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Abstract—mmWave radars have recently gathered significant
attention as a means to track human movement within indoor
environments. Widely adopted Kalman filter tracking meth-
ods experience performance degradation when the underlying
movement is highly non-linear or presents long-term tempo-
ral dependencies. As a solution, in this article we design a
convolutional-recurrent Neural Network (NN) that learns to
accurately estimate the position and the velocity of the monitored
subjects from high dimensional radar data. The NN is trained as
a probabilistic model, utilizing a Gaussian negative log-likelihood
loss function, obtaining explicit uncertainty estimates at its
output, in the form of time-varying error covariance matrices. A
thorough experimental assessment is conducted using a 77 GHz
FMCW radar. The proposed architecture, besides allowing one
to gauge the uncertainty in the tracking process, also leads to
greatly improved performance against the best approaches from
the literature, i.e., Kalman filtering, lowering the average error
against the ground truth from 32.8 to 7.59 cm and from 56.8 to
14 cm/s in terms of position and velocity tracking, respectively.

Index Terms—uncertainty estimation, mmWave radar, human
tracking, recurrent neural networks, indoor sensing

I. INTRODUCTION

INDOOR human tracking with low power millimeter-wave
(mmWave) radar sensors has been receiving considerable

attention in the last few years, due to its wide applicability
to the Internet of Things (IoT) [1]. The typical aim of these
systems is to exploit the reflected signal from human subjects
to infer their state in the physical space, e.g., their position
and movement speed [2]–[5].

In this paper, we address the limitations of widely used
Bayesian tracking techniques, such as the extended Kalman
filter (EKF), which require strong assumptions about the
movement process, e.g., constant velocity. Despite being
widely used in the literature [3]–[5], these methods only work
sufficiently well in practice because of the high frame rates
of mmWave radar devices, but their capability of grasping the
complexity of human movement is severely limited. In real
environments, people often follow random and unpredictable
trajectories, which do not match standard radar target move-
ment models. This causes large predicted uncertainties when
using model-based Bayesian filtering approaches, reflecting
the intrinsic limitations of legacy models in human movement
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analysis. To resolve this, we advocate the use of a model-free
and end-to-end deep learning approach. In addition, and to
the best of our knowledge, we are the first to introduce to
the radar field the concept of heteroscedastic, i.e., sample-
varying, uncertainty estimation for neural network (NN) ar-
chitectures. Modeling the uncertainty in the state estimates
allows obtaining an error covariance matrix associated with
the NN predictions: recently, this has been successfully applied
to computer vision problems [6]. Note that such covariances
are most valuable in indoor radar systems to increase the
performance of processing blocks such as data association,
in the case of (i) multiple subjects being tracked concurrently,
or (ii) multiple radars with overlapping fields of view. The
contributions of our work are:

1) We design a maximum-likelihood convolutional-recurrent
neural network (ML-CRNN), based on gated recurrent units
(GRU) [7]. This NN outputs an estimate of the current subject
state (position and velocity) given an arbitrarily long sequence
of past radar observations, without making any assumptions
on the underlying movement process. The ML-CRNN handles
both the vision part of the problem, processing the raw data,
and the non-linear target tracking part.

2) The proposed ML-CRNN outputs an heteroscedastic er-
ror covariance matrix paired with each state prediction, which
weighs the confidence level of the state estimates. This is
achieved by making the NN output the error covariance matrix
of the state estimate, and training it as a probabilistic model
via a Gaussian negative log-likelihood (NLL) loss function.

3) We design ML-CRNN for end-to-end training (no pre-
processing). While in the literature denoising and clustering
phases are customary, [2], [3], [5], ML-CRNN sequentially
processes raw range-Doppler/range-azimuth radar images.

Numerical results are obtained on our own experimen-
tal data, using a Frequency Modulated Continuous Wave
(FMCW) INRAS RadarLog device working in the 77−81 GHz
band. The evaluation scenario is challenging and realistic, with
furniture and other humans, in addition to the tracked subject.

II. FMCW MMWAVE RADAR SIGNAL MODEL

A multiple-input multiple-output (MIMO) FMCW radar
allows the joint estimation of the distance, the angular position
and the radial velocity of the target(s) with respect to the radar
device. To achieve this, the radar transmits sequences of chirp
signals and measures the frequency shift of the reflection at
its receiving antennas. Next, we provide a brief overview of
the FMCW radar signal model, detailing the parameters that
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are used in this work. For a more comprehensive description,
the reader may refer to [8], [9].

