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Abstract—This work considers millimeter-wave channel esti-
mation in a setting where parameters of the underlying mmWave
channels are varying dynamically over time and there is a single
drifting path. In this setting, channel estimates at time block k
can be used as side information (SI) when estimating the channel
at block k + 1. To estimate channel parameters, we employ an
SI-aided (complex) approximate message passing algorithm and
compare its performance to a benchmark based on orthogonal
matching pursuit.

Index Terms—Approximate message passing, channel estima-
tion, mmWave, side information, spectral estimation.

I. INTRODUCTION

Mobile user demand for wireless data services has been
increasing dramatically in recent years. As the conventional
sub-6 GHz communications spectrum is packed with existing
wireless services, the millimeter-wave (mmWave) frequency
band has become a key asset for next-generation cellular net-
works. Along with increasing antenna array sizes at both sides
of the transceiver, compressed sensing (CS) based algorithms
have received great attention in estimating mmWave chan-
nels. Owing to the mobility of users and scattering obstacles
(moving cars and so on) in the communication environment,
parameters underlying mmWave channels vary dynamically
over time. These variations can either be estimated from
scratch, likely at the expense of significant training overhead,
or tracked by making use of dynamic channel characteristics.
The focus of our work is to perform channel estimation
using approximate message passing (AMP) aided by side
information (SI). Our AMP-SI approach to channel estimation
utilizes the dynamic channel structure, leading to improved
estimation quality and reducing training overhead.

Approximate Message Passing. We use a class of low-
complexity algorithms, referred to as AMP [1]–[4], for channel
estimation. AMP was originally introduced in the context of
CS [5], [6], where one wishes to recover an unknown sparse
vector β from noisy linear measurements y modeled as

y = Aβ + n, (1)

where A is a measurement matrix with more columns than
rows, and n is independent and identically distributed (i.i.d.)
noise. AMP iteratively estimates β using a possibly non-linear
denoiser function tailored to prior knowledge about β. One
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key property of AMP is that under some technical conditions
on the measurement matrix A and signal β, observations at
each iteration of the algorithm, referred to as pseudo-data, are
asymptotically (in the large system limit) equal in distribution
to β plus i.i.d. Gaussian noise.

AMP with Side Information (AMP-SI). Recently [7], [8],
AMP-SI was introduced as an algorithmic framework that
incorporates SI into AMP for CS tasks (1). AMP-SI has
been empirically demonstrated to have good reconstruction
quality, and is easy to use. For example, we have proposed
to use AMP-SI for a toy model for channel estimation in
emerging mmWave communication systems [9], where the
time dynamics of the channel structure allow previous chan-
nel estimates to be used as SI when estimating the current
channel structure [7]. In Liu et al. [8], the nice empirical
performance of AMP-SI was strengthened through a rigorous
performance analysis. For these reasons, it is not surprising
that our novel approach to channel estimation outperforms a
benchmark based on orthogonal matching pursuit (OMP) [10]
as evidenced in Sec. V, and it is unlikely that other non-AMP
based approaches would yield further improvements.

Contributions. Our main insight in this paper is that the
channel matrix can be represented sparsely over the domain of
angles of arrival and departure. This insight leads us to develop
a denoiser within AMP-SI that monitors and estimates paths
with continuous angles of arrival and departure. We use 2D
spectral estimation within AMP-SI for a simplified problem
with a single drifting path, and will address increasingly
complicated (and thus realistic) models.

Notation. Let (·)∗ and (·)H denote the complex conjugate
and Hermitian operations, respectively. We use 0M and IM to
represent a zero vector of size M×1 and identity matrix of size
M×M , respectively. Next, [x]i stands for the i-th element of
the vector x and [M]ij for the (i, j)-th element of the matrix M.
A complex Gaussian distribution with mean m and covariance
C is denoted by CN (m,C), and U [a, b] stands for the uniform
distribution taking values between a and b. Finally, the set of
integers {1, 2, . . . ,M} is denoted by [M ], and the Dirac delta
function, δk`, takes the value 1 if k= `, and 0 otherwise.

