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Abstract—Deep learning based physical layer design, i.e., using
dense neural networks as encoders and decoders, has received
considerable interest recently. However, while such an approach is
naturally training data-driven, actions of the wireless channel are
mimicked using standard channel models, which only partially
reflect the physical ground truth. Very recently, neural network
based mutual information (MI) estimators have been proposed
that directly extract channel actions from the input-output
measurements and feed these outputs into the channel encoder.
This is a promising direction as such a new design paradigm is
fully adaptive and training data-based. This paper implements
further recent improvements of such MI estimators, analyzes
theoretically their suitability for the channel coding problem, and
compares their performance. To this end, a new MI estimator
using a “reverse Jensen” approach is proposed.

I. INTRODUCTION

Machine learning and in particular deep learning techniques,
i.e., the use of neural networks, is an emerging tool for
solving the communication task of noise-robust encoding and
decoding of messages. Some of the latest advances involve
an end-to-end view of the whole communication chain, where
encoding and decoding are learnt simultaneously based on the
concept of an autoencoder [1]. An autoencoder maps the input
to the output, conditioned on an in-between constraint. For
communication, this constraint becomes the communication
channel itself. The most basic form of this constraint is given
by additive noise on top of the signal that has been sent. Thus,
if the channel model is known, one can simultaneously learn
appropriate encoding and decoding so that the input message
of the network gets encoded robustly, which then also enables
correct decoding. The drawback is the required knowledge of
the channel model, which needs to be known in advance to
train the model. Moreover, the full channel model is required
since the autoencoder learns by back-propagating through the
channel noise layer, i.e., it needs to find the derivatives of the
noise layer.

There are several approaches to extend this framework to
unknown channels including training the network on a generic
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channel model, such as the additive white Gaussian noise
(AWGN) channel, and only tune the resulting decoder online
[2]. Another approach is to circumvent the issue by using an
action and rewards framework which works completely without
knowledge of the underlying channel model and only takes
into account the immediate rewards of the learned strategies
by using reinforcement learning (RL) [3], [4]. This has the
advantage of its flexibility as it learns the basic principles for
communication by itself using only training samples from the
feedback link.

However, such approaches are more sample-inefficient than
other techniques, which can be augmented by expert knowledge
to guide the process and learn from less information. For
example, from a communication theoretic perspective, the
underlying transition probability of the channel model is the
key property which determines the communication rate. It
is therefore reasonable to learn this probability distribution
or some function of it, to guide the learning process of the
communication algorithm. One approach in this direction is to
estimate the underlying probability distribution of the channel
from samples and model the channel layer based on this
approximation. A particular successful approach to estimate
and also generate distributions from samples are generative
adversarial networks (GANs) as introduced in [5]. GANs are
composed of two competing neural networks (NNs), i.e., a
generative and a discriminative one. The generative NN tries to
transform a noise input to look like the real data distribution,
whereas the discriminative NN compares the samples of the real
distribution (from the data) to the fake generated distribution
and tries sort out the real from the fake samples. The generative
NN therefore learns to imitate the real underlying distribution
and can be used as a channel model layer [6], [7]. Note that
in this case, an end-to-end learning approach is still applicable
in the end after successfully modeling the underlying channel.
However, being able to estimate the probability distribution
between input and output of the channel allows for a more
powerful approach. One can decouple encoder and decoder, and
learn the perfect encoder that maximizes the communication
rate under the particular noise distribution constraint. In other
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words, one can use the conditional probability distribution to
compute the mutual information (MI) and optimize the system
such that it maximizes the MI between the channel input and
the channel output. In fact, recent advances show that for
additive noise channels one can also skip the in-between step
of estimating and generating the channel distribution. It suffices
to directly estimate the resulting MI from channel samples
and use this to learn the MI maximizing encoding function
[8]. This does not only exploit the fact that the probability
distribution of the channel is a key factor, but also that the MI
is the actual target function to optimize for.

