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Abstract—Cellular-connected unmanned aerial vehicles (UAVs)
are expected to play a major role in various civilian and
commercial applications in the future. While existing cellular
networks can provide wireless coverage to UAV user equipment
(UE), such legacy networks are optimized for ground users which
makes it challenging to provide reliable connectivity to aerial UEs.
To ensure reliable and effective mobility management for aerial
UEs, estimating the velocity of cellular-connected UAVs carries
critical importance. In this paper, we introduce an approximate
probability mass function (PMF) of handover count (HOC) for
different UAV velocities and different ground base station (GBS)
densities. Afterward, we derive the Cramer-Rao lower bound
(CRLB) for the velocity estimate of a UAV, and also provide a
simple unbiased estimator for the UAV’s velocity which depends
on the GBS density and HOC measurement time. Our simulation
results show that the accuracy of velocity estimation increases
with the GBS density and HOC measurement window. Moreover,
the velocity of commercially available UAVs can be estimated
efficiently with reasonable accuracy.

Index Terms—3GPP, antenna radiation, Cramer-Rao lower
bound, unmanned aerial vehicle (UAV), velocity estimation.

I. INTRODUCTION

Thanks to their flexibility in deployment as well as low
production cost, using unmanned aerial vehicles (UAVs) or
drones for a wide range of commercial and civilian applications
have gained significant interest in recent years [1]–[3]. For
taking the full advantage of UAV deployment, beyond visual
line of sight (BVLOS) operations are of critical importance
where UAVs can fly autonomously without direct human
control. Existing cellular networks can be a strong candidate
for deploying autonomous UAVs in BVLOS scenarios, in
which the UAVs act as aerial users and can maintain reliable
communication for safety and control purposes with the ground
base stations (GBSs) in the downlink [2]. For maintaining
reliable and good connection quality at the cellular-connected
UAVs, effective mobility management (MM) by minimizing
handover (HO) failures, radio link failure, as well as unneces-
sary HOs is critically important. However, due to being served
by sidelobes of the GBS that provide lower antenna gains, a
UAV might be connected with a GBS located far from it [2],
[4]. This phenomenon, in turn, makes the reference signal
received power (RSRP) based MM of cellular-connected UAVs
extremely challenging.

Velocity estimation of a cellular-connected UAV can play
an important role in effective MM. This information, in turn,
can help efficient resource scheduling, load balancing, and
energy efficiency enhancements [5]. Especially, due to the
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patchy signal coverage of GBS in the sky, a high UAV velocity
indicates that the UAV in interest will be associated with a GBS
for a brief amount of time. Moreover, UAVs flying at high
altitudes suffer from high interference stemming from nearby
GBS due to the near free-space path-loss trend in the GBS-to-
UAV link [6]. Estimating the mobile UAV velocity will enable
the GBSs to coordinate among themselves for leveraging the
inter-cell interference coordination scheme as done for ground
users in [7]. While the global positioning system (GPS) can
be used to estimate velocity, it is not a practical solution for
power-limited cellular-connected UAVs, since GPS receivers
consume a significant amount of power.

Existing cellular networks can estimate the mobility state of
a user into three classes: low, medium, and high mobility [7]. In
[5], authors presented approximate probability mass functions
(PMFs) for HOC and based on them proposed an efficient
estimator of ground user velocity. Using tools from stochastic
geometry, analytical studies for HO-rate in typical cellular
networks are conducted in [8], while authors in [9] also
considered the presence of small base stations along with
GBSs. However, none of these prior works took the MM of
aerial users into account.

Research directions in integrating UAVs into existing cel-
lular networks as aerial user equipment (UE) have recently
attracted substantial attention. For instance, real-world exper-
iments were conducted to test the feasibility of integrating
UAVs as UE in [6], [10], [11]. The Third Generation Partner-
ship Project (3GPP) also studied the challenges in providing
reliable UAV mobility support in [12]. In [13], the authors
explored the effects of practical antenna configurations on
the MM of cellular-connected UAVs. By leveraging machine
learning algorithms, works in [14], [15], studied the problem of
detecting UAVs based on radio signals. However, none of these
prior works considered the problem of estimating the velocity
of cellular-connected UAVs. To the best of our knowledge,
this is the first attempt to estimate UAV velocity in a realistic
cellular network based on handover count (HOC) statistics.