II. SYSTEM MODEL

Consider point-to-point downlink communication in
mmWave frequency spectrum (Fig. 1), where a base station
(BS) communicates with a mobile user equipment (UE).
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Fig. 1. System model of mmWave communication. Representative i-th and
j-th multipaths are shown, along with corresponding angles of arrival {θi, θj}
and departure {φi, φj}.

The number of transmit and receive antennas at the BS
and UE are Mt and Mr, respectively, both of which form a
one-dimensional (1D) uniform linear array (ULA).

We study a blockwise transmission strategy that relies on
block fading. The downlink channel in the k-th transmission
block, denoted by Hk, does not change during the k-th
transmission block; the channel matrix takes a new value in the
next transmission block. We will assume that across blocks k,
there is some dependence or structure, so that an estimate of
the block Hk can be used as side information (SI) in estimating
Hk+1. The relationship between Hk and Hk+1 is detailed in
Sec. II-B, and the channel model in Sec. II-A. Our goal will
be to estimate Hk for each block k from received signals, with
the signal model specified in Sec. III.

A. Transmission and Channel Models

In our transmission strategy, the BS transmits pilot symbols
(known to the UE) during the first Tp time slots of each
transmission block, which consists of T time slots in total.
The UE estimates the channel using these Tp pilot symbols
together with the SI, which is obtained from the channel during
previous transmission blocks. The BS uses the remaining
T−Tp time slots to transmit payload data (unknown to the
UE), which is decoded by the UE using the channel estimate
of the current transmission block.

The respective downlink channel, Hk, within the k-th trans-
mission block is given as follows,

Hk =

√
MtMr

Lp

Lp∑
`=1

√
γαk,` a(θk,`,Mr)a(φk,`,Mt)

H, (2)

where Lp is the number of multipath components, γ is
the signal-to-noise ratio (SNR), αk,` is the complex gain
of the `-th multipath component assumed to be distributed
as CN (0, 1) with uncorrelated gains for different paths, i.e.
E[αk(α∗k)T] = σ2ILp where αk = [αk,1 αk,2 . . . αk,Lp ]

T. In
addition, θk,` and φk,` are the angle-of-arrival (AoA) and
angle-of-departure (AoD), respectively, of the `-th multipath
component with θk,` ∼ U [0, 2π] and φk,` ∼ U [0, 2π].
Note that the distributions for the complex path gain and

AoA/AoD folow from mmWave channel measurement stud-
ies [9]. Furthermore, a(θk,`,Mr) and a(φk,`,Mt) represent the
array steering vectors at the receive (UE) and transmit (BS)
sides, respectively, where the m-th element of a generic array
steering vector a(ϕ,M) is[

a(ϕ,M)
]
m

=
1√
M

exp

{
j2π

da
λ

(m−1) sin (ϕ)

}
, (3)

for m ∈ [M ], with an arbitrary phase ϕ representing
AoA/AoD, and M elements representing the number of trans-
mit/receive antenna elements, where da is the antenna element
spacing of the ULA, and λ is the carrier frequency wavelength.

Recall that our goal is to estimate Hk for each block k
from received signals and SI. To this end, we will assume
throughout that in our definition for Hk (2) the scalar values
Mt, Mr, Lp, and γ are known, and that da and λ are also
available to the ULA antenna array. Note that the number of
paths Lp and SNR γ are relatively stationary for point-to-
point communications, and can be separately obtained over
many transmission blocks. As a result, estimating the channel
block Hk boils down to estimating the Lp complex Gaussian
random variables (RVs) αk,` and the 2Lp uniform RVs θk,`
and φk,`, from which the arrays a(θk,`,Mr) and a(φk,`,Mr)
and thus Hk can be recovered.

