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Abstract—Traditional localization algorithms based on fea-
tures such as time difference of arrival are impaired by
non-line of sight propagation, which negatively affects the
consistency that they expect among distance estimates. In-
stead, fingerprinting localization is robust to these propagation
conditions but requires the costly collection of large data sets.
To alleviate these limitations, the present paper capitalizes
on the recently-proposed notion of channel charting to learn
the geometry of the space that contains the channel state
information (CSI) measurements collected by the nodes to be
localized. The proposed algorithm utilizes a deep neural net-
work that learns distances between pairs of nodes using their
measured CSI. Unlike standard channel charting approaches,
this algorithm directly works with the physical geometry and
therefore only implicitly learns the geometry of the radio
domain. Simulation results demonstrate that the proposed
algorithm outperforms its competitors and allows accurate
localization in emergency scenarios using an unmanned aerial
vehicle.

Index Terms—Channel charting, UAV-assisted localization.

I. INTRODUCTION

Localization services play a central role in countless
applications such as navigation, augmented reality, au-
tonomous driving, wireless communications and emergency
response to name a few. Most localization systems rely on
algorithms that provide location estimates based on pilot
signals that are received from satellites or terrestrial trans-
mitters. In case of line-of-sight (LOS) reception, model-
based approaches are typically pursued, where geometric
principles are applied to estimate locations from distance
and/or angle estimates obtained from channel features such
as time of arrival, time difference of arrival, or angle of
arrival. In turn, when there is not LOS to a sufficient
number of transmitters, as occurs indoors or in urban
scenarios, data-driven approaches are preferred since the
aforementioned distance or angle estimates become too
inaccurate. The most prominent example of this class of
algorithms is fingerprinting, which involves recording a
set of channel state information (CSI) vectors measured at
known locations; see [1] and references therein. Location
estimates can be obtained, for instance, by comparing the
CSI observed by the node to be located with the entries
of this data set and applying K-nearest neighbors. More
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sophisticated alternatives rely on deep neural networks
(DNNs) to learn a mapping from CSI [2], [3] or from
preprocessed CSI [4]–[6] into location estimates. The main
limitation of fingerprinting approaches stems from the need
for large data sets, which are costly to acquire since each
entry involves obtaining the position of a sensor either
manually or by means of auxiliary localization systems,
e.g. by using a robot.

To alleviate the cost of data collection, channel chart-
ing [7] has been recently proposed. The idea is to establish a
connection between the geometry in the radio space where
(features of) the CSI vectors reside and the geographical
geometry of the physical space where the nodes to be
located lie. The key assumption is that CSI vectors ac-
quired at spatially near locations are similar to each other.
Fig. 1a depicts the main steps in channel charting. There,
a dimensionality reduction algorithm assigns a point in 2D
or 3D space to each input CSI vector in such a way that
the distance between each pair of points is similar in some
sense to the dissimilarity between the feature representa-
tions of the CSI vectors acquired at those points; see Sec. II.
This mapping is referred to as a channel chart. The relative
positions of the points it returns approximately correspond
to the relative positions of the nodes in the physical space.
If in addition there are enough anchor nodes, i.e. nodes
whose positions are known, semi-supervised extensions [8]
can provide absolute position estimates.

In early works on channel charting, feature extraction
and dissimilarity metrics are manually engineered by re-
lying on physical principles and heuristic considerations.
To reduce the inaccuracies arising from these approaches,
DNN-based alternatives learn one of these steps from data.
For instance, [7] and [9] fix the feature extraction step and
learn the dissimilarity metric or correspondence between
the CSI vectors and the channel chart. Conversely, [10]
learns the mapping from CSI to features while fixing the
dissimilarity metric to be the Euclidean distance. In short,
both approaches learn only part of the workflow. Besides,
the explicit construction of a channel chart is convenient
in those applications where only relative positions are
required, but bypassing such a step is naturally expected to
result in improved localization performance when absolute
positions are needed.

