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Abstract—Massive access is one of the main use cases of
beyond 5G (B5G) wireless networks and massive MIMO is a
key technology for supporting it. Prior works studied massive
access in the co-located massive MIMO framework. In this paper,
we investigate the activity detection in grant-free random access
for massive machine type communications (mMTC) in cell-free
massive MIMO network. Each active device transmits a pre-
assigned non-orthogonal pilot sequence to the APs and the APs
send the received signals to a central processing unit (CPU) for
joint activity detection. We formulate the maximum likelihood
device activity detection problem and provide an algorithm based
on coordinate descent method having affordable complexity. We
show that the cell-free massive MIMO network can support low-
powered mMTC devices and provide a broad coverage.

Index Terms—Activity Detection, Grant-Free Random Access,
Cell-Free massive MIMO, massive machine-type communications
(mMTC), Internet-of-Things (IoT).

I. INTRODUCTION

Massive machine type communications (mMTC) [1] is one

of the main requirements of future beyond 5G (B5G) wireless

networks [2] and is an enabler for massive connectivity

in Internet-of-Things (IoT). One of the main challenges of

mMTC is that the network should be able to support a large

number of devices over the same time and frequency resources

while keeping battery lives of the devices as long as possible.

Massive MIMO is a promising 5G technology to support

massive access [3], [4].

Grant-based massive access is studied in [5]–[7]. In the

grant-based approach, each active device randomly picks a pi-

lot or preamble sequence from a pool of orthogonal sequences,

and uses the selected sequence to inform the base station

that it has data to transmit. The base station needs to resolve

collisions when they occur and a grant of resources will be

provided to selected devices based on collision resolution.

Due to the limited coherence interval, the set of orthogonal

preamble sequences is finite. Grant-based protocols permit

simple signal processing at the base station. A key feature of

mMTC is that the traffic is sporadic with a very small fraction

of potential devices being active and with very small payloads.

Thus, in the massive connectivity scenario, the probability of

multiple active devices selecting the same sequence is quite

high. Thus the grant-based protocols suffer from access failure
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due to collisions and hence increases the average latency. Also,

due to collision resolution, the signaling overhead is quite large

compared to the short payload each device has to send in

mMTC applications. Thus, it is inefficient to use conventional

grant-based access methods for mMTC.

Various grant-free protocols have been proposed for the

active devices to access the cellular wireless network without a

grant. At the expense of sophisticated signal processing at the

base station, the grant-free approach reduces the access latency

and signaling overhead compared to grant-based approaches.

In the grant-free approach, each device is assigned a unique

preamble sequence and the active devices access the network

using this preamble and the base station jointly decodes the

devices which are active from the received signals. Due to

the massive number of devices and limited coherence interval,

preamble sequences are non-orthogonal and thus the received

signal at the base station can suffer from severe co-channel

interference. Thus activity detection is a challenging problem

in the grant-free massive access scenario. Due to the sparse

nature of the device activity pattern, the activity detection

problem can be formulated as a compressive sensing (CS)

problem and algorithms like approximate message passing

(AMP) can be utilized [8]–[11]. However, performance of the

CS based algorithms degrade severely when the number of

active devices is larger than the coherence interval or the

preamble sequence length. A covariance-based approach is

proposed in [12] for device activity detection which performs

better than CS based AMP schemes and an asymptotic per-

formance analysis is given in [13]. To have high success rate,

multiple preamble based grant-free random access is studied

in [14]. Activity detection in unsourced random access where

all devices use the same codebook is studied in [15].

