
High Rate Communication over One-Bit Quantized
Channels via Deep Learning and LDPC Codes

Eren Balevi and Jeffrey G. Andrews
Department of Electrical and Computer Engineering
The University of Texas at Austin, TX 78712, USA

Email: erenbalevi@utexas.edu, jandrews@ece.utexas.edu

Abstract—This paper proposes a method for designing error
correction codes by combining a known coding scheme with
an autoencoder. Specifically, we integrate an LDPC code with
a trained autoencoder to develop an error correction code for
intractable nonlinear channels. The LDPC encoder shrinks the
input space of the autoencoder, which enables the autoencoder
to learn more easily. The proposed error correction code shows
promising results for one-bit quantization, a challenging case of
a nonlinear channel. Specifically, our design gives a waterfall
slope bit error rate even with high order modulation formats
such as 16-QAM and 64-QAM despite one-bit quantization.
This gain is theoretically grounded by proving that the trained
autoencoder provides approximately Gaussian distributed data
to the LDPC decoder even though the received signal has non-
Gaussian statistics due to the one-bit quantization.

Index Terms—Error correction codes, autoencoder, nonlinear
channels, one-bit quantization

I. INTRODUCTION

Popular error correction codes including turbo codes, low
density parity check (LDPC) codes and polar codes produce
error rates very close to the Shannon limit for linear additive
white Gaussian noise (AWGN) channels. However, these codes
often do not perform well under hardware constraints and/or
impediments. Two key trends in wireless communication
systems are the march towards higher carrier frequencies
and a very large number of antennas, both of which will
introduce increasingly non-ideal hardware constraints such as
low-resolution quantization and other nonlinear distortions.
Hence, designing an error correction code that is robust to such
distortions is important for future communication systems,
even if such distortions are analytically intractable.

In this paper, we propose a methodology to develop ef-
ficient error correction codes for one-bit quantization. The
main reason behind the selection of this nonlinear channel
model is associated with the fact that one-bit quantization
brings severe nonlinearities. Thus, a channel code that can
cope with one-bit quantization should be able to resist less
severe nonlinearities. Furthermore, it is easy to model the
nonlinearities due to one-bit quantization, which can be done
by taking the sign of the real and imaginary part of the signals,
unlike other RF nonlinearities. Our methodology relies on
combining a state-of-the-art code that is optimized for a static
linear AWGN channel (which can be seen as an outer code)
with an autoencoder (which can be seen as an inner code) so
as to capture the system dynamics via learning/training. This

can also be interpreted as combining the current knowledge
in coding theory with the recent advances in deep learning in
an attempt to end up with novel error correction codes.

Employing a neural network for error correction codes
dates back to late eighties. More precisely, [1] shows how to
decode linear block codes. Similarly, the Viterbi decoder was
implemented with a neural network for convolutional codes in
the late nineties [2], [3]. A simple classifier is learned in these
studies instead of a decoding algorithm. This leads to a training
dataset that must include all codewords, which makes them
infeasible for most codes due to the exponential complexity.
Recently, it was shown that a decoding algorithm could be
learned for structured codes [4], however this design still
requires a dataset with at least 90% percent of the codebook,
which limits its practicality to small block lengths. To learn
decoding for large block lengths, [5] trained a recurrent neural
network for small block lengths that can generalize well for
large block lengths. Although there are many papers that
propose a deep learning-based decoding algorithm, there are
only a few papers that aim to learn an encoder [6], [7].