Building upon these two observations, the present
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work proposes implicit channel charting-based localiza-
tion (ICCL), where the radio geometry is learned from
data without explicitly constructing a channel chart. In
the first step, a DNN is used to predict the physical
(or geographical) distances between nodes given the CSI
that they measure. In the second step, these distances are
utilized in combination with the locations of anchor nodes
to estimate the absolute positions of the nodes. Thus, unlike
most channel charting schemes, ICCL is supervised and
provides absolute location estimates. Relative to model-
based localization algorithms, the proposed scheme inherits
the robustness of fingerprinting to non-LOS (NLOS) prop-
agation. As compared to conventional fingerprinting, the
proposed algorithm learns the radio geometry from data,
whereas relative to DNN-based fingerprinting, learning is
heavily improved since the fact that distances are learned
instead of absolute positions gives rise to a natural data
augmentation effect, where the number of training examples
is quadratic in the number of entries of the data set; cf.
Sec. IV-B2. Finally, the proposed scheme leverages CSI
acquired by multiple nodes rather than from only one,
which is expected to increase robustness to noise and reduce
the size of the required data set.

Although the proposed ICCL approach could be used
with arbitrary forms of CSI, this paper focuses on a
scenario where an unmanned aerial vehicle (UAV) is used
to locate nodes on the ground. This is well motivated
when no terrestrial infrastructure is operational because
of a natural disaster or a military attack and when no
global navigation satellite systems (GNSSs) can be used,
e.g. because nodes lack the appropriate sensors or because
the propagation environment precludes LOS propagation
from the satellites. This constitutes another contribution of
the paper since, to the best of our knowledge, (i) existing
schemes for localization with UAVs rely on model-based
algorithms and therefore are sensitive to NLOS conditions
and other channel impairments, and (ii) no previous work
has considered channel charting in setups involving UAVs.

This paper is organized as follows. After reviewing
some relevant background in Sec. II, Sec. III formulates
the problem. ICCL is proposed next in Sec. IV and its
performance is empirically assessed in Sec. V. Finally,
Sec. VI concludes the paper.

Notation. Lower and uppercase boldface letters denote
column vectors and matrices, respectively. I denotes the
identity matrix of appropriate size. The conjugate transpose
operator is (.)H . A circularly-symmetric complex Gaussian
distribution with mean µ and variance σ2 is represented as
CN

(
µ, σ2

)
. Finally, ‖.‖ denotes the Euclidean norm.

II. CHANNEL CHARTING

Channel charting was proposed in [7] as an unsuper-
vised alternative to algorithms such as fingerprinting, which
suffer from high data acquisition costs. In this context,
supervised means that each entry of the data set is a pair
of a CSI vector and the location at which it was acquired,

Fig. 1: (a): Conventional (explicit) channel charting. (b):
Implicity channel charting (proposed).

whereas unsupervised means that each entry of the data
set contains just a CSI vector. The price to be paid is that
plain channel charting just provides coarse information of
the relative locations of the nodes. In some applications,
this kind of information suffices to enhance network func-
tionalities such as handover management, predictive radio
resource allocation, and user tracking or pairing [9].

As indicated earlier, the core idea behind channel chart-
ing is that spatially close sensors are expected to measure
similar CSI from the relevant transmitters. To apply this
principle, the key steps of channel charting are described
next and summarized in Fig. 1a. Consider M nodes located
at positions {pi}Mi=1 ⊂ RD, where D equals 2 or 3. First,
the CSI vector g̃i ∈ CL acquired by the i-th node is
mapped into a feature vector fi = φ(g̃i) ∈ CL′

. For
example, such a transformation may involve computing
second-order moments, scaling, and transforming the result
into the angular domain [7]. For each pair of nodes,
say (i, j), a dissimilarity metric di,j = δ(φ(g̃i),φ(g̃j))
is subsequently computed. Ideally, function δ should be
chosen so that its returned value resembles the physical
distance between the locations of these nodes as much as
possible. However, this is not generally doable and, for
example, [11] uses the so-called correlation matrix distance
whereas [7] uses Euclidean distance. In the next stage, a
dimensionality reduction algorithm is applied to find M
points {zi}Mi=1 ⊂ RD in such a way that the distance
between the i-th and the j-th point is ideally di,j for all
i, j. Sammon’s mapping [12] can be used to this end, but
other methods such as principal component analysis (PCA)
[13] and autoencoders have also been considered [7].