Our main contribution in this paper is a novel and effi-
cient HOC based UAV velocity estimation technique while
considering realistic GBS antenna radiation pattern [16] and
HO scenario [17], and 3GPP specified GBS-to-UAV path loss
model [12]. We also consider the presence of correlated shad-
owing [18] on the UAV trajectory. Through extensive Matlab
simulation, we approximate the HOC probability mass function
(PMF) using Poisson distribution and then by using the Matlab
curve fitting toolbox, we express the Poisson PMF parameter
with respect to (w.r.t.) different UAV velocities and GBS
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densities. Using the approximated PMF, an expression for the
Cramer-Rao lower bound (CRLB) of the estimated velocity is
derived. Moreover, we provide an efficient minimum variance
unbiased (MVU) velocity estimator whose accuracy coincides
with the CRLB. Finally, we investigate the accuracy of the
estimator for various UAV velocities, GBS densities, and HOC
measurement time intervals.

The rest of this paper is organized as follows. Section II
describes the system model for HO PMF calculation. The
approximation of the HOC PMF is presented in Section III.
We derive the CRLB for UAV velocity estimation and provide
an efficient unbiased velocity estimator in Section IV. Simu-
lation results are presented in Section V. Finally, Section VI
concludes this paper.

II. SYSTEM MODEL

A. Network Model

Let us consider a cellular network in which a single UAV
acting as an aerial user, is flying along a two dimensional
(2D) linear trajectory (for instance, through the horizontal X-
axis) at a fixed height hUAV and velocity v. We consider the
linear mobility model due to its simplicity and suitability for
UAVs flying in the sky with virtually no obstacle. While flying,
we assume that the network can track the number of HOs H
made by the UAV during a measurement time window T . We
denote the distance travelled during this measurement duration
as d = vT . We present the HO procedure later in this Section.

The underlying cellular network consists of GBSs that are
deployed with homogeneous Poisson point process (HPPP) Φ
of intensity λGBS GBSs/km2, and all GBSs have similar height
hGBS and transmission power PGBS. Each GBS consists of three
sectors separated by 120°, while each sector is equipped with
8×1 cross-polarized antennas downtilted by θD. The radiation
pattern of each single cross polarized antenna element consists
of both horizontal and vertical radiation patterns and these
radiation patterns AE,H(φ) and AE,V(θ) are obtained as [16],
[2]:

AE,H(φ) = −min

{
12

(
φ

φ3dB

)2

,Am

}
, (1)

AE,V(θ) = −min

{
12

(
θ − 90

θ3dB

)2

,SLAV

}
, (2)

where φ ∈ [0◦, 360◦], θ ∈ [0◦, 180◦], φ3dB and θ3dB are 3 dB
beamwidth with similar value of 65°, Am and SLAV are front-
back ratio and side-lobe level limit, respectively, with identical
value of 30 dB. Then the 3D antenna element radiation pattern
for each pair of (θ, φ) can be expressed as:

AE(θ, φ) = Gmax−min
{
−[AE,H(φ) +AE,V(θ)],Am

}
. (3)

The array radiation pattern with a given element radiation
pattern from (3) can be calculated as, AA(θ, φ) = AE(θ, φ) +
AF(θ, φ, n). The term AF(θ, φ, n) is the array factor with the
number n of antenna elements, given as:

AF(θ, φ, n) = 10 log10

[
1 + ρ

(
|a . wT |2 − 1

)]
, (4)

where ρ is the correlation coefficient, set to unity. The term a
∈ Cn is the amplitude vector set as 1/

√
n. The term w ∈ Cn

is the beamforming vector, which can be expressed as:

w = [w1,1, w1,2, ..., wmV ,mH ], (5)

where mVmH = n, wp,r = ej2π
(

(p−1) ∆V
λ Ψp+(r−1) ∆H

λ Ψr

)
,

Ψp = cos(θ) − cos(θD), and Ψr = sin(θ) sin(φ) −
sin(θD) sin(φD). ∆V and ∆H stand for the spacing distances
between the vertical and horizontal elements of the antenna
array, respectively. We consider ∆V = ∆H = λ

2 , where λ
represents the wavelength of carrier frequency fc.

