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Abstract—Wireless communications via intelligent reflecting
surfaces (IRSs) has received considerable attention from both
academia and industry. In particular, IRSs are able to create
favorable wireless propagation environments with typically low-
cost passive devices. While various IRS-aided wireless communi-
cation systems have been investigated in the literature, thus far,
the optimal design of such systems is not well understood. In
this paper, IRS-assisted single-user multiple-input single-output
(MISO) communication is investigated. To maximize the spectral
efficiency, a branch-and-bound (BnB) algorithm is proposed to
obtain globally optimal solutions for both the active and passive
beamformers at the access point (AP) and the IRS, respectively.
Simulation results confirm the effectiveness of deploying IRSs in
wireless systems. Furthermore, by taking the proposed optimal
BnB algorithm as the performance benchmark, the optimality of
existing design algorithms is investigated.

I. INTRODUCTION

Various technologies have been leveraged for realizing
enhanced mobile broadband (eMBB) in the upcoming 5G
wireless communication networks, e.g., deploying large-scale
antenna arrays, network densification with small cells, and
uplifting the carrier frequency to extremely high frequencies
(EHF) [1]. However, additional cost and power consumption
are inevitably incurred by deploying more antenna elements,
access points (APs), and radio frequency (RF) chains at
EHF. Therefore, new cost-effective paradigms that are both
spectral- and energy-efficient are needed for future wireless
communication systems [2].

Because of their ability to control the propagation directions
of electromagnetic (EM) waves, intelligent reflecting surfaces
(IRSs) have been recently introduced in wireless communi-
cation systems [3]. One of the advantages of deploying IRSs
in wireless systems is that they are typically composed of
low-cost passive devices, e.g., phase shifters and dipoles [4].
Moreover, the artificial thin films of IRSs can be readily
implemented on the facades of infrastructures. Therefore, IRSs
are promising enablers for economical and energy-efficient
future wireless communication systems [5]. Nevertheless, to
fully exploit the potential of IRSs, they have to be properly
designed and integrated with conventional communication
techniques, such as power allocation and beamforming.

The work of X. Yu was supported by the Alexander von Humboldt
Foundation.

There are several recent works on the design of IRS-assisted
wireless communication systems [6]–[13]. A major obstacle
in optimizing IRS-assisted wireless systems are the highly
non-convex unit modulus constraints (UMCs) associated with
the phase shifter implementation. The UMCs were tackled
via semidefinite relaxation (SDR) [6], [7], whose performance
was then further improved via manifold optimization [8], [9].
Element-wise block coordinate descent (BCD) was employed
to handle the UMCs by optimizing one phase shifter at a
time [10], [11]. In addition, majorization minorization (MM)
and successive convex approximation (SCA) techniques were
adopted to deal with the UMCs in [11], [12] and [13],
respectively. However, none of the existing optimization al-
gorithms is guaranteed to yield an optimal solution for the
unit modulus constrained problems typical for IRS-assisted
wireless systems. More importantly, it is difficult to verify the
degree of optimality of existing suboptimal algorithms without
the globally optimal solution.

In this paper, we consider point-to-point multiple-input
single-output (MISO) communication via an IRS implemented
by programmable phase shifters. To maximize the spectral ef-
ficiency, both the active beamformer at the AP and the passive
beamformer at the IRS are jointly optimized. A branch-and-
bound (BnB) algorithm is proposed to solve the unit modulus
constrained problem. Unlike the existing results in [6]–[13],
the proposed BnB algorithm guarantees the globally optimal
solutions for the beamformers at the AP and the IRS. Promis-
ingly, our simulation results confirm that the deployment
of IRSs significantly improves the spectral efficiency of the
considered system. More importantly, by taking the proposed
BnB algorithm as the performance benchmark, the existing
low-complexity manifold optimization-based algorithm in [8]
is shown to be near-optimal.

