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Abstract—Reconfigurable intelligent surfaces (RISs) are an
emerging field of research in wireless communications. A funda-
mental component for analyzing and optimizing RIS-empowered
wireless networks is the development of simple but sufficiently
accurate models for the power scattered by an RIS. By leveraging
the general scalar theory of diffraction and the Huygens-Fresnel
principle, we introduce simple formulas for the electric field
scattered by an RIS that is modeled as a sheet of electromagnetic
material of negligible thickness. The proposed approach allows
us to identify the conditions under which an RIS of finite size can
or cannot be approximated as an anomalous mirror. Numerical
results are illustrated to confirm the proposed approach.

I. INTRODUCTION

In contemporary wireless networks, transmitters and re-

ceivers can be programmed and controlled for optimizing the

system performance. The environmental objects (buildings,

walls, ceilings, etc.) that constitute the wireless environment

cannot, on the other hand, be customized based on the network

conditions. This status quo has recently been challenged by

the emerging technology of reconfigurable intelligent surfaces

(RISs) – Thin sheets of electromagnetic materials that are

capable of shaping the radio waves in arbitrary ways [1], [2].

The overarching vision consists of coating the environmental

objects with RISs and optimizing their properties, in order

to, e.g., reflect an impinging radio wave towards a desired

direction with the objective of capitalizing from multipath

propagation rather than being negatively affected by it [3]-[8].

In simple terms, an RIS is the two-dimensional equivalent

of a reconfigurable meta-material, and is made of elementary

elements called scattering particles or meta-atoms [9]. Depend-

ing on the arrangement and configuration of the scattering

particles, an RIS is capable of altering the wavefront of

the radio waves impinging upon it. For example, RISs can

modify the direction of the reflected or refracted waves and

their polarization, or can encode data onto the shape of

the scattered waves [10], [11], [12]. The two-dimensional

nature of RISs make them easier to design, less lossy, less

expensive, and easier to deploy than their three-dimensional

counterpart. Broadly speaking, RISs are special surfaces that

are engineered to possess properties that cannot be found in

surfaces made of naturally occurring materials [12]. Thanks to

these properties, RISs are receiving major attention from the

wireless community, and are considered to be the key enabler

of the emerging concept of smart radio environments [1].

A major open research issue for analyzing the ultimate

performance limits, optimizing the operation, and assessing

the advantages and limitations of RIS-empowered wireless

networks is the development of simple but sufficiently accurate

models for the power received at a given location in space

when a transmitter emits radio waves that illuminate an RIS.

Recently, a few research works have tackled this research

issue. In [13], the authors have performed a measurement

campaign in an anechoic chamber and have shown that the

power reflected from an RIS follows a scaling law that depends

on many parameters, including the size of the RIS, the mutual

distances between the transmitter/receiver and the RIS (i.e.,

near-field vs. far-field conditions), and whether the RIS is used

for beamforming or broadcasting applications. In [14], the

authors have employed antenna theory to compute the electric

field in the near-field and far-field of a finite-size RIS, and

have proved that an RIS is capable of acting as an anomalous

mirror in the near-field of the array. The results are obtained

numerically and no explicit analytical formulation of the

received power as a function of the distance is given. Similar

results have been obtained in [15]. In [16], the power measured

from passive reflectors in the millimeter-wave frequency band

is compared against ray tracing simulations. By optimizing

the area of the surface that is illuminated, it is shown that a

finite-size passive reflector can act as an anomalous mirror.

The study in [17] relies on the assumption of plane waves and

is valid only in the far-field of the RIS (i.e., long distances).

In this paper, we leverage the general scalar theory of

diffraction and the Huygens-Fresnel principle, and introduce

simple closed-form expressions to compute the power re-

flected from an RIS as a function of the distance between

the transmitter/receiver and the RIS, the size of the RIS,

and the phase transformation applied by the RIS. With the

aid of the stationary phase method, we identify sufficient

conditions under which an RIS acts as an anomalous mirror,

and, therefore, the received power decays as a function of the

reciprocal of the sum of the distances between the transmitter

and the RIS, and the RIS and the receiver. For simplicity,

the analytical formulas are reported without proof and for a

one-dimensional RIS. The proofs, discussions on the boundary

conditions to solve Maxwell’s equations, the impact of the

direct link, the analysis of refraction, and two-dimensional

RISs can be found in the companion journal paper [18].

