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Abstract—We propose and examine the idea of continuously
adapting state-of-the-art neural network (NN)-based orthogonal
frequency division multiplex (OFDM) receivers to current chan-
nel conditions. This online adaptation via retraining is mainly
motivated by two reasons: First, receiver design typically focuses
on the universal optimal performance for a wide range of possible
channel realizations. However, in actual applications and within
short time intervals, only a subset of these channel parameters is
likely to occur, as macro parameters, e.g., the maximum channel
delay, can assumed to be static. Second, in-the-field alterations
like temporal interferences or other conditions out of the origi-
nally intended specifications can occur on a practical (real-world)
transmission. While conventional (filter-based) systems would
require reconfiguration or additional signal processing to cope
with these unforeseen conditions, NN-based receivers can learn to
mitigate previously unseen effects even after their deployment.
For this, we showcase on-the-fly adaption to current channel
conditions and temporal alterations solely based on recovered
labels from an outer forward error correction (FEC) code without
any additional piloting overhead. To underline the flexibility of
the proposed adaptive training, we showcase substantial gains
for scenarios with static channel macro parameters, for out-of-
specification usage and for interference compensation.

I. INTRODUCTION

The ongoing trend of applying NNs to signal processing
tasks for communication systems has led to the demonstration
of substantial improvements when compared to conventional
systems for a wide range of applications [1], [2], [3]. Espe-
cially when focusing on recent results of NN-based OFDM
receivers [1], [4], [5], where implementations showed compa-
rable, or sometimes even better performance than conventional
state-of-the-art baselines, there is reason to believe that NN-
based components will play a significant role in future beyond
5G systems [6]. Based on the assumption that trainable com-
ponents will be present in future receivers, we want to discuss
the opportunity of online retraining during operation to further
adapt to current channel conditions.

Conventionally, receiver algorithms are designed offline,
where they are optimized for best performance on com-
prehensive channel models, focusing on universal optimal
performance. At the same time, these channel models are
optimized to mimic the expected average behavior of the real-
world channel as accurately as possible. This also holds for
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Fig. 1: Visualization of sub-ensembles representing various
channel conditions within a universal training data-set.

NN-based receivers, which are typically trained offline on
a data-set representing an ensemble of channel realizations
generated by the same underlying channel model. Training
NN-based receivers could also be done using measured data,
but this entails several difficulties as the measurements must
cover a wide range of different channel conditions to enable
the NN to generalize to the task, and are therefore expensive.
Thus, initially training NN-based receivers on generated data
is advantageous for generalization due to the randomness
introduced by stochastic channel models. This has been done
in [4], [5] and results in similar or even superior performance
compared to conventional linear minimum mean square error
(LMMSE)-based systems, when also evaluated on the same
stochastic channel models.

However, in an actual real-world system and within a short
period of time, only a subset of these universal channel
conditions occurs. The receiver rather observes sub-ensembles
of conditions, sketched schematically in Fig. 1, depending on
the area of current operation (rural, urban, city) or situation
(velocity, interference). As these macro conditions only change
slowly, compared to signal processing from the receiver’s point
of view, we want to investigate the impact of retraining the
initially universally optimized receiver for the actual channel
conditions. From a deep learning perspective, this approach
can be seen as a deliberate overfitting, since we propose to
retrain the receiver with only the latest data available.

In the following, we show by using the example of NN-
based OFDM receivers, that re-optimizing to the current
channel conditions leads to gains compared to the univer-
sally optimized system in corner cases and demonstrate that
retrained receivers can also adapt to initially unseen channel
conditions and channel alterations like interference. The paper
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is structured as follows: Sec. II introduces the channel model
and OFDM system. In Sec. III details on the applied recurrent
neural network (RNN)-based OFDM receiver and the adaptive
retraining process are given. Finally, Sec. IV presents simula-
tion results and Sec. V concludes the main findings.

II. SYSTEM SETUP

The ideal channel data to showcase the advantages of on-
line retraining would be temporally continuous “in-the-field”
measurements of channel state information (CSI) for user
equipment (UE) trajectories covering various different channel
conditions. An equally potent alternative to measured data
could be ray-tracing-based CSI, simulated for UE trajectories
within large spatially consistent areas. Unfortunately, to the
best of our knowledge, neither of both data sources satisfying
these requirements are currently available. This is why we
rely on a modified Jakes’ and Clarke’s oriented time-varying
and frequency-selective stochastic channel model for our sim-
ulations. By sensitively manipulating the stochastic model’s
parameters, e.g., maximum channel delay, power delay pro-
file (PDP) or UE velocity, we can generate stochastic sub-
ensembles of channel realizations representing the different
channel conditions as simplistically visualized in Fig. 1.