B. Time Variation for Channel Parameters
We now provide a model for the dynamic relationship

between Hk and Hk+1. Our model was discussed by numerous
authors (c.f., [11]–[13] and references therein). The complex
path gain varies from one transmission block to another
following a first order auto regressive (AR) process,

αk+1 = ραk + uαk , (4)

where ρ is the correlation coefficient, and uαk is innovation
with uαk ∼ CN (0Lp ,

(
1−ρ2

)
ILp). Note that (4) represents

variation in the complex path gains (i.e., small-scale fading)
with correlation to the previous transmission blocks through
ρ. Moreover, both AoA and AoD follow Gaussian innovation
processes in the next transmission block,

θk+1 = θk + uθk and φk+1 = φk + uφk , (5)

where θk =
[
θk,1 θk,2 . . . θk,Lp

]T
and φk =

[
φk,1 . . . φk,Lp

]T
are the aggregate AoA and AoD vectors, respectively, and
uθk ∼ N (0Lp , σ

2
θILp) and uφk ∼ N (0Lp , σ

2
φILp) are correspond-

ing innovation vectors.

III. MMWAVE CHANNEL ESTIMATION VIA AMP-SI
In this section, we consider mmWave channel estimation

for the scenario described in Sec. II, and explain how SI from
previous transmission blocks enhances the estimation quality.
To this end, we define an Mt×1 complex-valued unit-energy
vector sk,i, which represents the pilot symbol transmitted
during the i-th time slot within transmission block k. We also
assume that sk,i is selected from an uncorrelated dictionary,
i.e., E[sk,isH

k′,i′ ] = δkk′δii′ where k, k′, i, i′ ∈ [Mt].
From signal estimation to matrix estimation. The re-

ceived signal vector at the UE is given by

yk,i = Hksk,i + nk,i, (6)



where nk,i is measurement noise that follows CN (0Mr , IMr).
Considering pilot transmissions over Tp time slots, the ag-
gregate received signal during the k-th transmission block,
Yk = [yk,1| · · · |yk,Tp

] ∈ CMr×Tp , where [v1| · · · |vTp ] de-
notes a matrix obtained by concatenating the column vectors
v1, . . . , vTp , is given by

Yk = HkSk + Nk. (7)

Note that Sk = [sk,1| · · · |sk,Tp ] and Nk = [nk,1| · · · |nk,Tp ] are
Mt × Tp and Mr × Tp, respectively. Our goal is to estimate
Hk using (7) given observations Yk and pilot symbols Sk and
SI from previous transmission blocks.

As mentioned in Sec. I, we use AMP-SI to estimate the
channel Hk from the model (7). While (7) is not identical to
the CS problem (1), taking the transpose of (7) we have

YT
k = ST

k HT
k + NT

k , (8)

which is more aligned with the AMP framework. In partic-
ular, we could modify (8) by vectorizing YT

k and HT
k and

composing a measurement matrix A having ST
k repeated on

the diagonal. However, this modification is not necessary,
because AMP provides favorable results even when applied to
multi-dimensional signals [14], [15]. Therefore, we run AMP
directly on the multi-dimensional problem.

AMP-SI with 2D denoisers. Consider a fixed block k.
We run AMP-SI on the matrix HT

k directly, employing a
well-chosen 2D (matrix) denoiser. Each AMP iteration will
have access to pseudo-data that is asymptotically (in the large
system limit) equal in distribution to HT

k plus a matrix of
i.i.d. Gaussian noise, where the existing AMP theory allows
us to calculate a good approximation for the noise variance.
Importantly, the 2D denoiser we propose incorporates SI from
the previous estimate at block k − 1, where this SI is our
estimate for the multipath parameters in block k− 1, and our
knowledge of the dynamics of these parameters per (4)-(5).

Denoising a 2D matrix within AMP, as opposed to a vector,
is non-standard. That said, some related art (including by
the authors) is encouraging. For example, previous applica-
tions of AMP with multi-dimensional denoisers have provided
encouraging empirical results in image reconstruction [14],
[15]. Beyond empirical results, a rigorous analysis by Ma et
al. [16] provides performance guarantees for a family of multi-
dimensional sliding window denoisers used within AMP.