To provide high per-user data rates in B5G networks, one

primary approach is densification of the network infrastructure

by increasing the number of antennas per cell and deploying

smaller cells. However, inter-cell interference is a limiting

factor as we densify the network. Thus to overcome inter-cell

interference, cell-free massive MIMO is a promising approach

[16]. Prior works study mMTC in the co-located massive

MIMO architecture. In this paper, we investigate grant-free

random access in cell-free massive MIMO networks. mMTC

devices transmit signals with low power in order to keep the

battery life as long as possible. Due to path loss and shadowing
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Fig. 1: Cell-Free Network Model for massive communication

in wireless networks the transmitted signal attenuates heavily

and the SNR at the base station reduces significantly. Cell-

free MIMO networks can provide better coverage due to

shorter propagation distances and is more robust to shadow

fading effects compared to co-located MIMO at the expense

of increased cost of fronthaul requirements. The authors in

[17] propose a Bayesian CS based algorithm exploiting the

channel information and chunk sparsity structure for device

activity detection in cloud radio access networks but it has

huge computational complexity due to matrix inversions of

high dimension.

In this paper, we formulate the maximum likelihood activity

detection problem and provide an approximate solution for the

estimator that has affordable complexity. An algorithm based

on coordinate descent method is provided for activity detection

in cell-free massive MIMO networks. We show that the cell-

free massive MIMO network can support low-powered mMTC

devices and is robust against shadow fading effects and hence

can provide a broad coverage.

Notations: Bold, lowercase letters are used to denote vectors

and bold, uppercase letters are used to denote matrices. C

denote the set of complex numbers. For a matrix A, AT

and AH denotes transpose and Hermitian transpose of the

matrix A respectively. CN (0, σ2) denotes a circularly sym-

metric complex Gaussian random variable with zero mean and

variance equal to σ2. IN and ON represents the N×N identity

matrix and null matrix respectively. |X | denotes the cardinality

of set X .

II. SIGNAL MODEL AND PROBLEM FORMULATION

Consider a cell-free massive MIMO wireless network as

illustrated in Fig. 1 with M uniformly distributed APs each

equipped with N antennas serving K uniformly distributed

single antenna users. All the M access points are assumed

to be connected to a central processing unit (CPU) through a

lossless infinite capacity fronthaul. Due to sporadic traffic in

the massive access scenario of mMTC, only a small fraction

of users are active at any time instant. In this paper, we assume

that all users are synchronized during transmission and each

user transmits independently with an activation probability ǫ.

Let ak ∈ {0, 1} where ak = 1 denotes that the kth device is

active and ak = 0 that it is inactive and Pr(ak = 1) = ǫ and

Pr(ak = 0) = 1 − ǫ. The set of active users is denoted by A
i.e., A = {k : ak = 1}. The channel between the nth antenna

in the mth AP to device k is given by

gmnk = β
1

2

mkhmnk (1)

where βmk is the large-scale fading coefficient between the

mth AP and user k and hmnk ∼ CN (0, 1) is the small-scale

fading coefficient. We assume that the large-scale fading coef-

ficient parameters {βmk} are available at all the transceivers.

Throughout this paper, we consider a block fading scenario

where the channel remains constant during the coherence

interval [18, Ch.2] and all the channels are independent. Due

to large number of users, typically K ≫ τc, where τc is

the number of channel uses per coherence interval, assigning

orthogonal pilots to each user is not feasible. Instead we

assign non-orthogonal unique signature sequences sk ∈ CL×1

to each user k where L ≤ τc. The signature sequence

are generated in an independent and identically distributed

manner, i.e., sk ∼ CN (0, IL), ∀k. We assume that all the

devices are synchronized during transmission which means in

an orthogonal frequency division multiplexing system, the time

delays from different devices are well within the cyclic prefix.

The CL×1 signal received at the nth antenna of mth AP is

given by

ymn =

K
∑

k=1

akρ
1

2

k gmnksk +wmn

= SDaD
1

2

ρgmn +wmn

(2)

where S = [s1 s2 . . . sK ] ∈ CL×K is the collection of all

signature sequences, ρk is the power transmitted by the user

k, Da = diag(a1, a2, . . . , aK), Dρ = diag(ρ1, ρ2, . . . , ρK),
gmn = [gmn1 gmn2 . . . gmnK ]T ∈ CK×1 is the channel

vector from all K users to the nth antenna of the mth AP and

wmn ∼ CN (0, σ2IL) is the additive white Gaussian noise

vector.