The rest of this paper is organized as follows. In Section II,

the system model is introduced. In Section III, the analytical

formulation of the electric field emitted by a point source and

scattered by a finite-size RIS is reported. Explicit expressions

of the electric field in the near-field and far-field are given.

In Section IV, numerical results are provided to illustrate

the scaling laws of the received power as a function of the

transmission distances. Finally, Section V concludes this paper.

http://arxiv.org/abs/2001.10862v1
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II. SYSTEM MODEL

In a two-dimensional space, we consider a system that

consists of a transmitter (Tx), a receiver (Rx), and a flat surface

(S) of zero-thickness. Without loss of generality, we assume

that S is located such that its center coincides with the origin.

Furthermore, S lies in the x-axis and spans along [−L,L], i.e.,

S = {(x, 0) : −L ≤ x ≤ L}. In other words, S is a straight

line. The locations of Tx and Rx are denoted by (xT , yT ) and

(xR, yR), respectively. We consider only the scenario where

Tx and Rx are on the same side of the surface S, i.e., we

focus our attention on modeling reflections from the surface

S. Therefore, yT and yR take positive values, while there is

no restriction on the values taken by xT and xR.

Tx is modeled as a point source that emits cylindrical elec-

tromagnetic (EM) waves through the vacuum. The EM waves

emitted by Tx travel at the speed of light c. The frequency

of the EM waves is denoted by f , and the wavelength and

wavenumber are λ = c/f and k = 2π/λ, respectively. We

are interested in computing the intensity of the electric field

emitted by Tx and observed at an arbitrary point, i.e. Rx, on the

positive y-axis, with the exception of the location of the point

source. In vacuum, the x and y components of the electric field

are not coupled, and we assume that S does not change the

polarization of the EM waves. Under these assumptions, we

can analyze any components of the electric field. We consider

the tangential (to the surface S) component of the electric

field, which is denoted by Ex (xR, yR).
For every point (x, 0) ∈ S, the Tx-to-S and S-to-

Tx distances are denoted by dT (x) =
√

(x− xT )
2
+ y2T

and dR (x) =
√

(xR − x)
2
+ y2R, respectively. In particular,

dT (x) is the radius of the wavefront of the EM wave that

is emitted by Tx and intersects S at (x, 0), and dR (x) is the

radius of the wavefront of the EM wave that originates from S
at (x, 0) and is observed at Rx. With a similar terminology, the

angle of incidence of the EM wave at (x, 0) ∈ S is denoted

by θT (x). It represents the angle formed by the y-axis and

the wavefront of the EM wave that originates from Tx and

intersects S at (x, 0). The angle of reflection of the EM wave

at (x, 0) ∈ S is denoted by θR(x), and it represents the angle

formed by the y-axis and the wavefront of the EM wave that

is emitted by S at (x, 0) and is observed at Rx.

For simplicity, we assume dT (x) ≫ λ and dR (x) ≫ λ,

which usually hold true in practical setups [13]. The complete

analysis is available in [18]. Under these assumptions, the

electric field emitted by the point source (Tx) and observed at

Rx in the absence of S corresponds to the Green function in

the plane, which is well approximated as follows [19]:

Ex (xR, yR) ≈ E0
exp (−jkdTR (xR, yR))

√

kdTR (xR, yR)
(1)

where E0 = −j
√

1/(8π) exp (−jπ/4), j is the imaginary

unit, and dTR (xR, yR) =

√

(xR − xT )
2
+ (yR − yT )

2
is the

distance between Tx and Rx.