Notations: The imaginary unit of a complex number is
denoted by  =

√
−1. Matrices and vectors are denoted by

boldface capital and lower-case letters, respectively. Cm×n
denotes the set of all m × n complex-valued matrices. 1m
is the m-dimensional all-one vector. The i-th element of
vector a is denoted by ai. A∗, AT , and AH stand for the
conjugate, transpose, and conjugate transpose of matrix A,
respectively. The `2-norm of vector a is expressed as ‖a‖2.
diag(a1, . . . , an) denotes a diagonal matrix whose diagonal
entries are a1, . . . , an, while Diag(A) represents a vector
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Fig. 1. An IRS-assisted point-to-point MISO wireless communication system.

whose elements are extracted from the diagonal elements of
matrix A. A � 0 indicates that A is a positive semidefinite
(PSD) matrix. E[·] represents statistical expectation. The real
and imaginary parts of a complex number are denoted by <(·)
and =(·), respectively. The operation unt(a) forms a vector
whose elements are a1

|a1| , . . . ,
an
|an| . The Hadamard product

between two matrices is denoted by ◦.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the signal model of the considered IRS-
assisted single-user MISO communication system is first pre-
sented. Then, the spectral efficiency maximization problem is
formulated, followed by a discussion of existing algorithms.

A. Signal Model

Consider a point-to-point MISO communication system,
which consists of an Nt-antenna AP, a single-antenna user,
and an IRS implemented by M configurable phase shifters, as
shown in Fig. 1. We assume a quasi-static flat-fading channel
model and perfect channel state information (CSI) knowledge
at both the AP and the IRS1. Hence, the received signal at the
user is given by

y =
(
hHr ΦG + hH

)
fx+ n, (1)

where hr ∈ CM×1 is the channel vector from the IRS to the
user, h ∈ CNt×1 represents the direct link from the AP to the
user, and the channel matrix from the AP to the IRS is denoted
as G ∈ CM×Nt . The active beamforming vector at the AP and
the passive beamforming matrix at the IRS are denoted by
f ∈ CNt×1 and Φ = diag(eθ1 , eθ2 , . . . , eθM ), respectively,
where θi denotes the phase shift of the i-th element of the
IRS. The transmitted signal is denoted by x, where E[|x|2] = 1
without loss of generality, and n is additive complex Gaussian
noise with variance σ2.

B. Problem Formulation

In this paper, our goal is to maximize the achievable spectral
efficiency by optimizing both the active beamforming vector

1In practice, CSI can be accurately and efficiently obtained via various
channel estimation techniques [14]. The results in this paper serve as the-
oretical performance upper bounds for the considered system, and provide
guidelines for the system design when the CSI is not perfectly known.

f and passive beamforming matrix Φ. The spectral efficiency
is given by

R = log2

(
1 +

∣∣(hHr ΦG + hH)f
∣∣2

σ2

)
, (2)

and the resulting optimization problem is formulated as

maximize
f ,Φ

∣∣(hHr ΦG + hH
)
f
∣∣2

subject to ‖f‖22 ≤ P
Φ = diag

(
eθ1 , eθ2 , . . . , eθM

)
,

(3)

where P > 0 is the given maximum transmit power.
Similar to the derivation steps in [6, Eqs. (15)-(18)], the

optimization problem in (3) can be reformulated as

P1 :
minimize
v∈CM+1

f(v) = vHRv

subject to |vi| = 1, i = 1, 2, . . . ,M + 1,
(4)

where v = [xT , t]T , x =
[
eθ1 , eθ2 , . . . , eθM

]H
, t ∈ C, and

R = −
[
diag

(
hHr
)
GGHdiag (hr) diag

(
hHr
)
Gh

hHGHdiag (hr) 0

]
. (5)

Note that optimization variable v in P1 is composed of
an auxiliary variable t and the phase shifts {θi}Mi=1. Once
the optimal solution for v in P1 is obtained, the optimal
passive beamforming matrix Φ can be recovered from the
first M elements of v, and therefore the corresponding active
beamforming vector f at the AP is optimally given by the
maximum ratio transmission (MRT) strategy, i.e.,

f =
√
P

GHdiag (hr)x + h

‖GHdiag (hr)x + h‖2
. (6)

Remark 1: Note that matrix R in (5) is not PSD, and hence
P1 is a non-convex problem. Furthermore, the element-wise
UMCs |vi| = 1 are intrinsically non-convex, which is the main
challenge in solving P1 optimally. In summary, P1 is an NP-
hard problem with the search dimension being M + 1 [15].