Even though recent advances in estimating the MI from sam-
ples with variational methods combined with neural networks
show remarkable success, state-of-the-art estimators have the
drawbacks of having either a high bias or a high variance and
finding a good estimator for controllable bias and variance
remains an open problem. As many communication scenarios
follow specific structured channel laws, the question is which
estimator works best for these scenarios. In this paper, we
therefore investigate the latest state-of-the-art estimators and
compare their performances in consideration of specific generic
communication channels. We outline a general framework for
the estimator design and take this forward to a new variant
based on a “reverse Jensen approach”. The framework is
illustrated with several examples and simulations.

II. COMMUNICATION SYSTEM MODEL

We consider a communication model with a transmitter,
a channel, and a receiver. The transmitter wants to send a
message m ∈M= {1, 2, . . . , 2nR} at a rate R over a noisy
channel using an encoding function f(m) = xn(m) ∈ Cn
to make the transmission robust against noise. Moreover, for
every message m ∈M, we assume an average power constraint
1
n

∑n
i=1 |xi(m)|2 ≤ P on the corresponding codewords xn(m).

The channel can be defined as the transition probability density
pY n|Xn(yn|xn) for input and output sequences xn and yn. If
the channel is further memoryless, one has pY n|Xn(yn|xn) =∏n
i=1 p(yi|xi), i.e., the output at time instant i depends only

on the corresponding input at time instant i and is independent
of the previous inputs. The receiver uses a decoder g(yn) = m̂
to estimate and recover the original message. Moreover, the
block error rate Pe is defined as the average probability of error
over all messages Pe = 1

|M|
∑|M|
m=1 Pr(M̂ 6= m|M = m). The

general problem is now to find the maximal communication
rate R, such that the error Pe can be made arbitrary small for a
sufficiently large n. This optimal rate R is called the capacity
of the channel and is known to be C = maxp(x) I(X;Y ).

III. NEURAL ESTIMATION OF MUTUAL INFORMATION

Accurate MI estimation is a long standing problem which
received renewed interest in the last years due to its application
in the field of deep learning, for example in representation
learning or the bottleneck hypothesis. The difficulty of estimat-
ing the MI stems from its dependence on the underlying joint
probability density, which is unknown in most applications.
Classical approaches to estimate the MI are based on binning

the probability space [9], [10], k-nearest neighbor statistics
[11]–[13], maximum likelihood estimation [14], and variational
lower bounds [15]. Recently, there has been a surge of papers
investigating the variational approach in combination with
deep learning methods. These methods introduce a parametric
function Tθ, parametrized by the weights θ ∈ Θ of a neural
network, acting on the estimated densities. In particular, it can
be viewed as a parametric estimate of a density ratio of the
underlying distributions [16].

A. Overview of MI Estimators
We will now briefly introduce and discuss some of the latest

estimators. Let F be a family of functions Tθ : X × Y → R
parametrized by the weights θ ∈ Θ of a neural network, then
we have the following estimators:

Definition 1 (MINE [17]).

IMINE = sup
f∈F

Ep(x,y)[f(x, y)]− logEp(x)p(y)[e
f(x,y)] (1)

This estimator utilizes the Donsker-Varadhan representation
of the Kullback-Leibler divergence, which is a lower bound
on the mutual information, and it is shown to converge to
the true value of I for increasing sample size k. However,
note that due to the logarithm outside of the expectation in
the second term, Monte Carlo sampling will introduce a bias,
which yields neither a lower nor an upper bound on the true MI.
In [17] it was proposed to use an exponential moving average
on exp(f(X,Y )) over mini-batches to reduce the bias.

Definition 2 (NWJ [18]).

INWJ = sup
f∈F

Ep(x,y)[f(x, y)]− Ep(x)p(y)[e
f(x,y)−1] (2)

This is a lower bound and can be derived by using the
Fenchel duality to bound the f -divergence from below. Using
the conjugate dual function f∗ = exp(x − 1), one obtains
a lower bound on the KL-divergence, which leads to this
estimator. This is also known as the f-GAN objective [19]. An
alternative derivation of this estimator is shown in [20]. Note
that, in contrast to MINE, the NWJ estimator is unbiased and
yields a lower bound on the MI.