The surface S is modeled as a spatially-inhomogeneous

reflector that is capable of modifying the phase of the incident

field. We assume that the electromagnetic properties of the

surface S vary slowly, as compared with the wavelength, along

the surface itself. Under this approximation, the surface S can

be well modeled as a local structure: the reflected field at

(x, 0) ∈ S depends, approximately, only on the incident field

at (x, 0) ∈ S [20]. More precisely, the reflection coefficient at

(x, 0) ∈ S can be written as follows:

Γr(x) = C(x) exp (jΦ(x)) (2)

where C(x) ∈ R
+ and Φ(x) ∈ [0, 2π) denote the amplitude

and phase of the reflection coefficient, respectively. In this

paper, we are interested in analyzing only reflections. Further-

more, we assume that the surface S operates in the regime of

a phase-gradient reflector and, therefore, assume C(x) = 1.

III. ELECTRIC FIELD REFLECTED FROM S
Based on the assumptions in Section II, the intensity of the

electric field emitted by Tx, reflected by the surface S, and

observed at (xR, yR) for yR > 0 is given as follows.

Theorem 1. Let us assume dT (x) ≫ λ and dR (x) ≫ λ. The

electric field Ex (xR, yR) can be formulated as follows:

Ex (xR, yR) = I0
∫ +L

−L

I (x) exp (−jkP (x)) dx (3)

where I0 = 1/(8π) and:

P (x) = dT (x) + dR (x)− Φ (x) (4)

I (x) =
1

√

dT (x) dR (x)

(

yT
dT (x)

+
yR

dR (x)

)

(5)

Proof. It follows by formulating in mathematical terms the

Huygens-Fresnel principle by using the general scalar theory

of diffraction and by applying appropriate boundary conditions

at the surface S. The details can be found in [18].

The electric field in (3) is formulated in a simple integral

form, which, however, does not explicitly unveil the depen-

dency of the electric field as a function of the transmission

distances. Also, the electric field depends on the specific phase

shift Φ(x) applied by the surface S. In the following three

sub-sections, we consider three case studies for the choice of

Φ(x). Due to space limitations, only the first two case studies

are analyzed in detail. For both cases, we introduce explicit

approximate closed-form expressions for the electric field in

(3) for short and long transmission distances. The definition

of long transmission distance is given as follows.

Definition 1. Let us define dQ (x) =
√

(xQ − x)
2
+ y2Q and

sin (θQ0) = sin (θQ (0)) = −qxQ/dQ0 for Q = {T,R},

where q = 1 if Q = T and q = −1 if Q = R, as well

as dQ0 =
√

x2
Q + y2Q for Q = {T,R}. The system is said

to operate in the long distance regime if the approximation

dQ (x) ≈ dQ0 + qx sin (θQ0) holds true for Q = {T,R}.

Otherwise, it is said to operate in the short distance regime.

Loosely speaking (with a slightly abuse of terminology), the

long and short distance operating regimes can be identified

with the far-field and near-field regimes, respectively.
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A. S Acting as a Uniform Reflecting Surface

In this section, we analyze the case study in which the

surface S operates as a mirror reflector. This operation is

obtained by setting Φ (x) = φ0 for x ∈ S in (3), where

φ0 ∈ [0, 2π) is a fixed phase shift. The following two

propositions report approximate closed-form expressions of

the intensity of the electric field in (3) under the assumption

of short and long distance regime, respectively.

Proposition 1. In the short distance regime, the intensity of

the electric field in (3) can be approximated as follows:

|Ex (xR, yR)| ≈
1√
8πk

1
√

dT (xs) + dR (xs)
(6)

where xs ∈ [−L,L] is the unique solution of the equation:

xs − xT

dT (xs)
− xR − xs

dR (xs)
= 0 (7)

Proof. It follows from (3) by applying the stationary phase

method. The details can be found in [18].

Remark 1. Proposition 1 holds true only if (7) has at least

one solution xs ∈ [−L,L]. The case study when this does not

hold true can be found in [18]. Similar comments hold for

similar case studies analyzed in the following sub-sections.

From Proposition 1, the following conclusions follow.

• In the short distance regime, the surface S behaves as a

specular mirror. In particular, the (end-to-end) intensity

of the electric field reflected from the surface decays as

a function of the reciprocal of the square root of the sum

of the Tx-to-S and S-to-Rx distances. The presence of

the square root originates from the assumption of two-

dimensional space (see the emitted field in (1)).

• Equation (6) can be regarded as an approximation of

(3) under the condition of geometric optics propagation.