We use an INRAS RadarLog FMCW radar with one trans-
mitting antenna and Γ = 16 receiving antennas, organized as a
linear array. The frequency of the transmitted chirp signal (TX)
is linearly increased from a base value of fo = 77 GHz to a
maximum f1 = 81 GHz in Tc = 180 µs (a sweep). We define
the bandwidth of the chirp as B = f1 − fo = 4 GHz. The
chirps are transmitted every Trep = 250 µs in sequences of
P = 256 sweeps. For each of the 16 antenna elements, a mixer
combines the attenuated and delayed received signal (RX) with
the transmitted one, generating the intermediate frequency
(IF) signal. The IF signal is sampled along three different
dimensions. First, fast time sampling returns N = 1024 points
from each chirp. For the slow time (or Doppler) sampling, P
samples, one per chirp from adjacent chirps, are taken with
period Trep. Finally, the spatial sampling relates to the Γ
receiving channels, spaced apart by a distance d, and enables
the localization of the targets in the physical space. A discrete
Fourier transform (DFT) is applied along each sampling di-
mension and the square of its magnitude is computed to extract
the power density for each frequency component. The resulting
3-dimensional signal is referred to as range-Doppler-azimuth
(RDA) map, and the position of the power peaks along each
axis can be associated with the radial distance, the angular
position and the radial velocity of the subjects [8]. The RDA
maps are outputted by the radar at every time-step, with a rate
of 15 fps, and have a dimension of 1024× 64× 64 points,
due to the resolution used for the DFT along the fast time,
angular and slow time dimensions respectively.

III. METHOD

We define the state of a human subject at a certain time-step
t as the vector xt = [xt, yt, v

x
t , v

y
t ]
T ∈ R4, containing the

Cartesian coordinates of the subject in the space, xt and
yt, and the velocity components vxt and vyt . Our aim is
to track the subject, namely, to sequentially estimate their
current state across time, using a sequence of past and present
observations of the system (filtering problem). To this end,
we design a recurrent NN that extracts information from
a sequence of T consecutive radar RDA maps, identified
by index t = 1, . . . , T , and that performs a regression task
producing an estimate of the state, x̂t. In contrast to typical
regression approaches based on NNs, we wish to estimate not
only the state of the subject, but also the corresponding error
covariance, Σt = E

[
(xt − x̂t) (xt − x̂t)

T
]
.

A. Learning from raw data

Processing the raw RDA maps from the radar can be
computationally very expensive given their size. To mitigate
this, we first select only the range interval of interest from the
fast time dimension, i.e., the first 134 points, that correspond
to distances from 0 to 5 m. The resulting 134 × 64 × 64
RDA map is then projected onto the range-Doppler (RD)
plane by integrating along the azimuth dimension and onto
the range-azimuth (RA) plane by integrating along the Doppler
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(a) RD image, MRD
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(b) RA image, MRA
t .

Fig. 1: Example RD and RA images. The target corresponds to the
peak in received power around 2 m.

dimension. In this way, at each time-step t we obtain a pair of
134 × 64 images, denoted by MRD

t and MRA
t , see Fig. 1.

Images are normalized so that pixels intensities lie in the
interval [0, 1].

B. Proposed neural network architecture

The proposed ML-CRNN combines convolutional layers
operating on the single time-step with a recurrent structure
based on GRU layers [7], as shown in Fig. 2. We can identify
a convolutional and a recurrent block, which are connected
together forming the ML-CRNN model and which are trained
jointly via a common loss function (see Section III-C).