A. Channel Model and OFDM System

We consider a tapped-delay line channel model with time-
varying channel impulse response h (t, τ). The time-varying
channel impulse response is defined as

h (t, τ) =

L−1∑
`=0

a` (t) δ (τ − τ`) (1)

where L is the number of resolvable multipath-components,
i.e., taps, a` is the complex time-varying gain of the `th
tap, τ` is the delay of the `th tap1 and δ (.) is the Dirac
delta function. For each channel realization, these multipath-
components a` are randomly generated to hold a certain
average power p` = E

[
|a`|2

]
while their absolute value |a`|

is Rayleigh distributed. This average power p` of the `th
multipath-compenent is assumed to follow an exponentially
decaying PDP. Each channel tap is therefore weighted during
its generation with the weight b` =

√
p` computed by

b` =
1

γ

√
1− β · β /̀2 ∈ R, ` = 0, 1, ..., L− 1 (2)

where the factor γ is chosen such that
∑

` |b`|2 = 1 and
0 < β < 1 is a variable decay parameter. The Fourier trans-
form of the channel impulse response h (t, τ) then yields the
channel transfer function H (t, f).

We assume that the considered OFDM transmission system
operates on frames of nT consecutive OFDM symbols with
parameters given in Tab. II. Each OFDM symbol consists
of NSub symbols – either data-carrying or pilot-carrying –
that are transmitted in parallel over the NSub subcarriers. The

1In the following it is assumed that the delay of the first tap is 0 ns and
that the delay time is equally spaced with 1/B = 100 ns.
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Fig. 2: Block diagram of the RNN-based OFDM receiver.

transmitted information bits u are encoded and interleaved
into the sequence c of length nd · m using an 5G NR
compliant low-density parity-check (LDPC) code [7] of length
n = 1296 bit. Here, nd denotes the number of transmitted
data-carrying symbols within a frame and each data symbol
carries the information of m bits (e.g., m = 4 for a 16
quadrature amplitude modulation (QAM)). For the simulation
in frequency domain it is assumed that a sufficiently long
cyclic prefix (CP) is applied and inter-symbol interference
(ISI) is not present. Let X ∈ CnT×NSub be the transmitted
symbols. After the removal of the CP the received symbols
Y ∈ CnT×NSub are given by

Y = H ◦X+N (3)

where ◦ denotes the element-wise multiplication, H ∈
CnT×NSub is the channel matrix and N ∈ CnT×NSub is the
additive white Gaussian noise (AWGN) matrix. By sampling
H (t, f) according to the OFDM system parameters given
in Tab. II we end up with the channel matrix H of the
current frame. The elements Nk,n of the noise matrix N
are independent and identically complex Gaussian distributed
according to Nk,n ∼ CN

(
0, σ2

)
where σ2 denotes the noise

power per element. The task at receiver side is to equalize and
demap the received symbols Y. Finally, the obtained soft bit
estimates are decoded by a belief propagation (BP) decoder.

B. Iterative LMMSE Baseline

As a state-of-the-art baseline system, we employ a receiver
based on the iterative estimation, demapping and decoding
(IEDD) principle. It consists of a data-aided LMMSE chan-
nel estimator, a (soft-decision) a posterior probability (APP)
demapper and a BP decoder that iterates and exchanges soft bit
information with the estimator and the demapper. For further
details the interested reader is referred to [4] and the references
therein.

III. ADAPTIVE RNN-BASED OFDM RECEIVER

To demonstrate the advantages of adaptive retraining we
consider a trainable RNN-based OFDM receiver. Similar to
[1], [4], it combines the tasks of channel estimation, equaliza-
tion and soft-demapping within a single NN.