Remark 2: The SDR approach was proposed to tackle P1

in [6], [7]. In particular, an auxiliary optimization variable
V = vvH was introduced to reformulate P1 as a semidefinite
programming (SDP) problem with an additional rank-one
constraint. By dropping the rank-one constraint and solving
the SDP problem via standard convex optimization tools, the
optimal solution for V can be obtained. However, there is no
guarantee that the obtained solution V is a rank-one matrix. A
Gaussian randomization approach was adopted, which ensures
that the value of the objective function is asymptotically
at least π/4 of the optimal value [6]. Therefore, the SDR
approach can only provide an approximate solution for v.

Remark 3: The search space defined by the UMCs in P1 was
identified as a complex circle manifold [8]. By translating the
classical conjugate gradient descent methods in the Euclidean
space to the Riemannian manifold, a locally optimal solution
was obtained for P1. To the best of the authors’ knowledge, the
manifold optimization-based algorithm achieves the highest



spectral efficiency among all the existing approaches [8]. In
this paper, we propose a BnB algorithm that yields the globally
optimal solution of P1 and we study the degree of optimality
of the manifold optimization.

III. BRANCH-AND-BOUND ALGORITHM FOR
IRS-ASSISTED MISO WIRELESS COMMUNICATIONS

The BnB algorithm was typically applied for solving NP-
hard discrete and combinatorial optimization problems, and it
has been recently adopted for solving continuous optimization
problems [15], [16]. The BnB algorithm is a systematic
enumeration of candidate solutions by means of tree traversal.
Each node in the search tree is associated with a set, which
is a subset of the feasible set defined in the problem to be
solved. For each node, a subproblem is formulated with the
corresponding subset, for which a lower bound and an upper
bound are derived, in order to estimate the optimal solution
of the subproblem. In each iteration of the BnB algorithm,
one node is selected according to the node selection rule,
which is typically related to the bounds. Then, the selected
node (associated set) is further branched into two child nodes
(subsets). As the tree structure keeps growing, the feasible set
is progressively partitioned into smaller subsets with improved
objective values. In particular, following the BnB principles,
we update the bounds of the selected subproblems in each
iteration until convergence, i.e., the difference between the
upper bound and lower bound goes to zero. As suggested
by the above discussion, there are three key factors in the
BnB algorithm that have to be carefully designed, i.e., the
chosen node for branching, the partition rule, and the bounding
functions.

A. Lower and Upper Bounds

The feasible set of P1 is the product of M +1 unit circles.
Therefore, the subset associated with any node in the search
tree is denoted by A =

∏M+1
i=1 Ai, i = 1, 2, . . . ,M + 1.

Ai denotes an arc whose endpoints are eli and eui , cf. the
yellow arc shown in Fig. 2, where li and ui are the limit points
of the argument interval of the i-th element of v. Once one
node is selected in each iteration of the BnB algorithm, the
subproblem of P1 that needs to be solved is given by

P2(A) :
minimize
v∈CM+1

f(v) = vHRv

subject to vi ∈ Ai, ∀i.
(7)

By defining V = vvH , the BnB subproblem P2 is equivalent
to

P3 (A) :

minimize
v,V�0

g(V) = tr (RV)

subject to vi ∈ Ai, ∀i,
Diag (V) = 1M+1,

V = vvH .

(8)

For solving P1, according to the BnB principles, a lower bound
and an upper bound need to be derived for subproblem P3.
More importantly, the tighter the bounds are, the faster the

�(vi)

�(vi)

vi ∈ Ai

ejui

ejli

vi = unt(ci)

Qi

ci Si

Fig. 2. The feasible set Ai and the relaxed convex hull Qi for each
subproblem P2.

BnB algorithm converges [16]. Therefore, the main task in
this subsection is to find tight bounds for P3.

Note that the last equality constraint in P3 is basically
a rank-one constraint, which is non-convex. A commonly-
adopted approach to derive a lower bound of P3 is to relax
the non-convex constraint.

Remark 4: One may resort to the SDR approach in [6],
[7] to obtain a lower bound of P3. In this case, the rank-one
constraint V = vvH is dropped. However, in this way, the first
constraint of the optimization variable v is redundant, which
causes the subproblems in all iterations of the BnB algorithm
to be exactly the same. Therefore, the BnB algorithm does
not converge, which indicates that the SDR approach is not
applicable in the BnB framework.