Thus, the C
L×N signal received at the mth AP can be

expressed as

Ym = SDaD
1

2

ρGm +Wm (3)

where Gm = [gm1 gm2 . . . gmN ] ∈ CK×N is the channel

matrix between the K users and the mth AP and Wm =
[wm1 wm2 . . . wmN ] ∈ CL×N is the noise matrix.

All the received signals at APs are passed to the CPU for

joint activity detection. Let the collection of signals be
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where W = [WT
1 WT

2 . . . WT
M ]T . From (4), it can be

seen that the columns of Y are independent and each column

is distributed as Y(:, i) ∼ CN (0LM ,Q), ∀i = 1, 2, . . . , N ,

where Q is the covariance matrix given by

Q =











SDγDβ1
SH 0L . . . 0L

0L SDγDβ
2
SH . . . 0L

...
...

. . .
...

0L 0L . . . SDγDβM
SH











+σ
2
ILM

(5)

where Dβ
m

is a diagonal matrix with diagonal elements

corresponding to the large-scale fading coefficient from K

users to mth AP, i.e., Dβ
m

= diag(βm) where βm =
(βm1, βm2, . . . , βmK) and Dγ = diag(γ), where γ =
(a1ρ1, a2ρ2, . . . , aKρK).

By utilizing the block-diagonal structure of the covariance

matrix Q, the likelihood of Y given γ is given by

p(Y|γ) =
M
∏

m=1

N
∏

n=1

1

|πQm|
exp

(

−yH
mnQ

−1
m ymn

)

=

M
∏

m=1

1

|πQm|N
exp(−Tr(Q−1

m YmYH
m))

(6)

where Qm = SDγDβ
m
SH +σ2IL. The maximum likelihood

estimate of γ can be found by maximizing p(Y|γ) or equiv-

alently minimizing − log(p(Y|γ)) which is given by

γ∗ = argmin
γ

M
∑

m=1

log |Qm|+Tr

(

Q−1
m

YmYH
m

N

)

subject to γ ≥ 0K

(7)

To perform the activity detection, the CPU needs to solve

the optimization problem in (7). Brute force approach to solve

(7) requires huge complexity and the complexity increases

exponentially with M . In this paper, we follow the coordinate

descent approach in [12] and propose an algorithm for the

device activity detection that has affordable complexity, while

making use of information obtained at all access points.

III. DEVICE ACTIVITY DETECTION

Covariance-based coordinate descent algorithm is proposed

in [12] for device activity detection in co-located massive

MIMO. In this section, we extend the coordinate descent

approach for cell-free massive MIMO. We find an approximate

expression for coordinate wise optimization for the ML cost

function (7) and propose an algorithm for the device activity

detection.

Let f(γ) =
∑M

m=1 f
m(γ) be the cost function which

needs to be optimized in (7) where fm(γ) = log |Qm| +

Tr
(

Q−1
m

YmYH

m

N

)

is the cost function of the mth block in (7).

Setting Qm as a function of γ, i.e., Qm(γ) = SDγDβ
m
SH+

σ2IL =
∑K

k=1 γkβmksks
H
k + σ2IL, we can see Qm as a

sum of K rank-one updates to σ2IL. Thus we can optimize

f(γ) with respect to one argument γk, k ∈ {1, 2, . . . ,K} in

one step and we iterate several times over the whole set of

variables until convergence is obtained. For k ∈ {1, 2, . . . ,K},

let us define fm
k (d) = fm(γ + dek), where ek is the kth

canonical basis with a single-1 at the kth coordinate. By

applying Sherman-Morrison rank-1 update identity on Qm we

can obtain
(

Qm + dβmksks
H

k

)

−1

= Q
−1

m − dβmk

Q−1

m sks
H

k Q−1

m

1 + dβmks
H

k
Q−1

m sk
. (8)