We assume that the UAV is equipped with an omnidi-
rectional antenna and the UAV is capable of mitigating the
Doppler effect [1].

B. Path-loss Model
For modeling the path-loss between a GBS and the UAV, we

consider the RMa-AV-LoS channel model specified by 3GPP
[12]. The instantaneous path-loss (in dB) under a line-of-sight
(LOS) scenario between GBS m and the UAV can be expressed
as:

ξLOS
m,u(t) = max

(
23.9− 1.8 log10(hUAV), 20

)
log10(dm,u,t)

+ 20 log10

(
40πfc

3

)
+ χLOS, (6)

where hUAV is between 10 m to 300 m and fc is the carrier
frequency, while dm,u,t represents the 3D distance between
the UAV and GBS m at time t. χLOS represents the correlated
shadow fading (SF) associated with LOS scenario [19]. It is
worth noting that the probability of LOS is equal to one if the
UAV height falls between 40 m and 300 m [12].

SF is typically modeled as an independent Gaussian ran-
dom variable with zero mean and standard deviation σ.
According to [12], σ (in dB) can be expressed as σ =
4.2 exp(−0.0046 hUAV). However, the SF values of consec-
utive waypoints of a UAV trajectory might have non-trivial
correlation due to high probability of LOS in the GBS-to-
UAV link. Hence, we consider that SF is a first-order auto-
regressive process [20], where the auto-correlation between
the SF values at two points separated by distance ∆ is given
by [19], R(∆) = σ2β

∆
Xc , where, ∆ is the distance between

the two points, β is the correlation coefficient, and Xc is the
decorrelation distance [19]. Here, we set Xc = 100 m and
β = 0.82 [19]. We first generate independent SF values with
zero mean and σ = 1 for each waypoint and then use Cholesky
factorization to generate the correlated SF values from R [21].
Then, the received power at the UAV from GBS m at time
instance t can be expressed as:

Prx−m = PGBS +AA(θm,t, φm,t, n),−ξLOS
m,u(t) , (7)

where θm,t and φm,t are the elevation and the azimuth angles,
respectively, between the UAV and GBS m at time t.

C. Handover Procedure
The UAV will measure the RSRPs from all the adjacent

GBSs at subsequent measurement gaps using (7). Here, we
consider a HO mechanism that involves a HO margin (HOM)
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Fig. 1. PMF of HOC for different λGBS and v considering SF.

parameter, and a time-to-trigger (TTT) parameter, which is a
time window which starts after the following HO condition
(A3 event [17]) is fulfilled:

RSRPj > RSRPi +mhyst, (8)

where RSRPj and RSRPi are the RSRPs measured from the
serving GBS i and target GBS j, respectively and mhyst is the
HOM set by the network operator. The UAV does not transmit
its measurement report to its current serving GBS before the
TTT expires [22].

III. HANDOVER-COUNT STATISTICS

For obtaining the estimated velocity of a UAV based on its
HOC, we need to know the HOC PMF fH(h). To the best of
our knowledge, there exists no expression for the PMF of HOC
of a cellular-connected UAV. Moreover, due to the intractability
in GBS antenna radiation pattern, HO process, and channel
models considered in this research, it is extremely difficult to
obtain an exact expression of fH(h).

In Fig. 1, we plot the HOC PMFs from extensive Matlab
simulations for various v and λGBS values. For each combi-
nation of v and λGBS, we obtained 1000 samples of HOC H
for constructing the PMF fH(h). Here, we consider the HOC
measurement time interval T = 100 s. For low values of λGBS,
as depicted in Fig. 1(a), the PMFs for different UAV velocities
are overlapping significantly. For higher values of λGBS, the
PMFs still overlaps, but they are more spread out which will
lead to more accurate velocity estimation. From the obtained
HOC data samples we have noticed that the PMFs for different
v and λGBS resembles Poisson distribution. Hence, we model
the PMF of HOC of a UAV flying with a constant velocity
with rare parameter λ > 0 as:

fpH(h) =
e−λλh

h!
. (9)