A. Neural Network Structure and Training

Fig. 2 provides an overview of the applied NN model which
is based on the structure that has been used in [5] for the task
of channel estimation. The RNN maps the received symbols
Y to a soft bit estimation, interpreted as log-likelihood ratios



TABLE I: Parameters for Initial (Universal) Training

Parameter Value

Epochs / It. per epoch / BS 100 / 1000 / 128
Velocity v 0 km/h − 200 km/h
Signal-to-noise-ratio (SNR) 8 dB− 30 dB
Number of channel taps L Ep. 1-50: 4-10; Ep. 51-100: 1-14
PDP Exp. decaying with 10 log10

(
pL−1

p0

)
= −13 dB and equally spaced

(LLRs) lRNN ∈ Rnd·m. Besides Y, it also takes the trans-
mitted pilot symbols Xp ∈ CnT×NSub , the least squares (LS)
channel estimates Ĥp,LS ∈ CnT×NSub at pilot positions and
the noise standard deviation σ into account. The complex-
valued inputs are split into their real and imaginary parts
and the noise standard deviation is broadcasted for the whole
frame to match the input tensor shape, so that all inputs can
be stacked to one large input tensor. Similar to [5], the core
element of the RNN cell are three bidirectional long short-
term memory (LSTM) layers that primarily process the input.
The first LSTM layer operates along the input’s frequency
dimension. Next, the output’s frequency and time dimension
are permuted causing the second LSTM layer to operate in
time dimension. Finally, the time dimension and the frequency
dimension of the second layer’s output are again permuted so
that the third LSTM layer again processes along the frequency
dimension of the frame. Subsequently, the RNN cell’s output
is reshaped and processed by two time-distributed dense
layers (TDDLs). Here, every element of the two-dimensional
resource grid of the frame is processed separately by these
TDDLs using shared weights. The LSTM cells are applied
with TensorFlow’s default settings using hyperbolic tangent
(tanh) activations, the first TDDL uses rectified linear units
(ReLUs) and the second TDDL has no activation function. In
this work, we use 64 units within each LSTM layer, the first
TDDL consists of 8 neurons and the second TDDL uses m
neurons, i.e., the RNN outputs m values for every position in
the resource grid. After removing the output values at pilot
positions, the RNN’s reshaped output lRNN ∈ Rnd·m can be
de-interleaved and utilized by the outer BP decoder.

Training of the described RNN is carried out in a supervised
manner utilizing stochastic gradient descent (SGD) and back-
propagation through time (BPTT). During training (initial as
well as re-training) the Adam optimizer [8] with a learning
rate of η = 0.001 is used to minimize the binary cross-
entropy (BCE) loss between estimations lRNN and labels c.
The RNN-based receiver is initially trained with universal
randomly generated channel realizations from the stochastic
channel model for a vast range of different channel parameters.
This kind of initial training results in an universal and robust
generalization and allows the RNN-based receiver to implicitly
gather knowledge of the channel only through data-driven
training [5]. The exact parameters used for initial training are
summarized in Tab. I.

B. Adaptive Retraining via On-the-fly Label Recovery

In order to allow the RNN-based OFDM receiver to adapt to
current channel conditions, it has to be retrained periodically.
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Fig. 3: Block diagram of the retraining process for NN-based
receiver adaptation via on-the-fly label recovery [9].

To enable a single retraining step, a data-set consisting of mul-
tiple recorded OFDM frames (holding inputs Y, Xp, Ĥp,LS

and σ) and the corresponding labels, being the originally
transmitted interleaved coded bits c, must be collected. As
the labels c are required for supervised training, they must
either be retrieved by the transmission of pilot-based training
sequences (and are thereby known at the receiver side) or via
on-the-fly label recovery, as presented in [9]. Whereas pilot-
based training sequences would cause a rate loss, the approach
proposed in [9] recovers the labels on-the-fly via the outer FEC
after the decoder has corrected the received bits. Thus, there
is no additional rate loss and these labels usually come for
free as most systems rely on FECs.

To demonstrate the feasibility of on-the-fly label recovery
for the task of RNN retraining, we only use labels recovered by
the LDPC code after 20 iterations of BP decoding. The block
diagram in Fig. 3 depicts the individual processing steps that
allow retraining with recovered labels. Therefore, the RNN
processes the received symbols as described above and outputs
an LLR for each transmitted bit. These LLRs lRNN are then de-
interleaved and further processed by the BP decoder. In normal
operation, the decoder makes a final decision on the received
information bits û after several iterations of BP decoding. But,
in order to build up a labeled data-set for retraining, at the
same time the decoder also outputs its information on the
coded bits ĉ, i.e., a hard decision on the final variable nodes.
These coded bits ĉ are then interleaved to c̃ and stored together
with the corresponding inputs.