In this paper, we design an error correction code, i.e., learn
an encoder-decoder pair for a severe nonlinear channel model:
a one-bit quantized AWGN channel. For this purpose, we train
an autoencoder, and then incorporate an LDPC code to this
autoencoder. In the case of QPSK or BPSK modulation one-bit
quantization corresponds to hard decision decoding and only
leads to a few dB signal-to-noise-ratio (SNR) loss. However,
for high order modulations one-bit quantization leads to a very
poor error rate, since the real and the imaginary part of the
signals carry more than one bit information. The closest paper
to this work is [8], which proposed to integrate a turbo code
to an autoencoder to handle the detrimental effects of one-
bit quantization for QPSK and 16-QAM signaling. The main
difference of this paper is to (i) use an LDPC code instead of
a turbo code; (ii) utilize a modified autoencoder architecture;
and (iii) propose a simpler, but efficient training policy that
gives us better error rate for high order modulations, e.g., 64-
QAM can be operable for one-bit quantization at sufficiently
low SNRs.

The main contributions of this paper are as follows. First,
we propose sending symbols at a faster-than-Nyquist rate to
have a large enough learning capacity for the autoencoder
that is integrated with an LDPC code. Then, we theoretically
show that with this transmission and the proposed autoencoder

ar
X

iv
:2

00
3.

00
08

1v
1

 [
cs

.I
T

]
 2

8
Fe

b
20

20

architecture (hat has infinite width neural layers) it is possible
to provide Gaussian distributed data to the LDPC decoder
despite the nonlinearities of one-bit quantization. In what
follows, we evaluate the efficiency of our error correction code
with simulations for practical finite layer widths. The proposed
channel code can make high order modulations such as 16-
QAM and 64-QAM operable even if one-bit quantization is
employed. To be more precise, our code can approach the
performance of the LDPC codes in 802.11n and DVB-S2
standards that decode unquantized samples without increasing
bandwidth. This apparently brings significant spectral effi-
ciency gain for low-resolution receivers by enabling high order
modulations.

II. AUTOENCODER EMPOWERED ERROR CORRECTION
CODING

Conventional error correction codes do not provide any
guarantee to obtain almost zero bit error rate at sufficiently low
SNRs for nonlinear channels or non-Gaussian noise. To have a
low bit error rate for more challenging nonlinear environments,
we propose to integrate an autoencoder with an existing error
correction code. This results in a concatenated code such that
the outer code is a known state-of-the-art code and the inner
code is a learned or trained autoencoder. This idea is illustrated
for an LDPC code in Fig. 1. In accordance with that, the
input bits bn are first encoded with an LDPC encoder. This
LDPC encoder produces a codeword cn that has B bits. This
means that the LDPC encoder output block size is B. Then,
these coded bits are modulated with an M -ary modulation
method giving B/ log2(M) symbols per codeword, which are
represented as dn. The coded symbols dn are then given to
the autoencoder.

Processing the entire symbols of a codeword with an au-
toencoder yields excessive computational complexity for large
codeword lengths. For instance, taking a reasonable codeword
length of 1000 as an input to an autoencoder yields millions
of parameters. Therefore, these coded symbols are broken
into small blocks of N , in which N � B/ log2(M). More
precisely, a codeword is written in terms of the modulated
symbols as

d = [dT1 dT2 · · · dTS]
T (1)

where S = B/(N log2(M)) and

di = [diN−N+1 diN−N+2 · · · diN]T . (2)

For (1) each di is processed separately, but with the same
weights or parameters of the autoencoder. This means that a
single set of weights (or a single autoencoder) is learned for all
di for i = 1, 2, · · · , S. This brings huge complexity savings.

There are many alternatives for the autoencoder architecture.
For simplicity, we utilize a few fully connected layers as was
done in [8], [9]. Since the same weights are used for each
block, the overall architecture can be considered as a one-
dimensional convolutional neural network with stride N . This
autoencoder architecture is given in Table I. In addition to
the fully connected layers, there is a lambda layer meaning it

TABLE I
THE AUTOENCODER ARCHITECTURE

Layer Type Size Activation Weights

l0: Input Coded Symbols N - −
l1: Hidden Layer-1 Fully Connected GN Linear Θ1

l2: Lambda layer Channel GN - -

l3: Hidden Layer-2 Fully Connected KN ReLU Θ2

l4: Hidden Layer-3 Fully Connected KN ReLU Θ3

l5: Hidden Layer-4 Fully Connected KN ReLU Θ4

l6: Output Fully Connected N Linear Θ5

does not have trainable weights. This lambda layer includes
the transmission power normalization, physical channel, pulse
shape, sampling and quantization.