For obtaining analytical expression, we express λ as a
function of distance d = vT and λGBS. Using the MATLAB
curve fitting toolbox, we obtain a two-dimensional power fit
where the value of λ can be obtained as, λ = a×λbGBS×(vT ).
For TTT = 160 ms and mhyst = 3 dB, we report the following
values of the parameters as, a = 0.2417 and b = 0.5278.
In Fig. 2, we show the trend of λ with respect to (w.r.t) d
and λGBS. Since the HOC follows a Poisson distribution, the
expected value E(h) and variance var(h) is λ.

Fig. 2. Fitting of the HOC PMF parameter λ, w.r.t. covered distance d and
GBS density λGBS.

IV. CRAMER-RAO LOWER BOUND FOR UAV VELOCITY
ESTIMATION

Cramer-Rao lower bound (CRLB) provides a lower bound
on the variance of an unbiased estimator. An estimator is
considered to be unbiased if the expected value of the estimates
coincides with the true value of the parameter of interest. If
the variance of an unbiased estimator can achieve the CRLB,
it is then said to be an efficient estimator [5], [23]. First, we
need to meet the regularity condition [23] for obtaining the
CRLB as discussed in the following lemma.

Lemma 1. The proposed PMF of HOC based on UAV velocity
satisfies the regularity condition for obtaining CRLB.

Proof. We need to show that E(
∂ log fpH(h;v)

∂v ) = 0. First we
take the logarithm of fpH(h; v) and then differentiate it w.r.t v,
which can be expressed as follows:

∂ log fpH(h; v)

∂v
= −K

(
1− h

λ

)
, (10)

where K = λ
v = a×λbGBS×T . Finally we take the expectation

w.r.t fpH(h; v) which can be expressed as:

E(
∂ log fpH(h; v)

∂v
) = −K +

E(h)

λ
K, (11)

= −K +
λ

λ
K = 0, (12)

which completes the proof. �

Next, we present the expression of CRLB by considering
the PMF presented in (9).

Theorem 1. Let a UAV is flying over a cellular network with
GBS density λGBS per at a fixed height over a linear trajectory
and make H handovers at a time period T . If the PMF of the
HOC can be expressed as fpH(h; v) as in (9), then the CRLB
of the estimated velocity is given by,

var(v̂) ≥ v

K
, (13)

where K = a× λbGBS × T .

Proof. By definition of CRLB, we know that

var(v̂) ≥ 1

I(v)
, (14)



TABLE I
SIMULATION PARAMETERS.

Parameter Value
PGBS 46 dBm
θD 6◦

hUAV 120 m
hGBS 35 m
fc 1.5 GHz
λGBS 2, 4, 6, 8, and 10 per km2

v 3 , 30, 60, 120, and 160 kmph
measurement gap 200 ms
TTT, mhyst 160 ms and 3 dB

where I(v) is the Fisher Information and can be expressed as:

I(v) = E

[(
∂ log fpH(h; v)

∂v

)2
]
. (15)

Here, E[·] is the expectation operator w.r.t H . By squaring
(10), and taking the expectation w.r.t fpH(h; v), we get:

I(v) = E

[
K2(1 +

h2

λ2
− 2h

λ
)

]
, (16)

= K2

(
1 +

E(h2)

λ2
− 2E(h)

λ

)
. (17)

Since h follows Poisson distribution with parameter λ,
E(h2) can be written as λ(1 + λ). Hence, we get:

I(v) = K2

(
1 +

λ(1 + λ)

λ2
− 2λ

λ

)
=
K2

λ
=
K

v
. (18)

By placing the expression of I(v) in (14), we can obtain the
CRLB for v̂ as in (13). �

Remark 1. Variance of the estimated velocity v̂ increases
linearly with the UAV velocity and decreases with increasing
HOC duration T and GBS density λGBS.