More precisely, (6) unveils that the intensity of the

electric field is approximately the same as that obtained

from a single ray (i.e., the direction of propagation of the

wavefront of the EM wave) that is obtained from the two

line segments that connect Tx with the point xs ∈ [−L,L]
that fulfills (7), and the latter point with Rx. Therefore,

the point xs can be referred to as reflection point.

• From the definition of angles of incidence and reflec-

tion, we have (xs − xT )/dT (xs) = sin (θT (xs)) and

(xR − xs)/dR (xs) = sin (θR (xs)), respectively. From

(7), this implies that the angles of incidence and reflection

coincide at the reflection point xs ∈ [−L,L]. In other

words, (6) allows us to retrieve the law of reflection.

Proposition 2. In the long distance regime, the intensity of

the electric field in (3) can be approximated as follows:

|Ex (xR, yR)| ≈
1

4π

∣

∣

∣

∣

cos (θT0) + cos (θR0)√
dT0dR0

∣

∣

∣

∣

×
∣

∣

∣

∣

sin (kL (sin (θT0)− sin (θR0)))

k (sin (θT0)− sin (θR0))

∣

∣

∣

∣

(8)

where cos (θQ0) = yQ/dQ0 for Q = {T,R}.

Proof. It follows by using the approximation dQ (x) ≈ dQ0+
qx sin (θQ0) for Q = {T,R}. The details are in [18].

From Proposition 2, we evince that the surface S does not

behave as a specular mirror for long transmission distances.

The scaling law that governs the intensity of the electric field

as a function of the distances is, in addition, no straightforward

to be identified. To shed light on the impact of the transmission

distances, i.e., dT0 and dR0 in (8), we consider the case study

in which Tx and Rx move along two straight lines such that

the angles θT0 and θR0 are kept constant (the two angles do

not have to be necessarily the same), but dT0 and dR0 are

different. In this case, we observe from (8) that the intensity

of the electric field decays as a function of the square root

of the product of the distances between Tx and the (center of

the) surface S, and the (center of the) surface S and Rx. In

this regime, therefore, the surface S is better modeled as a

scatterer, since its size is relatively small in comparison with

the transmission distances involved (i.e., dT0 and dR0).

The findings in Propositions 1 and 2 provide us with evi-

dence that justifies the validity of Theorem 1, and, therefore,

substantiate the approach embraced in this paper for modeling

and analyzing RISs in wireless networks. This constitutes the

departing point of the following two sub-sections.

B. S Acting as a Reconfigurable Intelligent Surface

In this section, we analyze the case study in which the

surface S operates as an RIS whose phase Φ (x) can be

appropriately optimized. In particular, we assume that S acts

as an anomalous reflector that is configured for reflecting the

EM waves emitted by Tx towards a given direction. Due

to the assumption C(x) = 1, we implicitly ignore parasitic

scattering. To this end, Φ (x) in (3) is chosen as follows:

Φ (x) =
(

φ̄T − φ̄R

)

x+ φ0/k (9)

where φ0 ∈ [0, 2π) is a fixed phase shift, φ̄T =

−x̄T

/

√

x̄2
T + ȳ2T , φ̄R = x̄R

/

√

x̄2
R + ȳ2R, and (x̄T , ȳT ) and

(x̄R, ȳR) are parameters that are optimized for obtaining the

desired reflection capability, as detailed in further text.

In contrast with Section III-A, this case study needs more

elaboration to unveil the scaling law of the intensity of the

electric field as a function of the distances. To this end, we

consider the specific setup in which φ̄T = sin (θT (0)) and

φ̄R = sin (θR (0)), which corresponds to a surface S that is

configured by taking into account the angles of incidence and

reflection of the EM with respect to (0, 0). Other case studies

are analyzed in [18]. It is worth mentioning that this setup does

not necessarily imply (x̄T , ȳT ) = (xT , yT ) and (x̄R, ȳR) =
(xR, yR), which would imply that the locations of Tx (the

point source) and Rx (the observation point) need to be exactly

known. Setups corresponding to different locations of Tx and

Rx, but yielding the same angles of incidence and reflection,

are included in the considered case study. For example, Tx and

Rx move along two straight lines in which the angles with the

y-axis at (0, 0) are kept constant but the distances are not.