The autoencoder takes the coded symbols as blocks with
length N and generates

ei = φ1(Θ1di + b1) = Θ1di + b1 (3)

where φ1 is an identity function, because there is a linear
activation function for the first hidden layer as can be seen in
Table I. Furthermore, Θ1 and b1 correspond to the trainable
weights (in matrix form) and the biases (in vector form) of the
first hidden layer. Both these weights and biases are initialized
with Gaussian random variables that have zero-mean, and σ2

θ

and σ2
b variance, respectively as is standard practice [10], [11].

Notice that
ei = [ei1 ei2 · · · eiGN]T , (4)

where GN is the width of the first hidden layer.
The main idea to leverage an autoencoder for a coding

scheme is to tackle all kinds of channel and hardware impedi-
ments so as to perfectly (or with very small error probability)
transfer the coded symbols from a transmitter to a receiver. For
this purpose, the autoencoder has to have a large capacity. This
is the reason for encoding each coded symbol with G neurons.
This obviously decreases the bandwidth efficiency G-fold if
conventional orthogonal transmission methods are employed.
A better approach is to send the input symbols faster, which
is known as non-orthogonal faster-than-Nyquist transmission,
at the expense of creating inter-symbol interference (ISI) and
colored noise [12]. This method enables us to use a large
value for G without any increase in bandwidth at the expense
of degrading the minimum distance between the encoded
LDPC symbols, since an autoencoder does not have isome-
try property, i.e., it does not preserve the distances among
different inputs. Furthermore, in traditional communication
systems faster-than-Nyquist signaling heavily increases the
demodulation complexity for a large G. However, this is not
an issue when it comes to an autoencoder, because a (neural)
decoder with the same complexity is used irrespective of how
symbols are transmitted.

The symbols in (4) are transmitted as

s(t) =
√
ρ

S∑
i=1

GN∑
n=1

einh

(
t− (i− 1)NT − nT

G

)
(5)

Fig. 1. The proposed error correction code that integrates an LDPC code with an autoencoder.

where ρ is the transmission power, h(t) is the real pulse shape
and T is the symbol period for orthogonal transmission. The
received continuous time signal over an AWGN channel is
filtered with a matched filter h(−t) to yield

y(t) = (s(t) + z(t)) ∗ h(−t), (6)

where z(t) is a zero-mean Gaussian noise with variance σ2
z

and ∗ denotes linear convolution. Writing (6) in integral form
gives us

y(t) =

∫ ∞
−∞

(s(τ) + z(τ))h(τ − t)dτ (7)

Sampling (7) at t = (i− 1)NT + kT
G with a sampling period

of kT
G makes our received symbols

yik =
√
ρ

S∑
i=1

GN∑
n=1

eing[k − n] + zik (8)

where

g[k − n] =

∫ ∞
−∞

h

(
τ − (i− 1)NT − nT

G

)
×

h

(
τ − (i− 1)NT − kT

G

)
dτ

and

zik =

∫ ∞
−∞

z(τ)h

(
τ − (i− 1)NT − kT

G

)
dτ.