Definition 3 (NCE [21]).

INCE = EpK(x,y)

[
1
K

K∑
i=1

log
ef (xi, yi)

1
K

∑K
j=1 e

f(xi,yj)

]
(3)

This estimator was introduced in the context of representation
learning and was derived via noise-contrastive estimation
(NCE). It differs from the first two estimators in the sense that
it uses negative samples from the marginal distributions. It can
be thought of as the categorical cross-entropy of the softmax
of f , i.e., classifying a positive sample of f correctly. The
estimator exhibits low variance at the cost of high bias in the
form of the upper bound logK.

Definition 4 (SMILE [16]).

ISMILE = sup
f∈F

Ep(x,y)[f(X,Y )]−logEp(x)p(y)[c(e
f(X,Y ), e−τ )]

(4)



This estimator uses a clipping function c = clip(u, v) =
max(min(u, v), v) to constraint the expected value of the
marginals in the second term. This reduces the variance in the
estimator but introduces some biases. The estimator converges
to IMINE for τ →∞.

Finally, we also introduce a new estimator in the following
using a “reverse Jensen (RJ)” approach for the partition
function together with a box constraint on F (instead of the
clipping function in SMILE).

Definition 5 (RJE).

IRJE = sup
f∈Fτ

Ep(x,y)[f(x, y)]

−min
a>b

aEp(x)p(y)
[
log(1 + aef(x,y))

]
(1− (b/a)1/2)+

+ log (a)

Here, b ≥ 1 depends on the critic and the marginals, and Fτ
is the set of critics bounded by τ . The estimator is somewhat
difficult to tune due to the multiple parameters but, ideally,
it is a compromise between the resulting bias and variance,
similar to SMILE, and also provides a strict lower bound on
the MI.

The frameworks and specific properties of the estimators are
discussed in detail in the next section. For simple exposition,
let us identify p(x, y) with the ground truth probability measure
P and Q := Px × Py with the marginals p(x) and p(y),
respectively. Further, let Pn and Qn denote the empirical
measures from a set of i.i.d. samples. Let G be any positive
measure with total variation |G| =

∫
dG.

B. Discussion and Analysis

1) MI from unnormalized Gibbs measures: To start with,
MINE seeks to estimate a critic f with support on the ground
truth measures Px and Py that dominate P. To verify the
optimality of the estimator, we can identify with any f the
so-called Gibb’s measure dG = ef(x,y)

EQ[ef(x,y)]
dQ. Obviously, by

construction, Q dominates G and G is a probability measure.
Hence, we have

EP log
dG
dQ

= EP[f(x, y)]− logEQ[ef(x,y)] ≤ EP log
dP
dQ

(5)

where the inequality is due to |P| = |G| = 1 and the
positiveness of the Kullback-Leibler divergence DKL(P‖G).
Moreover, a non-unique optimum is f∗ = log dP

dQ + c, i.e.,
the estimate of MINE can be unnormalized. However, they
suffer from an unbiased estimate, since EQ[logEQn [ef(x,y)]] 6=
logEQ[ef(x,y)] which can be observed in the simulations. A
lower bound of the variance VG,Q of the partition function
estimator EQ[ef(x,y)] can be given as

lim inf
n

nVG,Q[logEQn [ef(x,y)]] ≥ eDKL(G‖Q) − 1

which is a straightforward extension of [16, Theorem 2]. Due
to the independence of Qn and Pn it easily follows that for any
(suboptimal) estimate G (through critic f ) and in the optimum
P = G (i.e. optimal f∗) the variance of MINE (and also NWJ,
see below) scales exponentially with the estimated mutual

information which can be clearly observed in all simulation
examples that we have done.

An interesting new direction is obtained when we identify
f with the family of unnormalized Gibbs measures.

Definition 6. An unnormalized Gibbs measure is defined by

dG =
ef(x,y)

G (f)
dQ, ∃ c ∈ R :

∫
ef(x,y)+c

G (f + c)
dQ = 1

where G is some normalization function.