The mapping from g̃i to zi constitutes the channel chart.
The vectors zi are named pseudopositions because they
approximately preserve the relative positions of the vectors
pi. For this reason, the quality of a channel chart is typically
quantified by ad-hoc metrics such as the trustworthiness
and continuity [14]–[16]. However, it is also possible to
obtain absolute location estimates with channel charting by
relying on semi-supervised learning [8].

III. PROBLEM FORMULATION

Consider M nodes located at positions {pi}Mi=1 ⊂
RD, where D equals 2 or 3. The positions Pa =



Fig. 2: Illustration of a localization problem in an urban
scenario using a UAV. Green circles denote nodes with
known locations. Orange crosses represent nodes with
unknown locations. Blue blocks denote buildings.

{p1,p2, . . . ,pMa
} of the first Ma ≥ 3 nodes are known

and, therefore, these nodes are referred to as anchors. The
locations Pu = {pMa+1,pMa+2, . . . ,pM} of the rest of
the nodes are unknown and, consequently, these nodes will
be referred to as unknowns. The unknowns are not able to
localize themselves via GNSS, which occurs for example
when (i) high buildings obstruct the LOS to satellites, (ii)
the nodes are indoors, or (iii) the nodes are covered by
debris, as occurs in applications where survivors from an
earthquake must be located. The unknowns cannot localize
themselves using the terrestrial infrastructure either, which
is relevant when the latter is not operational due to a natural
disaster, a military attack, or a long blackout.

To localize the unknowns, a UAV flies over the area
and transmits pilot signals at N waypoints {un}Nn=1 ⊂ R3

along its trajectory. Although this paper considers a single
UAV, it is straightforward to accommodate multiple UAVs.
For each of these N waypoints, each node measures the
CSI as described next. If the application at hand demands
that the UAV locates the nodes, then all nodes report their
measured CSI to the UAV. If, instead, each unknown must
localize itself, the anchors send their measured CSI vectors
to the UAV and the latter broadcasts them to all unknowns.
The entire setup is illustrated in Fig. 2.

At the n-th waypoint, the UAV transmits a pilot se-
quence consisting of Np symbols denoted as xn =

[xn[1], xn[2], . . . , xn[Np]]
>. For simplicity, assume that

both the UAV and the nodes have a single antenna and
that the channel is neither frequency nor time selective.
Therefore, the channel between the n-th waypoint and the i-
th node can be represented by a single coefficient hi,n ∈ C.
The signal received at node i is given by

yi,n = hi,nxn +wi,n, (1)

where wi,n = [wi,n[1], . . . , wi,n[Np]]
> models noise.

Given the anchor positions Pa, the pilot sequences
{xn}n, and the received signals at all nodes {yi,n}i,n, the
problem is to estimate the positions Pu of the unknowns.

IV. IMPLICIT CHANNEL CHARTING-BASED
LOCALIZATION

This section proposes ICCL to solve the problem formu-
lated in Sec. III. The algorithm consists of three phases.
First, CSI needs to be extracted from the received signals.
Given the extracted CSI, a DNN predicts geographical dis-
tances between each pair of nodes. Finally, the multilatera-
tion algorithm [17] is used to recover the absolute positions
of the unknowns given the aforementioned distances and the
anchor locations. The key steps in the proposed algorithm
are shown in Fig. 1b. Details of each phase will be provided
in the following subsections.

A. CSI Extraction

Although ICCL can be applied, in principle, to arbitrary
forms of CSI, for concreteness and simplicity, CSI in this
paper refers to the power gain.