Sending symbols faster than the symbol period results in
inter-symbol interference and colored noise. To make this
clearer, we consider the vector-matrix representation of the
received signal

yi = [yi1 yi2 · · · yiGN]T , (9)

which can be expressed as

yi = GISIei + zi (10)

where GISI is a GN ×GN Toeplitz matrix, and its first row
becomes [g[0] g[1] · · · g[GN − 1]]. Notice that GISI would
be an identity matrix if orthogonal transmission was used. The
correlation of the noise samples is

E[zikzin] = σ2
zg[k − n]. (11)

The sampled signal in (8) is quantized before further pro-
cessing as

rik = Q(yik). (12)

In what follows, the decoder part of the autoencoder takes a
block of GN samples of

ri = [ri1 ri2 · · · riGN]T . (13)

The signal in (13) is decoded with the second, third and fourth
hidden layers, which have a width of KN and ReLU activation
function, and the output layer, which has a width of N and
a linear activation function. This gives us the estimate of (2).
Mathematically,

d̂i = Θ5φ4(Θ4φ3(Θ3φ2(Θ2ri+b2)+b3)+b4)+b5. (14)

The parameters Θ1,Θ2,Θ3,Θ4,Θ5 and the biases
b1,b2,b3,b4,b5 are denoted as W for brevity. These
are optimized according to a squared error loss function as

W∗ = arg min
W

||di − d̂i||22 (15)

where di and d̂i are defined in (2) and (14), respectively.
Gathering all these blocks constitutes the estimate of one
transmitted codeword as

d̂ = [d̂T1 d̂T2 · · · d̂TS]
T . (16)

III. THEORETICAL GUARANTEES

The output of the autoencoder can be written according to
its input as

d̂i = di + vi (17)

where vi refers to the residual error stemming from the noise
and quantization. Since (17) is given to the LDPC decoder,
which is optimized according to the data that has Gaussian
statistics, it is important to determine the distribution of vi.
Next we prove that vi has a Gaussian distribution.

Theorem 1. The autoencoder provides Gaussian distributed
data to the LDPC decoder, i.e., vi has a Gaussian distribution
when the autoencoder has infinitely large width neural layers
and is trained with gradient descent for faster-than-Nyquist
transmission and one-bit quantization.

Proof. The autoencoder architecture in Table I can be ex-
pressed layer-by-layer as

l0 :z(0) = di, x
(0) = z(0)

l1 :z(1) = Θ1x
(0) + b1, x

(1) = φ1(z
(1))

l2 :z(2) = yi = f(x(1)), x(2) = φ2(z
(2))

l3 :z(3) = Θ2x
(2) + b2, x

(3) = φ3(z
(3))

l4 :z(4) = Θ3x
(3) + b3, x

(4) = φ4(z
(4))

l5 :z(5) = Θ4x
(4) + b4, x

(5) = φ5(z
(5))

l6 :z(6) = Θ5x
(5) + b5

(18)

where f(·) corresponds to the lambda layer except quantiza-
tion and yi is defined in (9). Also, φ2(·) = Q(·). Since all
the weights and biases are initialized with Gaussian random
variables, for each unit (or neuron) in the lth layer z(l)i |x(l−1)
is an identical and independent Gaussian random variable with
zero mean and covariance

K(l)(z, ẑ) = σ2
b + σ2

θEz(l−1)
i

[φl−1(z
(l−1)
i)φl−1(ẑ

(l−1)
i)] (19)

except for l = 2. For the second layer z(2)i |x(1) is also a
Gaussian random variable due to (10) and Gaussian noise.
Specially, z(2)i |x(1) has zero-mean and its covariance is as
given by (11).

As the width goes to infinity, (19) can be written in integral
form as given in (20). To be more compact, the double integral
in (20) can be represented with a function such that

lim
N→∞

K(l)(z, ẑ) = Fl−1(K
(l−1)(z, ẑ)). (21)

Hence, z(6)|z(0) is a Gaussian process with zero mean and
covariance

K(6)(z, ẑ) = F5(F4(F3(F2(F1(F0(K
(0)(z, ẑ))))))) (22)

when N →∞. This means that the output of the autoencoder
yields Gaussian distributed data in the initialization phase.