Also by applying the determinant identity, we can obtain

|Qm + dβmksks
H
k | = (1 + dβmks

H
k Q−1

m sk)|Qm|. (9)

Now we can write the overall ML cost function in (7) for

each coordinate k as fk(d) =
∑M

m=1 f
m
k (d) and is given by

fk(d) = c+
M
∑

m=1







log(1 + dβmks
H
k Q−1

m sk)

− dβmk

sHk Q−1
m QYm

Q−1
m sk

1 + dβmks
H
k Q−1

m sk






(10)

where c =
∑M

m=1

(

log |Qm|+Tr(Q−1
m QYm

)
)

is a constant

and QYm
=

YmYH

m

N
. Finding the value of d which minimizes

(10) requires huge complexity and involves solving polynomi-

als of degree 2M . Also, as the power levels are real valued,

the minimizer of (10) need not be real and can cause bad

performance. Thus it calls for a low complexity design to

ensure scalability of the device activity detection in cell-free

massive MIMO networks.

In the cell-free network, where the AP’s and devices are

distributed over large area, the large-scale fading coefficients

of the device varies significantly in magnitude between differ-

ent APs, unless the APs are equidistant from the device. This

variation can be up to the order of 50 dB in the presence of

shadow fading. Motivated by this, at the CPU we minimize

the cost function with respect to the most dominant AP for the

device k and the soft information about the device k from this

AP is propagated to other APs. Let m′ = argmax
m
{βmk} be

the access point with which the device k have the dominant

large-scale fading coefficient. The cost function of the device

k with respect to dominant AP m′ is given by

fm′

k (d) =







log(1 + dβm′ks
H
k Q−1

m′ sk)

− dβm′k

sHk Q−1
m′QY

m′
Q−1

m′sk

1 + dβm′ks
H
k Q−1

m′ sk






. (11)

Taking the derivative of (11) and setting it to zero, we obtain

d∗ =
sHk Q−1

m′QYm′Q
−1
m′ sk − sHk Q−1

m′ sk

βm′k(sHk Q−1
m′ sk)2

. (12)

To preserve the positivity of γ in (7), the optimal update

step d is given by d = max{d∗,−γk} and the coordinate is

updated as γk = γk + d. This update step d is propagated

to all the sub covariance matrices Qm’s and are updated

using (8). This optimization will be done over whole set of

random permutation of variables from set {1, 2, . . . ,K} and

we iterate the entire procedure until we obtain convergence.

The proposed algorithm is illustrated in Algorithm 1. The

complexity of the proposed algorithm is O(TKML2), where

T is the number of iterations.



Algorithm 1: Coordinate Descend Algorithm for estimating γ

Input: Observations Ym, ∀m = 1, 2, . . .M , βmk, ∀m =
1, 2, . . .M, k = 1, 2, . . .K

Initialize: Q−1
m = σ−2IL, ∀m = 1, 2, . . .M , γ̂ = 0K

1: Compute QYm = 1
N
YmYH

m , ∀m = 1, 2, . . .M
2: for i = 1, 2, . . . , T do

3: Select an index set K from the random permutation of

set {1, 2, . . . ,K}
4: for k ∈ K do

5: Find the strongest link or AP for device k , i.e.,

m′ = argmax
m
{βmk}

6: δ = max

{

sH
k
Q

−1

m′
QYm′Q

−1

m′
sk−sH

k
Q

−1

m′
sk

β
m′k

(sH
k
Q

−1

m′
sk)2

,−γ̂k

}

7: γ̂k ← γ̂k + δ

8: for m = 1, 2, . . . ,M do

9: Q−1
m ← Q−1

m − δ
βmkQ

−1

m
sks

H

k
Q−1

m

1+δβmks
H

k
Q

−1

m sk

10: end for

11: end for

12: end for

13: return γ̂

To perform activity detection, the output from Algorithm 1

is compared against a threshold γth
k for each device k and is

given by

âk =

{

1, if γ̂k ≥ γth
k

0, otherwise.
(13)

The threshold γth
k = ν σ2

β
m′k

where ν > 0 is chosen to have a

desired probability of miss detection and probability of false

alarm performance.