A. Minimum Variance Unbiased Estimator for UAV Velocity
The derived CRLB for v̂ takes the HOC as input in the

closed form. In this sub-section, we will derive the variance of
this estimator v̂ and show that this is indeed an MVU estimator.
We first consider the Rao-Blackwll-Lehmann-Scheffe (RBLS)
theorem to find the MVU velocity estimator [23, Section 5.5].
According to Neyman-Fisher factorization theorem if we can
factorize the PMF fpH(h; v) as

fpH(h; v) = g(F (h), v)r(h), (19)

where g is function that depends on h only by F (h), then
we can conclude that F (h) is a sufficient statistics of v [23,
Section 5.4]. We can factor the HOC PMF for our case as:

fpH(h; v) = (e−λλh)︸ ︷︷ ︸
g(F (h),v)

× 1

h!︸︷︷︸
r(h)

. (20)

Hence, F (h) = h is a sufficient statistics of v. Since E(h) =
λ = Kv, we can formulate an estimator of v as, v̂ = h

K . We
can calculate the mean of this estimator as:

E(v̂) =
E(h)

K
=

λ

K
= v , (21)
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10-6

10-5

M
S

E

v= 3 km/h
v= 30 km/h
v= 60 km/h
v= 120 km/h
v= 160 km/h

Fig. 3. MSE vs λGBS for different v and T = 100 s.

which shows that v̂ is an unbiased estimator of v. Next, we
derive the variance of v̂ to verify whether this is an efficient
estimator as follows:

var(v̂) = var(
h

K
) =

λ

K2
=

v

K
, (22)

which coincides with the CRLB of v̂ as presented in (13) and
hence, the derived estimator is an efficient estimator.

V. SIMULATION RESULTS

In this section, we first study the accuracy of the Poisson
PMF approximation by plotting its mean square error (MSE)
performance. Then we study the var(v̂) w.r.t. GBS density
λGBS, UAV velocity v, and HOC measurement time T . Simu-
lation parameters are provided in Table I.

The MSE between the approximate PMF and the PMF
obtained from simulations can be expressed as:

MSE =
1

L

L∑
l=1

[
fH(l)− fpH(l)

]2
, (23)

where L is the number of samples in the PMFs. In Fig. 3, we
plot the MSE performance w.r.t. various v and λGBS. We can
conclude that our approximated PMF behave very close to the
actual PMF obtained from the simulations.

In Fig. 4, we plot the square root of the CRLB or standard
deviation of the variance of v̂ w.r.t. λGBS. As expected, CRLB
of the proposed estimator decreases with increasing λGBS and
increases with v as in (13). This is in line with Fig. 1, where the
PMFs are closely spaced with each other for low λGBS, making
it difficult to distinguish between different v. For T = 100 s
and high UAV velocities, our method provides high root mean
square errors (RMSEs). However, for available commercial
UAVs with maximum velocity of 68 km/h [24], our proposed
simple estimator provides RMSEs of 28 km/h and 24 km/h
for λGBS = 6 and λGBS = 10, respectively, with T = 500 s.
For UAV velocities less than 20 km/h, UAV’s velocity can
estimated with RMSE less 20 km/h with T = 500 s.

In Fig. 5, we show the effect of HOC measurement time
T on the CRLB of our proposed estimator. For a given
λGBS and v, CRLB decreases with increasing T . As expected,
higher velocity provides lower accuracy of velocity estimation.
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Overall, longer HOC measurement window will provide better
velocity estimation since HOCs will be more distinguishable
for various v if we allow more time to count HOs made by the
UAV traveling on a linear trajectory. There exists a trade-off
between the rapidness and accuracy of the estimated velocities
which is also evident in Fig. 4.

VI. CONCLUSION

In this paper, we have derived the CRLB for HOC based
velocity estimation for a cellular-connected UAV flying with
constant height and velocity. We have approximated the HOC
PMF using Poisson distribution and showed that the approx-
imated PMF provides a good fit with low MSE. We have
also estimated the PMF parameter as a function of GBS
density, measurement duration, and UAV velocity, based on
which we have proposed a simple UAV velocity estimator.
Our results show that the CRLB of the estimated velocity
decreases with larger HOC measurement time interval and
higher GBS density. Our future work includes estimation of
the UAV velocity with three-dimensional flight trajectory.
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