The following two propositions report approximate expres-

sions of the intensity of the electric field in (3) under the

assumption of short and long distance regime, respectively.



4

Proposition 3. Assume φ̄T = sin (θT (0)) and φ̄R =
sin (θR (0)). In the short distance regime, the intensity of the

electric field in (3) can be approximated as follows:

|Ex (xR, yR)| ≈
1

4
√
2πk

√

1− φ̄2
T +

√

1− φ̄2
R

√

(

1− φ̄2
R

)

dT0 +
(

1− φ̄2
T

)

dR0

(10)

Proof. The proof is similar to Proposition 1 [18].

Proposition 4. Assume φ̄T = sin (θT (0)) and φ̄R =
sin (θR (0)). In the long distance regime, the intensity of the

electric field in (3) can be approximated as follows:

|Ex (xR, yR)| ≈
L

4π

√

1− φ̄2
T +

√

1− φ̄2
R√

dT0dR0

(11)

Proof. The proof is similar to Proposition 2 [18].

Since φ̄T and φ̄R in Propositions 3 and 4 do not depend on

the distances, the following conclusions can be drawn.

• From (10), RISs behave as anomalous mirrors in the short

distance regime: the intensity of the electric field decays

with the square root of a weighted sum of the distances,

but the angles of incidence and reflection can be different.

• From (11), RISs behave as scatterers in the long distance

regime: the intensity of the electric field decays as a

function of the square root of the product of the distances.

• In (10) and (11), φ̄T is configured based on the direction

of incidence (at (0, 0) and with the y-axis) of the EM

wave emitted by Tx, and φ̄R is configured based on the

desired direction of reflection (at (0, 0) and with the y-

axis) of the EM wave reflected by the RIS. By optimizing

φ̄R, RISs can be configured to reflect EM waves towards,

predominantly, any directions. The limitations are dis-

cussed in, e.g., [10]. This is different from (6), in which

the direction of reflection and incidence coincide. This is

the difference between specular and anomalous mirrors.

C. S Acting as a Passive Reflecting Beamformer

In this section, we analyze the case study in which the sur-

face S operates as an RIS whose phase Φ (x) is appropriately

optimized in order for S to act as a beamformer. The difference

with the previous sub-section can be summarized as follows.

• In Section III-B, the desired functionality of the RIS

consists of reflecting (or steering) the incident EM wave

towards a predetermined direction. All the receivers lo-

cated in the direction of reflection benefit from the RIS.

This setup is, therefore, more suitable for RISs that are

employed for broadcasting applications [13].

• In this sub-section, on the other hand, the desired func-

tionality of the RIS is to focus the EM wave towards a

predetermined location. In this case, a single or a few

receivers at specific locations benefit from the RIS.

In particular, we consider that S acts as a beamformer (or a

reflecting lens) that focuses the signal towards a single location

(x̄R, ȳR). To this end, Φ (x) in (3) is chosen as follows:

Φ (x) =

√

(x− xT )
2
+ y2T +

√

(x− x̄R)
2
+ ȳ2R (12)

From a mathematical point of view, Φ (x) in Section III-

B is optimized such that the first-order derivative of P (x) is

equal to zero at xs ∈ [−L,L] (if it exists). The phase Φ (x) in

(12) is, by contrast, optimized such that P (x) is equal to zero

when evaluated at the location of interest, i.e., (x̄R, ȳR). The

design criterion for optimizing the surface S is, thus, different.

The intensity of the electric field can be computed, in the

long distance regime, by using analytical steps similar to

those reported in Sections III-A and III-B [18]. Due to space

limitations, the details are omitted. Numerical illustrations are,

however, reported in the next section in order to showcase the

difference among the three configurations for the surface S.

