channel by use of
the radar probing waveforms. To acquire the channel state
information, the BS firstly identifies the working mode of
the radar by use of Rao test, and then estimates the channel
parameters. Our simulations show that the theoretical curves
match well with the numerical results, and that the BS can
effectively differentiate the radar operation modes and estimate
the channel.
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