IV. SIMULATION RESULTS

In this section, we characterize the massive connectivity in

distributed MIMO architectures and plot the performance of

massive activity detection in cell-free massive MIMO with our

proposed algorithm.

A. Performance Metrics

We consider the receiver operating characteristic (ROC)

as the performance measure for activity detection. Let Â =
{k | âk = 1, ∀k ∈ [1,K] } be the estimate of the set of active

devices. The probability of miss detection is defined as the

average of the ratio of non-detected devices and the number

of active devices and the probability of false alarm is defined

as the average of inactive devices declared active over inactive

devices and are given by

Pmd = 1− E

{

|A ∩ Â|

|A|

}

, Pfa = E

{

|Â \ A|

K − |A|

}

. (14)

B. Simulation Model

We consider a square area wrapped around the edges to

imitate a network with infinite area and to avoid boundary

Fig. 2: Active device SNR

effects where the M AP’s and K users are uniformly dis-

tributed at random. For co-located case, we consider the AP

is at the center of network. We consider such a cell area with

K = 400 devices, the activation probability ǫ = 0.1 and the

signature sequence length L = 40. The following three slope

propagation model used in [16] is considered for large-scale

fading coefficient βmk:

βmk[dB] =











− 81.2 dmk < 10

− 61.2 − 20 log
10
(dmk) 10 ≤ dmk < 50

− 35.7 − 35 log
10
(dmk) + Fmk dmk ≥ 50

(15)

where Fmk ∼ N (0, 82) is the shadow fading component and

dmk is the distance between kth user and mth AP in meters.

The maximum transmit power for a device is 200 mW, the

bandwidth is 1 MHz and noise power σ2 = −109 dBm.

C. Results

First, we compare the received SNR at the base station

antenna for an active device k transmitting at a power of 200

mW for co-located and cell-free massive MIMO networks with

different cell sizes. Fig. 2 shows that there is a significant

gap in the received SNR for co-located and cell-free MIMO

and hence the outage probability is less for cell-free MIMO

scenario.

Next we look at the performance of proposed algorithm

for activity detection in cell-free massive MIMO network. For

simulations, we consider a SNR target at the base station

such that 95% of the active devices will be able to achieve

the desired SNR and hence access the network. The ROC

curve is plotted for different choices of threshold. We have

considered T = 10 as the number of iterations in Algorithm

1. The performance is given in fig. 3 and fig. 4 for 1× 1 km2

and 0.5× 0.5 km2 cell area sizes respectively. For low-power

applications like mMTC, co-located MIMO is highly sensitive



Fig. 3: Performance in 1 × 1 km2 cell area. K = 400 users,

activation probability ǫ = 0.1, sequence length L = 40

to receive SNR and performance degrades significantly with

increase in cell area. It can be seen that device activity

detection performance is robust against shadow fading effects

in cell-free massive MIMO networks compared to co-located

MIMO networks and hence cell-free network can provide a

broad coverage in mMTC applications. The performance in

cell-free massive MIMO network significantly improves with

increase in number of antennas per AP.

V. CONCLUSION

In this paper, we studied about the grant-free random access

scenario in cell-free massive MIMO networks. The paper for-

mulates activity detection problem in cell-free massive MIMO

network and provides an approximate solution to the estimator.

An algorithm based on coordinate descent is provided for

device activity detection with affordable complexity. We show

that for low-powered applications like mMTC, co-located

massive MIMO is highly sensitive to receive SNR while cell-

free massive MIMO is robust against the shadow fading effects

and hence can provide better coverage. A direction for future

work is to find the soft information of each device from cluster

of dominant APs instead of the most dominant AP.
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