Spectral estimation in 2D. Our proposed denoiser resem-
bles work by Hamzehei and Duarte [17], [18], who performed
analog denoising of 1D vectors within AMP in the context
of spectral estimation. Our denoisers resemble theirs, except
that we perform 2D instead of 1D spectral estimation, with
improved performance owing to SI from block k − 1. Our
main insight is that Hk is sparse over the continuous (AoA,
AoD) domain. This insight leads us to develop a denoiser that
monitors and estimates paths with continuous φ and θ. Our
work seems most related to Bellili et al. [19], where the authors
sparsify a linear inverse problem using Fourier arguments. Our
approach expands over theirs by performing 2D continuous
spectral estimation within AMP.

To make the details of our denoiser tractable (Sec. IV), we
begin with a simplified setting comprised of a single drifting

path. That is, we assume Lp = 1 in channel model (2). While
this paper introduces AMP-SI and our 2D spectral estimation
denoiser for this simplified version of the problem, we aim
to leverage these results and develop a series of denoisers ad-
dressing increasingly complicated (and thus realistic) models.
Our current work will be extended to multiple paths with birth-
death-drift dynamics between blocks [7].

IV. ONE DRIFTING PATH

As mentioned previously, we set Lp = 1 in (2), and model
the channel in the k-th transmission block, Hk, as

Hk =
√
MtMrγ αk a(θk,Mr)a(φk,Mt)

H. (9)

In this section, we introduce an AMP-SI algorithm for com-
pleting this parameter estimation task, and discuss some im-
plementation details.

AMP-SI details. The AMP-SI algorithm for estimating Hk

in (9) takes the following form. Initialize the matrix estimate
with Ĥ

t

k = 0, a zeros matrix, and at iteration t ≥ 0, compute

Rt = YT
k − ST

k Ĥ
t

k + Rt−1〈div ηt(Vt,SIk−1)〉,

Ĥ
t+1

k = ηt(V
t,SIk−1),

Vt+1 = S∗kRt + Ĥ
t

k,

(10)

where we interpret Rt as a residual, Ĥ
t+1

k is our current
estimate of Hk, and Vt is the pseudo-data, which is equal
in distribution to HT

k plus i.i.d. Gaussian noise with variance
τ2
t ≈ ||Rt||2/(MrTp). Our denoiser, denoted η(·, ·), takes as

inputs the pseudo-data Vt and SI from the previous block,
denoted SIk−1; the form of η(·, ·) is specified below. Finally,
the residual uses the normalized divergence of the denoiser,

〈div ηt(V,SI)〉 =
1

MrMt

Mt∑
i=1

Mr∑
j=1

∂

∂Vij
[ηt(V,SI)]ij . (11)

We highlight that the conjugate operator is applied element-
wise to Sk when computing Vt as part of complex AMP [20].

Candidate Denoisers. Given the distributional properties
of the pseudo-data, namely Vt ≈ Hk + τtG where G has
i.i.d. complex Gaussian entries, there are at least two plausible
denoising styles for AMP-SI (10).

The first denoising style we consider is conditional expec-
tation, where Ĥ

t+1

k is calculated using

Ĥ
t+1

k = E[Hk|Vt = Hk + τtG,SIk−1 = Ĥk−1],

where we have explicitly stated that the SI at time k − 1
takes the form of an estimate of the channel at the pre-
vious block, Ĥk−1. Within each AMP iteration, conditional
expectation provides a minimum mean squared error (MMSE)
estimator of Ĥ

t+1

k given the pseudo-data, Vt, and SI, SIk−1.
Under some technical conditions, for large scale linear inverse
problems [3], upon convergence, AMP with conditional ex-
pectation denoisers yields the overall MMSE signal estimator.
Unfortunately, with our current understanding of the model,
the conditional expectation denoiser appears computationally
intractable when Lp > 1, so we did not consider it further.



The second denoising style we consider is maximum a
posteriori (MAP), where we compute the triple (θ̂k, Φ̂k, α̂k)
that maximizes the posterior,

f(θk,Φk, αk|Vt = Hk + τtG,SIk−1 = (θ̂k−1, Φ̂k−1, α̂k−1)),

where f(·) denotes a generic density, and then use the esti-
mated triple (θ̂k, Φ̂k, α̂k) to produce an estimate of Ĥk. In
contrast to the conditional expectation denoiser, MAP signal
estimation is sub-optimal in terms of MSE in individual
AMP iterations, because conditional expectation is the MMSE
estimator, and thus minimizes the noise variance for the next
iteration, whereas MAP differs from conditional expectation.
Additionally, MAP denoisers may not achieve the overall
MMSE. Despite MAP having these estimation-theoretic draw-
backs, we will see that it offers computational advantages in
our analog denoising problem.