The convolutional block is a convolutional neural network
(CNN) that takes as input two images per time step, namely the
RD and RA projections of the RDA map, MRD

t ∈ [0, 1]
134×64

and MRA
t ∈ [0, 1]

134×64. Given this input, the CNN learns a
non-linear composite function C that maps MRD

t and MRA
t

onto a vector ot ∈ R16, called compressed observation. The
function is based on two parallel network branches that extract
features from each input image separately, and that are then
combined into a single output. Each branch, denoted by
i ∈ {RD,RA}, is the composition of L functions, which are
the layers of the CNN, f iL

(
. . . f i1

(
Mi

t

))
, with L = 4. Each

layer ` computes the elementwise ELU activation function
[10] of the sum between the convolution of the input X
with d` 3× 3 learned kernels, Ki

`, and a bias parameter
bi`: f

i
` (X) = ELU

(
Ki
` ∗X + bi`

)
. The term d` represents the

number of feature maps of each layer and is equal to 4, 8, 16, 4
for layer ` = 1, 2, 3, 4, respectively. The kernels are applied
using stride 2× 2, that means they are shifted by two positions
at each step of the convolution, resulting in a dimensionality
reduction of a factor 2 at each layer1. The output of each
branch, is reshaped into a vector yit, and the two outputs
are concatenated into yt. The final layer of the convolutional
block processes yt using a fully connected (FC) layer with
dropout probability p = 0.33. Dropout refers to randomly
setting to 0 the output of some NN nodes during training
as a regularization method [11]. The FC layer applies the
function ot = ELU (Wfcyt + bfc), with parameters Wfc,bfc.
Input radar images are processed in sequences of T frames,

1Zero-padding is applied to maintain the correct shape of the data.
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Fig. 2: Block diagram of the ML-CRNN architecture.

applying in parallel the CNN block to each pair of RD and RA
maps and obtaining a sequence of compressed observations,
denoted by o1:T .

The recurrent block is a recurrent layer featuring GRU
cells [7]. GRU cells maintain a hidden state across time-steps,
processing it together with the current input vector to learn
temporal dependencies in the input sequence (see [7] for the
detailed description of a GRU cell). The recurrent block takes
as input o1:T and outputs a sequence of estimates of the
unobservable target states x̂1:T and the corresponding error
covariance matrices Σ̂1:T . The hidden states are denoted by
h1:T and have dimension 128 each. At each time-step, they are
further processed with 3 FC output layers to compute the state
estimate, x̂t ∈ R4, and two vectors αt ∈ R4

+ and βt ∈ R6,
which are used to build the covariance matrix estimate Σ̂t, as
described in Section III-C. The expressions of the FC layers
are the following

x̂t = Wxht + bx, (1)

αt = exp (Wαht + bα) , (2)

βt = tanh (Wβht + bβ) , (3)

where we denoted by Wx,bx,Wα,bα,Wβ ,bβ the learned
weights and biases. In the recurrent block, recurrent dropout
is applied with probability p = 0.33 as described in [12]. The
ML-CRNN contains a total of 66730 trainable parameters.

C. Maximum likelihood state and covariance estimation

To model the uncertainty on the state estimates, we as-
sume that the posterior distribution of the state given the
observation sequence of length T is Gaussian with mean x̂t:
p(xt|MRD

1:T ,M
RA
1:T ) ∼ N (x̂t, Σ̂t). Moreover, we let Σ̂t depend

on the time-step, in order to reflect the variable uncertainty
that affects radar measurements due to many factors, like the
range-dependent power attenuation, the clutter distribution and
the variability in the movement process.

The covariance matrix Σt must be symmetric and positive
definite, and can be modeled as the sum of an aleatoric and
an epistemic component [6], [13], as detailed next.

1) Aleatoric covariance, Σa
t , is the uncertainty related to

the intrinsic noise in the state evolution and measurement
processes. It is estimated directly from the vectors αt,βt

outputted by the ML-CRNN, see Eq. (2) and Eq. (3), using
the Cholesky decomposition Σ̂a

t = LtL
T
t where Lt is a lower

triangular matrix [14]. To ensure that the covariance matrix
is positive semi-definite it is sufficient that the diagonal
elements of Lt are all non-negative. Vector αt is obtained
using an exponential activation function, therefore its elements
are positive and can be used as the diagonal elements of
Lt, namely [Lt]i,i = αi,t. The six off-diagonal elements of
Lt correspond to the elements of vector βt, that are placed
following an arbitrary (but consistent across iterations) order.