In view of the model in (1), the least-squares estimator
of hi,n given yi,n and xn is given by

h̃i,n = xH
n yi,n/(x

H
n xn). (2)

An estimate of the power gain can therefore be obtained as
g̃i,n = |h̃i,n|2. The CSI vector of the i-th node can then be
defined as g̃i = [g̃i,1, g̃i,2, . . . , g̃i,N ]

> ∈ RN .
For pre-training purposes, as discussed later, it is conve-

nient to be able to generate samples of g̃i,n without simulat-
ing the propagation of the pilot signals through the channel
as per (1). To this end, one can set hi,n =

√
gi,ne

jϕi,n ,
where gi,n ∈ R+ is the true power gain provided by
some model, and ϕi,n ∼ U (−π, π). Observe that if
wi,n ∼ CN

(
0, σ2I

)
, then yi,n ∼ CN

(
xnhi,n, σ

2I
)

and,
as a result, h̃i,n ∼ CN

(
hi,n, σ

2/‖xn‖2
)
. Then, one

could equivalently write h̃i,n as h̃i,n =
√
gi,ne

jϕi,n + zi,n,
where zi,n ∼ CN

(
0, σ2/‖xn‖2

)
models measurement

error. Since the noise is circularly symmetric, one can set
ϕi,n = 0 without loss of generality, which yields

g̃i,n =
∣∣∣h̃i,n∣∣∣2 =

∣∣√gi,n + zi,n
∣∣2 . (3)

Thus, samples of g̃i,n generated according to (3) are
distributed as if the transmission of the pilot signals is
simulated through (1) and (2) is evaluated.

B. From CSI to Distances

This subsection presents the process of predicting dis-
tances between nodes from their CSI vectors {g̃i}i. A DNN
is trained to this end and, therefore, it will be forced to
implicitly learn the geometry in the CSI space.

1) Architecture: Given the CSI vectors ĝi and ĝj , the
DNN obtains ∆θ(g̃i, g̃j), where θ is a vector collecting all
its trainable parameters. This function will be fitted to the
distances ‖pi−pj‖. Since ‖pi−pj‖ = ‖pj−pi‖, i.e., the
distance from node i to node j equals the distance from
node j to node i, the learned function must be invariant
to permutations of its inputs, i.e. ∆θ(g̃i, g̃j) = ∆θ(g̃j , g̃i).
This could be approximately achieved while training by



Fig. 3: Architecture of the proposed network.

providing the network with each pair of nodes in both
orders, i.e., with the examples ((g̃i, g̃j), ‖pi − pj‖) and
((g̃j , g̃i), ‖pi− pj‖) for all i, j. However, a more accurate
and efficient approach is to impose invariance by means of
the network architecture. To this end, one can let

∆θ(g̃i, g̃j) =
1

2
(fθ (g̃i, g̃j) + fθ (g̃j , g̃i)) , (4)

where fθ is a subnetwork. This is shown in Fig. 3. Observe
that, with this architecture, only the pairs of nodes with
i < j need to be provided at training time.

For example, the subnetwork fθ used in Sec. V com-
prises the following layers: convolutional 2D, max pooling,
convolutional 2D, max pooling, convolutional 2D, fully
connected, and fully connected. Each 2D convolutional
layer has 64 filters and 3 × 2 kernels, except the last one,
which has a 3 × 1 kernel. The pool size of the 2D max-
pooling layers is 2× 1. The fully connected layers have 64
and 1 units, respectively.

2) Training Process: Training data can be collected in
the same way as for fingerprinting. In the specific setup
considered here, the UAV may start operating and sensors
equipped with GNSS or other localization systems (e.g.
as in LTE or 5G) can be sequentially placed at different
positions where they measure the CSI. In case of emer-
gency response applications, this measurement campaign
is performed before the natural disaster or military attack.

Once data is acquired, supervised learning is used to train
the DNN. The cost function is the mean square error:

C(θ) ∝
M0−1∑
i=1

M0∑
j=i+1

[∆θ (g̃i, g̃j)− ‖pi − pj‖]2 ,

where M0 denotes the number of measurement locations in
the data set. Observe that the number of training examples
is M0(M0 − 1)/2, whereas for DNN-based fingerprinting
(cf. Sec. I) it would be just M0. Thus, the DNN of ICCL is
expected to be better trained than the DNN of DNN-based
fingerprinting and, as a consequence, the former is expected
to outperform the latter.

Nonetheless, DNNs are known to be “data-hungry”. Even
with M0 in the order of hundreds, θ may not be learned
properly if the network weights are initialized at random.
Thus, it is convenient to pre-train the network using another
data set, e.g. synthetically generated or measured in a
different environment.