One example is actually the NWJ estimator where

dG =
ef(x,y)

exp
(
e−1EQ[ef(x,y)]

)dQ.
In general we have here G > 1 or G < 1. The trick is to show
the inequality (5) in a different way. For the NWJ estimator,
we have

EP log
dG
dQ

= EP[f (x, y)]− 1

e
EQ[ef(x,y)]

≤ EP[f(x, y)]− logEQ[ef(x,y)] ≤ EP log
dP
dQ

by the simple inequality log (x) ≤ x
e . Notably, the measures

identified with f in the first and second line are actually
different, but all inequalities become tight for f∗ = log dP

dQ + 1.
In our simulations We have also found that such “self-
normalization” property [20] seems to cause no problems in
our coding scenario. The estimator is now in fact unbiased
but due to the simple bounding technique the variance of this
estimator depends linearly on the partition function estimator
EQ[ef(x,y)]. We can show that

VG,Q[EQn [ef(x,y)]] ≥ eDKL(G||Q) − |G|2

e|G|n

which, again, is a straightforward extension of [16, Theorem 2].
The result suggests, somewhat surprising, a slightly smaller
variance of NWJ which is verified in the AWGN simulations.

In the following section we ask whether or not the two
properties, i.e., unbiased estimate and lower variance of the
estimation, can be combined in some way. Notably, [16] has
addressed this issue and proposed SMILE which simply bounds
the variance of the partition function estimator as follows

VP,Q[EQn [ef(x,y)]] ≤ eτ − e−τ

4n
.

On the other hand, since f is clipped, the new identified
measure is dG = ef(x,y)

exp(EQ[c(ef(x,y),e−τ ,eτ )])
dQ so that EP log dG

dQ

and EP log dP
dQ are essentially indifferent which means that

SMILE can either over- or undershoot the true ground truth
MI. A bound on the bias is also provided in [16] as∣∣∣EQ[ef(x,y)]− EQ[c(ef(x,y), e−τ , eτ )]

∣∣∣
≤ max

(
eτ − |G|e−2τ , |G| − e−τ

)
.

A proper way of how to select the clip value is an open problem
and a real practical challenge. Therefore, in the following we
use a different so-called reverse Jensen’s inequality approach.



2) Reverse Jensen Approach: The new RJE approach is
based on the following partial converse of Jensen’s inequality.

Lemma 1. For any random variable X ≥ 0, it holds

log (E [X] ) ≤ min
a>b

aE [log(1 + aX)](
1−

√
b
a

) − log(a)


where b := E

[
X2
]
/E [X]

2
<∞.

The proof of the lemma is omitted due to lack of space.
Define the non-centralized moment with respect to Q as

mi(f) := EQ[eif(x,y)]. We have the following theorem.

Theorem 1. We have I(X;Y ) ≥ IRJE provided f∗ ∈ Fτ is
such that b ≥ m2(f

∗)
m2

1(f
∗)

. Moreover, the second moment is lower

bounded as m2(f∗) ≥ eDKL(G∗‖Q) ≥ eEP log
dG∗
dQ .

Proof: The bound on the MI is a direct consequence
of a chain of inequalities similarly as in (5) and Lemma 1.
The lower bound on the second moment can be proved by a
change of measure in the Radon-Nikodym derivative and the
positiveness of the KL divergence.

Notably, a bound on the variance can be obtained in
a straightforward way by using the “delta method” as in
MINE but which now depends on a and b (omitted to space
limitations). Due to the improved bounding technique from
the reverse Jensen’s inequality, we expect a smaller variance
compared to MINE (and NWJ), which is indeed verified in the
simulations. It must be noted that a critical issue left for future
investigation is the bias which also depends on the parameter
setting and the actual applied algorithm. Finally, we mention
that NCE falls in the general framework but is not competitive
for high MI values due to its upper bound log n.