Once the aleatoric covariance is obtained applying the above
transformations, a maximum-likelihood (ML) approach is used
to jointly optimize the state and the covariance estimates, in-
terpreting the training phase as fitting a probabilistic model. In
particular, we use the negative log-likelihood of a multivariate
Gaussian as the loss function of the ML-CRNN

`(xt, x̂t, Σ̂
a
t ) = (xt − x̂t)

T
(Σ̂a

t )−1 (xt − x̂t) + ln|Σ̂a
t |, (4)

where both x̂t and Σ̂a
t are outputted by the network at each

time-step. The total loss on the sequence of T frames is com-
puted as L =

∑T
t=1 `(xt, x̂t, Σ̂

a
t )/T . Training the network by

minimizing Eq. (4) amounts to maximizing the likelihood
that the predicted state and covariance actually represent the
parameters of a Gaussian probabilistic model.

2) Epistemic covariance, Σe
t , is due to the uncertainty in

the prediction made by the deep learning model. It can be
estimated using Monte-Carlo (MC) dropout [15]. This method
consists in applying the dropout procedure during inference,
making the NN output random even for a fixed input. MC
dropout uses the last NN available at time t, and is not part
of the NN parameter learning process.

Total variance. The ML-CRNN model at time t can be
run M times for each input with MC dropout. In this way,
M different state and covariance samples are obtained for the
same input. The time index is dropped here for convenience, as
we operate within a single time-step. We respectively denote
by x̂m and Σ̂a

m, m = 1, . . . ,M , the state and covariance
predictions outputted by the NN, while we refer to their em-
pirical averages over the M samples as x̄ =

∑
m x̂m/M and

Σ̄a =
∑
m Σ̂a

m/M . Using the sample covariance estimator
for Σe, and Σ̄a as the sample mean estimate of Σa, the total
error covariance matrix can be expressed as [13]

Σ̂ ≈ 1

M

M∑
m=1

(x̂m − x̄)(x̂m − x̄)T︸ ︷︷ ︸
epistemic

+ Σ̄a︸︷︷︸
aleatoric

.

=
1

M

M∑
m=1

x̂mx̂Tm − x̄x̄T + Σ̄a.

(5)

x̄ is typically more precise than a single sample from the MC
dropout, so the final system outputs at step t are the averaged
estimate x̂t = x̄t and its covariance Σ̂t from Eq. (5). The
complete procedure is summarized in Fig. 3
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Fig. 3: Block diagram of the ML state and covariance estimation.

Position Velocity

Method RMSE [cm] LEO(0.2) [%] RMSE [cm/s]

UKF 32.8 47.1 56.8
MSE-CRNN 12.8 7.30 20.1
ML-CRNN 7.59 0.62 14.0

TABLE 1: Tracking error of UKF and the proposed CRNN network
with ML (ML-CRNN) and MSE (MSE-S2S) loss criteria.

IV. RESULTS

The proposed NN architecture is trained and tested on
experimental measurements taken in a 8 m × 4 m research
laboratory equipped with a motion tracking system with six
infra-red cameras. A total of 10 minutes of training data and
1 minute of test data were collected for a single subject
moving inside a 4 m × 2 m rectangle, i.e., the working
area of the motion tracking system. These measurements were
taken in realistic conditions, with furniture and other people
inside the room, but outside the tracking area. This makes
the radar images highly cluttered, with bursts of frames in
which the target subject is undetectable. Ground truth data is
concurrently acquired by the motion tracking system, which
was time-synchronized with the radar.

We trained the ML-CRNN using the loss in Eq. (4) and the
Adam optimizer [16], using a subset of the training data as
the validation set. Training was stopped when the loss reached
convergence on the validation set, and the epistemic covariance
on the training set became negligible. The length of the tempo-
ral sequences that are fed to the NN during training is T = 10
(0.667 s). During the evaluation, instead, the predictions are
obtained by inputting a new radar frame in the ML-CRNN as
soon as it becomes available. The ML-CRNN then uses the
hidden state, ht, and the current input to compute the pre-
diction, similarly to how Bayesian filtering methods operate.
The following metrics were used to evaluate the tracking error:
(i) root mean square error (RMSE) and (ii) localization error
outage, LEO(0.2) = Prob (||x− x̂||> 20 cm).

A. Performance

Tracking – In Tab. 1, we show the results obtained by the
proposed CRNN model with the ML loss of Eq. (4) (ML-
CRNN), compared to the same model trained with standard
MSE loss (MSE-CRNN), i.e., without the covariance estima-
tion, and to an unscented Kalman filter (UKF), which is a
widely adopted Bayesian filtering method for estimating the
posterior state distribution in non-linear radar tracking [17].
The parameters of the UKF have been optimized via grid
search on the same training dataset used for the ML-CRNN.