During training, the parameters are iteratively updated at
time n as

Wn = Wn−1 − η∇Wn−1L(Wn−1) (23)

where Wn = {Θn
1 , · · · ,Θn

5 ,b
n
1 , · · · ,bn

5}, and L(·) is the
loss function. In parallel, the output z(6) is updated as

z(6),n = z(6),n−1 +∇Wn−1(z(6),n−1)(Wn −Wn−1). (24)

The gradient term in (24) is a nonlinear function of the
parameters. Nevertheless, it was recently proven in [13] that as
the width goes to infinity, this nonlinear term can be linearized
via a first-order Taylor expansion. More precisely,

z(6),n = z(6),0+∇W0
(z(6),0)(Wn−W0)+O(N−0.5) (25)

where the output at the initialization or z(6),0 is Gaussian as
discussed above. Since the gradient (and hence the Jacobian
matrix) is a linear operator, and a linear operation on a
Gaussian process results in a Gaussian process, the output
of the autoencoder for a given input (or z(6),n|z(0),n) is a

Gaussian process throughout training with gradient descent.
It is worth emphasizing that having a piece-wise quantization
function in the second layer does not violate the aproximation
in (25), because Q(·) can easily be approximated to a sigmoid
function.

IV. SIMULATIONS

We simulate the performance of the proposed coding
method by combining the autoencoder with (i) the LDPC code
that has a code rate of 1

2 and a codeword length of 648 bits and
(ii) the LDPC code that has a code rate of 1

2 and a codeword
length of 64800 bits. These LDPC codes have been used in
802.11n and DVB-S2 standards, respectively. Our performance
metric is the bit error rate (BER) with respect to the energy
per symbol. Throughout the simulation, the symbols are sent
10 times faster than Nyquist rate, which yields a strong ISI.

The 6-layer autoencoder architecture is trained with the
squared error function given in (15) with G = 10 and
K = 20. This leads to leaving the layer before quantization
(or l1) untrained. Using an autoencoder whose input layer is
much smaller than the number of coded LDPC symbols per
codeword makes training further challenging. To handle these
issues, we propose to periodically train the architecture for
k codewords and then utilize it for these k codewords. The
main reason for this training policy is related with the very
poor generalization capability of the neural network due to
one-bit quantization.

For the first (shorter codeword) LDPC code, the coded
bits are first modulated with 16-QAM and then fed into
the autoencoder. These coded symbols are processed by the
autoencoder in blocks of 24, i.e., N = 24. As can be observed
in Fig. 2(a), using an LDPC code alone is not sufficient
for one-bit quantization despite the fact that it decays very
rapidly in the case of unquantized samples after 5dB. On the
other hand, integrating an autoencoder with this LDPC code
brings substantial improvement and leads to obtain a close
performance with respect to the unquantized LDPC code. We
repeat this experiment for 64-QAM in Fig. 2(b). In comparison
to 16-QAM modulation, our coding method that only sees
one-bit quantized samples gives nearly the same performance
with the LDPC code that processes the unquantized samples.
Similar to 16-QAM modulation, this LDPC code alone does
not work properly for 64-QAM if there is a one-bit ADC in
the receiver.

The performance of the proposed code is also assessed for
larger codeword lengths by integrating the autoencoder to the
LDPC code that has a codeword length of 64800 bits. All the
hyper-parameters of the autoencoder remain the same except
that N is taken as 64 instead of 24. This is associated with
the fact that large blocks are needed for the autoencoder to
capture the structures for large codewords. We observe nearly
the same behavior as compared to the shorter LDPC codes as
depicted in Fig. 3 for 16-QAM signaling.

lim
N→∞

K(l)(z, ẑ) =

∫ ∫
φl−1(z

(l−1)
i)φl−1(ẑ

(l−1)
i)N

(
z, ẑ; 0, α2

θ

[
K(l−1)(z, z) K(l−1)(z, ẑ)

K(l−1)(ẑ, z) K(l−1)(ẑ, ẑ)

]
+ α2

b

)
dzdẑ. (20)

-5 0 5 10 15

Es/N0 (dB)