In this paper, we first relax the rank-one constraint as V �
vvH , which implies |vi| ≤ 1 for i = 1, . . . ,M+1. Combined
with the first constraint in P3, the relaxed feasible set of vi is
the circular sector determined by arc Ai, cf. the region Qi∪Si
in Fig. 2. However, the circular sector is not the tightest convex
relaxation of the feasible set Ai in P3. Instead, the circular
segment enclosed by the arc Ai and the chord between eli

and eui is the tightest convex relaxation, which is denoted as
Qi in Fig. 2. Therefore, the following problem2 needs to be
solved in order to obtain a tight lower bound of P3:

P4 (Q) :

minimize
c,C�0

g(C) = tr (RC)

subject to ci ∈ Qi, ∀i,
Diag (C) = 1M+1,

C � ccH ,

(9)

where Q =
∏M+1
i=1 Qi. The first constraint in P4 can be recast

as

< (a∗ ◦ c) ≥ cos

(
u− l

2

)
, (10)

where l = [l1, . . . , lM+1]
T , u = [u1, . . . , uM+1]

T , and ai =

e
ui+li

2 for i = 1, 2, . . . ,M + 1. In addition, according to the

2As the relaxed solutions are no longer feasible solutions for P3, new
denotations of the optimization variables, i.e., c and C, are adopted here to
distinguish the relaxed solutions from the original solutions v and V.



Algorithm 1 BnB Algorithm for Solving P1

1: Initialize A0 as the product of M + 1 unit circles. Solve
P4

(
Q0
)

for its optimal solution
{
c0,C0

}
, and compute

the feasible solution v0 according to (12). Add the node
associated with

{
A0, c0,C0

}
to the search tree T . Set

convergence tolerance ε and iteration index t = 0,
2: repeat
3: t← t+ 1;
4: Select the node associated with {At, ct,Ct} such that

g(Ct) is the smallest lower bound among all the nodes;

5: Partition the feasible set associated with the selected
node into two subsets, Atl and Atr, according to (13);

6: Solve P4 (Qtl ) for its optimal solution {ctl ,Ct
l}, and

compute the feasible solution vtl according to (12);
7: Solve P4 (Qtr) for its optimal solution {ctr,Ct

r}, and
compute the feasible solution vtr according to (12);

8: Add the two partitioned nodes associated with
{Atl , ctl ,Ct

l} and {Atr, ctr,Ct
r} to T ;

9: Update U t and Lt as the smallest upper bound f(vt)
and lower bound g (Ct) in T , respectively;

10: until Ut−Lt

Lt ≤ ε
11: Update the optimal solution of P1 as v? = vt.

Schur complement, the last constraint in P4 is equivalent to
the following linear matrix inequality[

1 cH

c C

]
� 0. (11)

Note that both (10) and (11) are convex constraints. Therefore,
P4 can be efficiently solved by standard convex program
solvers such as CVX [17].

On the other hand, an upper bound of P3 can be obtained
by a feasible solution for P3. In this paper, we project the
optimal solution of P4, i.e., c, onto the feasible set of P3,
namely, A. In particular, the upper bound is given by f(v),
where v is a feasible solution given by

v = unt (c) . (12)

B. Node Selection and Partition Rules

In each iteration of the BnB algorithm, a node in the search
tree is selected to be further branched. In this paper, we
select the node associated with the smallest lower bound, and
partition its corresponding feasible set A according to the
Euclidean distance between the solution of P4, i.e., c, and its
projected solution v. In particular, we equally partition Ai?
and keep Ai for i 6= i? unchanged, where

i? = argmax
i

|ci − vi|. (13)

According to [15, Lemma 4], with the three key elements
presented in this section, i.e., obtained bounds, the node
selection rule, and the node partition rule, the BnB algorithm
is guaranteed to converge to an ε-optimal solution, where ε is
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Fig. 3. Convergence of the proposed BnB algorithm for different values of
M . The system parameters are set as Nt = 4, rAu = 50 m, rAI = 30 m,
rIu = 20 m, and ε = 10−5.

the convergence tolerance. As is well known in the literature,
the worst-case computational complexity grows exponentially
with M + 1, where M is the number of IRS elements. The
proposed BnB algorithm is summarized in Algorithm 1.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
BnB algorithm. The carrier center frequency is 2.4 GHz. All
channels are assumed to be independent Rayleigh fading, and
the path loss exponent is set to 3 with reference distance
10 m. The AP-user distance, IRS-user distance, and AP-IRS
distance are denoted by rAu, rIu, and rAI, respectively. The
total transmit power is P = 10 dBm while the noise power
at the user is set to σ2 = −90 dBm. All simulation results in
this section are averaged over 1000 channel realizations.