For the MAP denoiser, we need to further study the posterior
distribution.. First, by Bayes’ rule,

f(θk,Φk, αk|Vt = Hk + τtG,SIk−1 = (θ̂k−1, Φ̂k−1, α̂k−1))

= f(θk|θ̂k−1)f(Φk|Φ̂k−1)f(αk|α̂k−1)× (12)
f(τtG = Vt −Hk | θk,Φk, αk)

f(Vt = Hk + τtG |SIk−1 = (θ̂k−1, Φ̂k−1, α̂k−1))
,

where we have used the independence of the RVs (θk,Φk, αk)
and the fact that the pseudo-data at iteration t, given by
Vt = Hk + τtG, is independent of (θ̂k−1, Φ̂k−1, α̂k−1) given
(θk,Φk, αk). In the numerator (12), the densities are Gaussian,

f(αk|α̂k−1) ∼ CN (ρα̂k−1, 1−ρ2), (13)

f(θk|θ̂k−1) ∼ N (θ̂k−1, σ
2
θ), f(Φk|Φ̂k−1) ∼ N (φ̂k−1, σ

2
φ).

The denominator is a normalization constant that does not
affect MAP optimization.

MAP Denoiser. Focusing on the MAP denoiser, the form
of the conditional distribution given in (12) suggests,

arg max
(θk,Φk,αk)∈R2×C

f(θk,Φk, αk|Vt = Hk + τtG,SIk−1)

= arg max
(θk,Φk,αk)∈R2×C

{
log f(αk|α̂k−1) + log f(θk|θ̂k−1)

+ log f(φk|φ̂k−1) + log f(τtG = Vt −Hk | θk,Φk, αk)
}
.

(14)

We simplify the above using (13),

log f(αk|α̂k−1) = − log(π(1− ρ2))− 1

1− ρ2
|αk − ρα̂k−1|2,

log f(θk|θ̂k−1) = −1

2
log(2πσ2

θ)− 1

2σ2
θ

(θk − θ̂k−1)2,

where log f(φk|φ̂k−1) is similar to log f(θk|θ̂k−1), and

log f(τtG = Vt −Hk | θk,Φk, αk)

= log

Mr∏
i=1

Mt∏
j=1

f(τt[G]ij = [Vt]ij − [Hk]ij | θk,Φk, αk)

= −MtMr log(π)− 1

τ2
t

||Vt −Hk||2F ,

where for a matrix M ∈ Cn×m we have ‖M‖2F =∑n
i=1

∑m
j=1 |[M]ij |2. Plugging into (14), we find

arg max
(θ,Φ,α)∈R2×C

f(θ,Φ, α|Vt = Hk + τtG)

= arg min
(θ,Φ,αR,αI)∈R4

Ct(θ,Φ, αR, αI),
(15)

where

Ct(θ,Φ, αR, αI) =
(θ − θ̂k−1)2

2σ2
θ

+
(φ− φ̂k−1)2

2σ2
φ

+
|αR + jαI − ρα̂k−1|2

1− ρ2
+

1

τ2
t

||Vt −Hk||2F ,
(16)

and we have written α ∈ C as α = αR+jαI with αR, αI ∈ R.
MAP Denoiser Implementation Details. Now we discuss

the details of implementing the MAP denoiser of (15) in the
AMP algorithm in (10), meaning we take

ηt(V
t,SIk−1) = arg min

(θ,Φ,αR,αI)∈R4

Ct(θ,Φ, αR, αI), (17)

where we have defined the function Ct(·) in (16). In perform-
ing the 4D optimization in (17), it is possible to explicitly
solve for the minimizing pair (αR, αI) ∈ R2 for any given
pair (θ,Φ) ∈ R2, because