C. From Distances to Locations

Given the distance estimates d̂i,j = ∆θ (g̃i, g̃j) provided
by the DNN as well as the anchor locations, ICCL esti-
mates the absolute positions of the unknowns via (possibly
iterative) multilateration [17]. The possibility to use this
algorithm is a benefit of working directly with physical
distances rather than dissimilarity metrics in the radio
geometry, as in most channel charting algorithms.

V. EXPERIMENTS

The simulation takes place in an urban area of size
100× 80 m. The UAV trajectory is a horizontal circle with
center at (40, 45, 40) m and radius 20 m. At N = 128
waypoints, the UAV transmits a pilot signal with transmit
power ‖xn‖2/Np = 30 dBm. However, the pilot signals
are not explicitly generated; cf. Sec. IV-A. The CSI is
then measured at M0 = 200 positions drawn uniformly
at random on the ground (D = 2). The true power gains
gi,n are generated from the 3D city map depicted in Fig. 2
using a tomographic model [18] as in [19]. To focus on
impairments in the testing phase, the noise power is set to
0 in the training data but it is greater than 0 for testing data.

The proposed ICCL algorithm is compared with two al-
gorithms. One is the classical distance-based fingerprinting
localization (DFPL) algorithm; cf. Sec. I. This algorithm
stores the training data. At testing time, given an input
CSI vector, this method searches over the stored data and
outputs the position that corresponds to the CSI vector that
has lowest Euclidean distance to the input. The second
algorithm, termed neural-based fingerprinting localization
(NFPL), is similar in spirit to those in [2]–[6] but it is
applied to the plain CSI vectors introduced in Sec. IV-A.
To obtain absolute position estimates, it trains a DNN
with the same architecture as the subnetwork of ICCL (cf.
Sec. IV-B1) except for minor modifications to accommo-
date the different input and output size. Specifically, the
kernels of the convolutional layers have size of 3×1 instead
of 3 × 2 and the output layer has 2 neurons. Both NFPL
and ICCL are pretrained with a data set that comprises
M0 = 1000 CSI vectors generated in a different environ-
ment, where the buildings have different dimensions.

To quantify the error between the true and esti-
mated locations, the root mean square error RMSE =
[ 1
M−Ma

∑M
j=Ma+1 E

[
‖p̂j − pj‖2

]
]1/2 is used, where the

expectation runs over realizations of the node locations and
measurement noise.

Fig. 4 shows the RMSE of ICCL vs. the number of
anchors for different noise levels by averaging over 100
Monte Carlo realizations with M = 100 nodes. As ex-
pected, the more anchors, the more precise the estimated
location. With only 7 anchors, the proposed algorithm can
locate unknowns with less than 10-meters average error
provided that the noise power is sufficiently low.

Fig. 5 depicts the RMSE of the compared algorithms
vs. the noise level by averaging over 100 Monte Carlo
realizations with Ma = 20 anchors and M − Ma = 80
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nodes. For a sufficiently small noise level, ICCL outper-
forms both DFPL and NFPL, which corroborates its ability
to learn the radio geometry. However, at large noise power,
the accuracy of the ICCL distance estimates degrades and
DFPL works better. This is expected to improve if the
training data is augmented by adding noise. An apparently
counterintuitive fact is that DFPL is seen to outperform
NFPL. This phenomenon has already been observed in [1]
and may be caused by the fact that DNNs require a large
amount of training data. ICCL is less sensitive to this issue,
as described in Sec. IV-B2. In contrast, in [6], NFPL offers
a better performance than DFPL, but the reason may be that
the latter applies a pre-processing step to the CSI vectors.
Other works proposing NFPL schemes, such as [2]–[5], do
not compare with DFPL.

VI. CONCLUSIONS

This paper proposes implicit channel charting-based lo-
calization (ICCL) as a localization approach that implicitly
learns the radio geometry of a collection of CSI vectors
from a data set. The idea is inspired by channel charting
and builds upon the well-known fingerprinting localization
method. Simulation results corroborate the merits of the
proposed approach.
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