10-5

10-4

10-3

10-2

10-1

100

B
E

R

LDPC - Unquantized
LDPC - 1 bit quantized
LDPC+AE - 1 bit quantized

(a) 16-QAM

0 5 10 15 20 25 30

Es/N0 (dB)

10-3

10-2

10-1

100

B
E

R

LDPC - Unquantized
LDPC - 1 bit quantized
LDPC+AE - 1 bit quantized

(b) 64-QAM

Fig. 2. The error rate for the code rate 1
2

LDPC code with a codeword length of 648 bits

0 2 4 6 8 10 12 14

Es/N0 (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E

R

LDPC - Unquantized
LDPC - 1 bit quantized
LDPC+AE - 1 bit quantized

Fig. 3. The error rate for the code rate 1
2

LDPC code with a codeword length
of 64800 bits for 16-QAM

V. CONCLUSIONS

In this paper, a new design methodology is discussed for
developing error correction codes for nonlinear channels by
leveraging the merits of deep learning and using the current
knowledge in coding theory. This idea is utilized to design
a channel code for one-bit quantization. Our results show
that the proposed method makes higher-order modulation
formats operable for one-bit receivers. This obviously brings
in a large spectral efficiency gain. As future work, better
autoencoder architectures can be designed instead of using a
couple of fully connected layers so as to improve our results.
Furthermore, it is interesting to craft novel loss functions for
one-bit quantization instead of using the canonical squared

loss function, which heavily affects the training policy.

REFERENCES

[1] J. Bruck and M. Blaum, “Neural networks, error-correcting codes, and
polynomials over the binary n-cube”, IEEE Trans. Inform. Theory, vol.
35, no. 5, pp. 976-987, September 1989.

[2] X.-A. Wang and S. B. Wicker, “An artificial neural net Viterbi decoder”,
IEEE Transactions on Communications, vol. 44, no. 2, pp. 165-171,
February 1996.

[3] A. Hamalainen and J. Henriksson, “A recurrent neural decoder for
convolutional codes”, in IEEE ICC, vol. 2, no. 99CH36311, pp. 1305-
1309, June 1999.

[4] T. Gruber, S. Cammerer, J. Hoydis, and S. T. Brink, “On deep learning
based channel decoding”, in Proc. Conf. Inf. Sci. Syst., pp. 1-6, March
2017.

[5] H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, and P. Viswanath,
“Communication algorithms via deep learning”, in Proc ICLR, April
2018.

[6] Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath,
“LEARN codes: Inventing low-latency codes via recurrent neural net-
works”, arXiv preprint arXiv:1811.12707, November 2018.

[7] J. Kosaian, K. Rashmi, and S. Venkataraman, “Learning a code: Machine
learning for approximate non-linear coded computation”, arXiv preprint
arXiv:1806.01259, April 2018.

[8] E. Balevi and J. G. Andrews, “Autoencoder-based error correction
coding for one-bit quantization”, IEEE Trans. on Communications,
doi:10.1109/TCOMM.2020.2977280, 2020.

[9] E. Balevi and J. G. Andrews, “One-bit OFDM receivers via deep
learning”, IEEE Trans. on Communications, vol. 67, no. 6, pp. 4326-
4336, June 2019.

[10] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks”, in Proc. NIPS, May 2010.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification”, in ICCV,
December 2015.

[12] J. Anderson, F. Rusek, and V. Owall, “Faster-Than-Nyquist Signaling”,
Proceedings of the IEEE, vol. 101,no. 8, p. 1817-1830, Aug. 2013

[13] J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, J. Sohl-Dickstein, and J.
Pennington, Wide neural networks of any depth evolve as linear models
under gradient descent, arXiv preprint arXiv:1902.06720, 2019.

	I Introduction
	II Autoencoder Empowered Error Correction Coding
	III Theoretical Guarantees
	IV Simulations
	V Conclusions
	References