If enough tuples of inputs and labels are recovered to form
a sufficiently large retraining data-set, an update step using
supervised SGD is performed, aiming to reduce the BCE
loss. However, one drawback of the described label recovery
approach is, that even after sufficient decoding, not all labels
can be recovered correctly by a FEC code. This is why we
consider a codeword’s error syndrome in combination with the
current signal-to-noise-ratio (SNR) to define a threshold for
labels that are stored in the retraining data-set, while samples
above the threshold are discarded. Similar to the findings in [9]
we saw improved performance after retraining even with partly
erroneous labels. If the number of erroneous labels exceeded
a certain level we saw a degradation after retraining. But, this
can be avoided by defining the threshold conservatively.



TABLE II: OFDM and Channel Model Parameters

Parameter Value

Number of subcarriers NSub 64
Frame length nT 36
Carrier frequency fc 5.9GHz
Symbol duration including CP TS 8µs
Length of the CP 1.6µs
Bandwidth B 10MHz
Data symbol constellation 16 QAM, m = 4 bit per symbol
Pilot structure/arrangement Rectangular/Grid
Pilot symbol distance dT = 15, dF = 5
PDP Exp. decaying with

10 log10
(

pL−1

p0

)
= −13 dB

LDPC code RC = 1/2, n = 1296 bit

IV. SIMULATION RESULTS

To evaluate the effects of adaptive retraining we simulate
the performance of various receiver setups in three different
scenarios. For each scenario we assume certain channel condi-
tions, simulated by channel model parameters, to be static for
a short period of time. Within this time period, which shall
represent the current channel, we gather retraining data via
on-the-fly label recovery as described in Sec. III-B, perform
a retraining step of the RNN-based receiver and then evaluate
the performance on the same channel conditions. For the
following simulation results, a retraining step was executed
after 32 batches with 50 frames of input-label-tuples per batch
were collected. With the general simulation parameters given
in Tab. II, this translates to a label recovery time period of
0.4608 s and, thereby, sets a lower bound (neglecting time for
retraining computations) for periodic retraining steps to track
channel alterations. To limit the amount of erroneous labels
within a recovered retraining data-set, we empirically defined
the threshold according to the codeword’s error syndrome in
a way that at least 82% of the parity-checks of the recovered
labels have to be fulfilled by a batch to be used for retraining.
In addition, a batch is only used for retraining if the SNR
Eb/N0 is larger than 7 dB, resulting in basically no retraining in
the low SNR regime.2 Also, each recovered batch is only used
once for an SGD weight update iteration and one retraining
step is performed separately for every evaluation point at
different SNR. For each scenario the performance is measured
by the bit error rate (BER) after forward error correction (post-
FEC) and the following receiver systems are analyzed:

• Universal RNN: Non-iterative RNN-based receiver, ini-
tially trained with the universal parameters summarized
in Tab. I, complemented by 20 iterations of BP decoding.

• Adapted RNN: Non-iterative RNN-based receiver, ini-
tially trained with the universal parameters in Tab. I, that
is adapted to the current channel via one retraining step
using on-the-fly recovered labels. Also complemented by
20 iterations of BP decoding.

• LMMSE IEDD: Conventional LMMSE IEDD baseline
system utilizing an autocorrelation matrix that is matched

2Pilot sequence-based labels are required for retraining in the low SNR
regime, as recovered labels based on FEC suffer from high error rates.

9 10 11 12 13 14
10−4

10−3

10−2

Eb

N0
[dB]

B
E

R

Perfect Knowledge IDD
LMMSE IEDD
Universal RNN
Adapted RNN

12.8 13 13.2

10−3.8

10−3.7

10−3.6
0.19 dB

Fig. 4: BER performance of the investigated receivers in the
corner case scenario of no movement and thereby no channel
time-variance (v = 0 km/h and moderate L = 8 channel taps).

to the channel (genie knowledge of channel model pa-
rameters). The BP decoder executes 5 iterations before
feedback is provided to estimator and demapper. In total
4× 5 = 20 iterations of BP decoding are executed.

• Perfect Knowledge IDD: Lower limit of the achiev-
able BER assuming perfect knowledge of the channel
and utilizing an iterative receiver, i.e., exploiting itera-
tive demapping and decoding (IDD). Here, feedback is
provided to the demapper after every iteration of BP
decoding and H is known. In total 20×1 = 20 iterations
of BP decoding are executed.