A. Convergence of the Proposed BnB Algorithm

In Fig. 3, we investigate the convergence of the proposed
BnB algorithm for different numbers of IRS elements, M . The
convergence tolerance of Algorithm 1 is set to ε = 10−5.
As can be observed from Fig. 3, the upper bound U t and
lower bound Lt in the proposed BnB algorithm monotonically
converge to the same value for both considered values of M .
In particular, the number of iterations needed for achieving the
convergence tolerance is around 3800 for M = 8. In contrast,
for the case with M = 10 IRS elements, the proposed BnB
algorithm needs significantly more iterations for convergence,
i.e., over 3 × 104 iterations. Note that adding only two IRS
elements results in a tremendous increase in the number of
iterations. This is because the size of the search tree grows
exponentially with M + 1. Furthermore, after convergence,
the normalized objective value for M = 10 is lower than that
for M = 8. This indicates that deploying more IRS elements
is beneficial for IRS-assisted MISO communication systems.

B. Massive MIMO or Large-Scale IRS?

For conventional wireless communications systems, deploy-
ing large-scale antenna arrays at the transceivers is an effective
way to boost the network capacity. The blue curve in Fig. 4
illustrates this effect assuming that there is no IRS deployed
in the network, and optimal MRT beamforming is adopted to
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align the beam to the direct channel h, i.e., f =
√
Ph/ ‖h‖2.

For the IRS-assisted system considered in this paper, the red
curves in Fig. 4 represent the spectral efficiency achieved for
increasing values of M , while keeping the transmit antenna
array size as Nt = 5. On the other hand, the green curves
depict the spectral efficiency achieved for increasing numbers
of transmit antenna elements, Nt, when using a 5-element IRS.
We observe that both considered IRS-assisted systems sig-
nificantly outperform the MRT strategy without IRSs, which
confirms the effectiveness of incorporating IRSs into wireless
communication systems.

Fig. 4 clearly shows that increasing the number of IRS
elements is more efficient than enlarging the antenna size at
the AP in terms of improving spectral efficiency. Furthermore,
additional RF chains and power amplifiers need to be deployed
for driving the increasing number of antenna elements, which
leads to a more energy-consuming wireless system compared
to the deployment of large-scale passive IRSs. Therefore, we
conclude that IRS-assisted wireless systems are more spectral-
and energy-efficient than conventional wireless systems.

As the proposed BnB algorithm is guaranteed to converge to
the optimal solution of P1, it can be regarded as a performance
benchmark for existing suboptimal algorithms. As discussed
in Remark 3, the manifold optimization-based algorithm pro-
posed in [8] achieves the highest spectral efficiency among the
existing approaches for beamforming in IRS-assisted MISO
communication systems. As can be observed in Fig. 4, by tak-
ing the proposed BnB algorithm as the benchmark, the man-
ifold optimization-based algorithm achieves a near-optimal
solution, especially in large-scale wireless systems. Therefore,
with the help of the proposed BnB algorithm, the manifold
optimization in [8] is shown to be an efficient algorithm
for designing large-scale IRS-assisted MISO communication
systems.

V. CONCLUSIONS

In this paper, we investigated the joint design of the active
beamformer at the AP and the passive beamformer at the IRS
in an IRS-assisted single-user MISO wireless communication
system. A BnB algorithm was proposed for tackling the
UMCs, which are the main obstacles for optimizing the beam-
formers. It is the first globally optimal algorithm developed for
IRS-assisted MISO systems in the literature. Simulation results
revealed the substantial potential of IRSs for establishing high-
speed green communication networks. Moreover, by taking the
proposed BnB algorithm as the performance benchmark, low-
complexity manifold optimization was shown to be a near-
optimal algorithm for large-scale IRS-aided wireless systems.
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