IV. IMPLEMENTATION

We have implemented the MI estimators with a neural
network with two hidden layers, each comprised of 256 nodes
and ReLU activation functions. For the input we use a joint
critic, rather than a separable critic, since this was shown to
yield results with less variance [20]. This means that both
input samples from X and Y get concatenated and fed into
the network. Moreover, we use all marginal samples instead
of a shifted version only as in [20]. To this end, we draw K
samples from the joint distribution p(x, y) and then use all
pairs (xi, yj), i 6= j, for the marginals. This yields K(K − 1)
samples from the marginals instead of only K, which we would
obtain from sampling a shifted marginal, i.e., (xi, yi+1). All
expectations are replaced by the sample average over a mini-
batch. The batch size is chosen to be 64 for all calculations.
Due to space limitations, we only show results for the two
simplest channel models: the AWGN channel and the binary
symmetric channel (BSC) for continuous and discrete inputs.

Example 1 (AWGN). Let X,Z ∈ Rd be independent Gaussian
random variables with X ∼ N (0, Iσ2

x) and Z ∼ N (0, Iσ2
z),
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Fig. 1: MI estimators for the 8-dim. AWGN channel with
SNR= 4. Note that NCE runs into its upper bound log 64 = 6
and is omitted. RJE is implemented with τ = 6 and a = 2b.

and Y = X + Z, then the mutual information is given as
I(X;Y ) = d

2 log(1 +
σ2
x

σ2
z
).

Example 2 (BSC). Let X ∼ Bern( 1
2 ) and Z ∼ Bern(δ), then

Y = X+Z and the mutual information is given by I(X;Y ) =
H(Y ) − H(Z) = 1 − hb(δ), where hb denotes the binary
entropy function.

We have compared the estimators for the AWGN channel
in Fig. 1 and for the BSC in Fig. 2. (other channel models
including Rayleigh are omitted due to space constraints).

To test the learning ability of the channel encoding, we
generate 16 messages uniformly and send them through the
initialized encoder, which generates Xn according to p(xn, yn).
The corresponding samples of Y n are generated by our AWGN
channel, where the noise variance σ2

z is scaled such that we
have a resulting signal-to-noise ratio per bit of 7 Eb/N0 [db].
Note also that the encoded signal Xn has a unit average power
normalization E(|Xi|2) = 1, where the expectation is over the
signal dimension and the batch size. The training procedure
is similar to [8], where we alternate between maximizing
weights of the estimator θ and the encoder weights φ over
maxφ maxθ Ĩθ(X

n
φ (m);Y n). The MI estimator is initially

trained with 500 iterations and batch size 64. Afterwards we
train the encoder for 5 epochs with 400 iterations and batch
size 64. After each epoch, we tune the MI estimator with
one iteration with batch size 64. In the end, the decoder is
trained for 5 epochs, with 400 iterations. During the whole
procedure, the learning rate is kept fixed at 0.005 with the
NADAM optimizer. We note that we have not put particular
emphasis on optimizing the parameters, for which we expect
further improvements. The results are shown in Fig. 3 (note that
results for the Rayleigh channel are similar, i.e., no gap between
estimator performance). The simulation code is available at
[22], implemented with TensorFlow 2.1 [23].
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Fig. 2: MI estimators for the BSC with δ = 0.11, which results
in I ≈ 0.5. SMILE is implemented with τ = 5.
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Fig. 3: Performance of the learned encoder and decoder pair
for an AWGN channel with n = 2 and 16 messages input.

V. CONCLUSIONS AND OUTLOOK

In this paper we have investigated variational MI estimation
approaches for channel coding. We have seen that the estimators
show quite different behaviors in terms of bias and variance
for classical channel models. The proposed RJE provides an
excellent tradeoff in this regard. Surprisingly, these different
behaviors do not affect the performance in the channel coding
problem, where all estimators perform quite robustly. One
reason might be that we have limited the encoding simulation
to 16 messages with 2 dimensional variables, wheres the
MI estimation simulation is run on Gaussian inputs for 8-
dimensional variables. Consequently, the fastest procedure can
be taken which we believe is therefore an excellent alternative
to competitive approaches such as reinforcement learning [4].
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