A. Corner Case (Sub-Ensemble) Scenario

The first scenario investigates the impact of adaptation to
corner case conditions using the example of no UE movement.
For this purpose we set the velocity to v = 0 km/h and
choose a moderate number of L = 8 channel taps so that
the stochastic channel model generates channel realizations
that form a sub-ensemble of the universal conditions used for
initial training (Tab. I). As can be seen from the results shown
in Fig. 4, the unadapted Universal RNN already shows a better
performance than the conventional LMMSE IEDD baseline,
thus, confirming the findings of [4], [5]. This gain can be
justified by the fact that the RNN-based receiver can addi-
tionally exploit the expected distribution of the data-carrying
symbols in Y. However, by adapting the RNN receiver to the
current channel conditions, the Adapted RNN can further gain
about 0.1 dB of BER performance compared to the Universal
RNN. Interestingly, this gain is possible although the channel
conditions of this scenario were part (sub-ensemble) of the
initial universal training. We assume that retraining to current
channel conditions reinforces the RNN to lift conservative
assumptions, as channel realizations with high velocity are
not part of the retraining data and high velocity implications
are thereby not considered for weight updates. These gains
have also been observed for various other corner cases with
different parameters within the range of the universal channel
ensemble, but due to paper length limits we exemplary only
show this corner case.
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Fig. 5: BER performance of the investigated receivers in the
extremely frequency-variant (out-of-specifications) scenario of
L = 16 channel taps at a moderate velocity of v = 100 km/h.

B. Out-of-Specification (Extreme) Scenario

In the second scenario, we want to focus on the benefit of
adaptation in case of unforeseen and extreme channel condi-
tions. Therefore, the results shown in Fig. 5 were obtained
at highly frequency-selective channel conditions with L = 16
channel taps at a moderate velocity of v = 100 km/h. The
simulation results show that the performance of the conven-
tional LMMSE IEDD baseline system degrades heavily. This is
expected as it mainly relies on pilot symbols and the used pilot
position spacing in frequency dimension is not sufficient for
L = 16 channel taps, setting this scenario out of specification.
Likewise, this scenario is also out of specification for the Uni-
versal RNN as initial training only covers channel conditions
up to L = 14 channel taps. However, the performance of the
Universal RNN does also degrade compared to the Perfect
Knowledge IDD lower limit, but not as much as the LMMSE
IEDD baseline system. This observation is also consistent
with the findings of [4], [5] which showed, that NN-based
receivers extract further knowledge about the channel from
the provided data-carrying symbols and are therefore more
robust against sparse pilot spacing. But, most interestingly,
the Adapted RNN shows significantly improved performance
compared to the Universal RNN. While there is still a large
gap between the performance of the Adapted RNN and Perfect
Knowledge IDD, these results show that adaptation can render
a NN-based receiver to significantly higher operability, even in
the case of a scenario that was originally out of specifications.

C. Interference Scenario

Finally, we want to showcase a scenario that highlights the
flexibility of NN-based receivers and how retraining can even
enable adaptation to unseen tasks. This is shown using the
example of side channel interference, which is modeled by
adding noise to the outer four subcarriers, reducing their SNR
by 6 dB. As can be seen from the results shown in Fig. 6,
the LMMSE IEDD baseline as well as the Universal RNN
suffer from the added interference, but retraining the RNN-
based receiver leads to a performance gain of 0.42 dB when
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Fig. 6: BER performance of the investigated receivers in a
scenario with side channel interference, modeled by additive
noise of 6 dB on the outer four subcarriers, at otherwise mod-
erate conditions with L = 8 channel taps and v = 100 km/h.

we compare the Adapted RNN with the Universal RNN. In
this case the NN-based receiver is able to cope with the
new task of incorporating the disturbance on the outer four
subcarriers via retraining, while a conventional system would
require additional signal processing and can not simply adapt.

V. CONCLUSION

We have demonstrated that NN-based receivers benefit from
continuous retraining as they can adapt to current, extreme and
new unforeseen channel conditions. For such cases, adaptation
leads to a superior performance when compared to static
receivers that have only been designed and optimized for a
universal channel model. Finally, we want to emphasize that
these gains come without any additional signaling overhead, as
on-the-fly label recovery is sufficient for the retraining process.
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