IV. NUMERICAL RESULTS

In this section, we provide some illustrative numerical

results in order to showcase the difference among the three

configurations for S that are elaborated in Section III, and in

order to numerically evaluate the intensity of the electric field

as a function of the transmission distances. For ease of writing,

the directions of incidence and reflection are identified by the

angles θT0 and θR0, respectively. In all simulation results, we

consider the following setup: (i) L = 0.75 m; (ii) f = 28
GHz; (iii) xT = −dT0 sin (θT0) and yT = dT0 cos (θT0) with

θT0 = π/4; (iv) (x̄T , ȳT ) = (xT , yT ); and (v) φ0 = 0. This

setup corresponds to a scenario in which S is employed in the

millimeter-wave frequency band, and its size, 2L, corresponds

to, approximately, the diagonal of a two-dimensional surface

of size 1 m2. This is compatible and in agreement with other

recent papers and experimental activities [13], [16], [21].

More precisely, we consider two case studies.

• In the first case study, we are interested in illustrating

the difference among the three different configurations

for S analyzed in Section III. To this end, we plot the

intensity of the electric field emitted by a fixed location

(Tx) and observed at different locations (xR, yR). The

following setup is considered: (i) dT0 = 11 m; (ii) x̄R =
dR0 sin (θR0) and ȳR = dR0 cos (θR0) with dR0 = 5 m

and θR0 = π/3. As for the surface S in Section III-B,

this setup corresponds to reflecting an EM wave that is

incident at an angle of 45 degrees with the y-axis towards

an angle of 60 degrees with the y-axis. As for the surface

S in Section III-C, this setup corresponds to focusing

an EM wave that is incident at an angle of 45 degrees

with the y-axis towards the single location (x̄R, ȳR) =
(4.33, 2.5) m; and (iii) the observation region is chosen

in the range xR ∈ [−2, 10] m and yR ∈ [0, 10] m.

• In the second case study, we are interested in illustrating

the different scaling law of the intensity of the electric

field as a function of the transmission distances, and,

in particular, in showcasing the two operating regimes

that correspond to short and long transmission dis-

tances. To this end, the following setup is considered:

(i) xT = −d0 sin (θT0) and yT = d0 cos (θT0); (ii) xR =
d0 sin (θR0) and yR = d0 cos (θR0) with θR0 = π/4 for

the uniform surface in Section III-A and θR0 = π/6
for the RIS in Section III-B; and (iii) the Tx-to-S and

S-to-Rx distances are the same and are in the range

d0 ∈ [0, 175] m. Thus, the end-to-end distance is 2d0.
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Fig. 1: Intensity of the electric field from Theorem 1.
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Fig. 2: Comparison of short and long distance approximations.

The results corresponding to the first case study are reported

in Fig. 1, which shows the intensity of the electric field ob-

tained from (3). The figure substantiates the findings in Section

III: (i) the angles of incidence and reflections of a uniform

reflecting surface are the same (Section III-A); (ii) an RIS

configured as described in Section III-B is capable of steering

the reflected signal towards desired (anomalous) directions;

and (iii) an RIS configured as described in Section III-C is

capable of focusing the signal towards desired locations.

The results corresponding to the second case study are

reported in Fig. 2, which compares (3) with the approximated

closed-form expressions obtained in Sections III-A and III-

B. The figure substantiates the findings in Section III. In

particular: (i) the closed-form approximations for the short

distance regime are accurate for end-to-end distances (2d0)

up to 100-150 m; and (ii) the closed-form approximations for

the long distance regime are accurate for end-to-end distances

(2d0) greater than 200-250 m. For the considered setup, we

conclude that RISs are capable of acting as anomalous mirrors

for distances of the order of tens of meters. The range of

distances for which the approximation holds depend, among

other parameters, on the size of the surface and the operating

frequency. In general, the larger the size of the surface is and

the higher the operating frequency is, the more accurate the

approximation as an anomalous mirror becomes, i.e., it can be

used for longer transmission distances.

V. CONCLUSION

In this paper, we have leveraged the general scalar theory of

diffraction in order to obtain approximate closed-form expres-

sions of the intensity for the electric field reflected by RISs

in the short and long transmission distance regimes. We have

observed different scaling laws in the two considered operating

regimes. The proposed approach and results constitute a first

attempt to identify appropriate path-loss models for analyzing

the achievable performance of RISs in wireless networks.
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