Both CRNN methods are clearly superior in tracking accuracy
to the UKF, showing an RMSE reduction of about 0.25 m
in the location accuracy and 0.4 m/s in the velocity estima-
tion. Note that the UKF cannot perform tracking from high-
dimensional raw data: denoising and clustering are needed to
transform the RDA maps into vectors containing the range
and angular position of the target. For this purpose, we
implemented the clustering method used in [3]–[5], based on
the DBSCAN [18] algorithm.

A further important aspect is the effect of NN training
by using the ML loss: in addition to getting an estimate of
the prediction uncertainty, we also observed a considerable
improvement of the tracking accuracy. The ML-CRNN learn-
ing process is indeed less affected by outliers in the radar
measurements due to its probabilistic nature, assigning low
importance to unlikely observations.

Uncertainty estimation – To gauge the quality of the
obtained uncertainty estimates, we first compare the NLL
from ML-CRNN against that of UKF, see Fig. 4a, using
M = 25 MC samples in Eq. (5). Note that, in practice, the
value of M can be tuned to trade off between computational
complexity and quality of the resulting uncertainty estimation.
We notice that ML-CRNN is slower to converge, due to its
long-term dependency on past inputs, (T = 10 time-steps), but
achieves much better performance (smaller NLL) after the
initial transient, showing its superior capability of capturing
the underlying human movement model.

In Fig. 4b, we show the relation between the predicted
uncertainty and the position estimates for ML-CRNN, focusing
on the y component of the velocity, vy . We see that the
uncertainty (standard deviation of vy , bottom) shows a positive
peak when vy changes rapidly (top).

A further way to investigate the quality of the covariance
is to compare the empirical frequency of the squared Ma-
halanobis distance, ξt = (xt − x̂t)

T
(Σ̂t)

−1 (xt − x̂t), on the
test measurements, with its theoretical probability distribution.
Due to the Gaussian posterior probability assumption for the
state, it can be shown that ξt should follow a χ2 distribution
with 4 degrees of freedom (the state dimension) [19].

In Fig. 4c, we plot a comparison between the empirical
frequency and the theoretical value of the probability distribu-
tion of ξt. An ideal calibration of the uncertainty would yield
a perfect match between the two, as in the black line. From
our experiment, we see that a clear improvement is obtained
with ML-CRNN by using both the aleatoric and the epistemic
components of the covariance, over using either of them in
isolation. In particular, only using the epistemic component
leads to severely underestimating the uncertainty, because it
neglects the intrinsic variability of the movement process of
the target. On the other hand, the UKF shows inferior calibra-
tion quality, which denotes the limitations of the underlying
movement model. Quantitatively, the calibration mean-squared
errors between the ideal case (perfect calibration) and the
predicted uncertainty are 9 · 10−4 and 5 · 10−3 for the ML-
CRNN ad the UKF, respectively.
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Fig. 4: (a) Negative log-likelihood (NLL) on test data for ML-CRNN and UKF. (b) Estimate of vy (top) and its predicted standard deviation
(bottom). (c) Comparison between the empirical distribution of the squared Mahalanobis distances and the theoretical one.

V. CONCLUSIONS

In this paper, we proposed a convolutional recurrent neural
network to track human movement in indoor spaces by means
of a mmWave MIMO FMCW radar. Our model estimates
position and velocity of the subjects from raw radar data with
superior accuracy with respect to state-of-the-art techniques,
and without requiring any assumptions on the movement
evolution process. The proposed neural network is trained as a
probabilistic model using a maximum-likelihood loss function,
obtaining explicit uncertainty estimates at its output, in the
form of a time-varying error covariance matrices. This, besides
allowing one to gauge the uncertainty in the tracking process,
also leads to greatly improved performance against the best
approaches from the literature, i.e., the unscented Kalman
filter, lowering the average tracking error from 32.8 to 7.59 cm
and from 56.8 to 14 cm/s in terms of position and velocity,
respectively.

Future research work includes the integration of deep learn-
ing models for object detection and recognition in the ML-
CRNN. This would allow simultaneously detecting multiple
targets, obtaining a probability distribution of their position
and recognizing the target nature, e.g., person, pet, vehicle,
etc.
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