∂Ct
∂αR

(θ,Φ, αR, αI) =
2(αR − ρRe(α̂k−1))

1− ρ2

− 2κ

τ2
t

Mr∑
i=1

Mt∑
j=1

[
Re([aθ,φ]ij)Re([Vt]ij − κα[aθ,φ]ij)

− Im([aθ,φ]ij)Im([Vt]ij − κα[aθ,φ]ij)
]
,

using the shorthand [aθ,φ]ij := [a(θ,Mr)]i[a(φ,Mt)
H]j , κ :=√

MtMrγ, and Re(·) and Im(·) indicate real and imaginary
parts, along with the fact that for any i ∈ [Mr] and j ∈ [Mr],

∂|[Vt]ij − [Hk]ij |2

∂αR
= −2κRe([aθ,φ]ij)Re([Vt]ij − κα[aθ,φ]ij)

− 2κIm([aθ,φ]ij)Im([Vt]ij − κα[aθ,φ]ij).

For any (θ, φ), the minimizing α̂R takes the form

α̂R =
[ 1

1− ρ2
+
κ2

τ2
t

Mr∑
i=1

Mt∑
j=1

∣∣∣[aθ,φ]ij

∣∣∣2]−1[ρRe(α̂k−1)

1− ρ2
+

κ

τ2
t

Mr∑
i=1

Mt∑
j=1

Re([aθ,φ]ij)Re([Vt]ij) + Im([aθ,φ]ij)Im([Vt]ij)
]
.

We can similarly show

α̂I =
[ 1

1− ρ2
+
κ2

τ2
t

Mr∑
i=1

Mt∑
j=1

∣∣∣[aθ,φ]ij

∣∣∣2]−1[ρIm(α̂k−1)

1− ρ2
+

κ

τ2
t

Mr∑
i=1

Mt∑
j=1

Re([aθ,φ]ij)Im([Vt]ij)− Im([aθ,φ]ij)Re([Vt]ij)
]
.

In implementing the denoiser in (17) within AMP, for any
pair (φ̂, θ̂) we solve for the optimal α̂ using the estimates
of α̂R and α̂I given just above. Optimal (φ̂, θ̂) are computed
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using a grid search over values within four standard deviations
of the SI. The remaining consideration in implementing (10)
is to compute the divergence of the denoiser (11). While
it is difficult to compute the divergence analytically, our
implementation in Sec. V approximates it numerically.

We pause here to note that extending the MAP denoising
technique just outlined to two drifting paths, i.e., Lp = 2
in our channel model (2), seems feasible but computationally
expensive, and it is unclear if these approaches will work when
going beyond, i.e., Lp ≥ 3. Extending our results here to these
regimes will be pursued in future work.

V. NUMERICAL RESULTS

We demonstrate the performance of the proposed AMP-SI
algorithm by presenting numerical results based on Monte
Carlo simulations. As a benchmark, we used Dirichlet or-
thogonal matching pursuit with local optimization (DOMP-
LO) [21], which uses Dirichlet kernels while estimating the
unknown mmWave channel. Our communications setting used
Mt = 16, Mr = 8, ρ= 0.995, σ2

θ =σ2
φ = 1, and γ ∈{10, 20}

dB, which represent a mmWave channel with reasonable time
variation. Fig. 2 shows numerical results using 300 AMP-
SI iterations; DOMP-LO used a dictionary size of 32, which
yields the best performance. It can be seen that the empirical
MSE declines as more pilots, Tp, are used. Moreover, a 20 dB
SNR outperformed 10 dB, resulting in lower curves. Overall,
the empirical MSE obtained by our AMP-SI approach was
roughly an order of magnitude less than that of DOMP-LO. We
also compared our setting to one without SI by increasing the
variance of the drift. Larger variance reduced the estimation
quality; we omit the details for brevity. Finally, our future work
will evaluate the spectral efficiency of the proposed algorithm
along with hybrid/digital beamforming schemes in comparison
to training length, and compare the performance gains over
existing methods (e.g., [22], [23]).
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