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Abstract—For engineering applications of artificial intelligence,
Bayesian learning holds significant advantages over standard fre-
quentist learning, including the capacity to quantify uncertainty.
Langevin Monte Carlo (LMC) is an efficient gradient-based
approximate Bayesian learning strategy that aims at producing
samples drawn from the posterior distribution of the model
parameters. Prior work focused on a distributed implementa-
tion of LMC over a multi-access wireless channel via analog
modulation. In contrast, this paper proposes quantized federated
LMC (FLMC), which integrates one-bit stochastic quantization
of the local gradients with channel-driven sampling. Channel-
driven sampling leverages channel noise for the purpose of
contributing to Monte Carlo sampling, while also serving the
role of privacy mechanism. Analog and digital implementations
of wireless LMC are compared as a function of differential
privacy (DP) requirements, revealing the advantages of the latter
at sufficiently high signal-to-noise ratio.

Index Terms—Federated learning, Differential privacy,
Langevin Monte Carlo, Power allocation

I. INTRODUCTION

Federated learning (FL) is a distributed learning paradigm
whereby multiple devices coordinate to train a target global
model, while avoiding the direct sharing of local data with the
cloud [1]–[3]. Prior work on wireless FL mainly focuses on
conventional frequentist learning, which produces point esti-
mates of model parameter vectors by minimizing empirical loss
metrics [4]–[9]. In many engineering applications characterized
by the availability of limited data and by the need to quantify
uncertainty, Bayesian learning provides a more effective and
principled framework to define the learning problem (see, e.g.,
[10]). Bayesian learning assigns a probability distribution to the
model parameters, rather than collapsing any residual uncer-
tainty in the model parameter space to a single point estimate.
In this paper, we focus on the distributed implementation
of Bayesian learning in wireless systems within a federated
learning setting, with the main goal of leveraging the wireless
channel as part of the “compute continuum” between devices
and server [11] (see Fig 1).

Scalable Bayesian learning solutions are either based on
variational inference, whereby the distribution over the model
parameters is optimized by minimizing a free energy metric
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[12]; or on Monte Carlo (MC) sampling, whereby the distri-
bution over the model parameters is represented by random
samples [13]. It was recently pointed out in [14] that MC
solutions enable a novel interpretation of the wireless channel
as part of the MC sampling process. In particular, reference
[14] proposed a Bayesian federated learning protocol based
on Langevin MC (LMC), a noise-perturbed gradient-based MC
strategy [13], and analog transmission. The paper demonstrated
the role of the channel noise as a contributor to the LMC
update, as well as a privacy mechanism (see also [15], [16]).
In this paper, we devise an alternative strategy that implements
LMC in a federated setting via digital modulation under
privacy constraints.

Federated learning has been widely studied for implemen-
tation on wireless channels (see, e.g., [17]). Techniques that
leverage the wireless channel for computation include over-
the-air computation (AirComp), whereby superposition in non-
orthogonal multiple access (NOMA) is used as a means to
aggregate information from different sources [8], [18], [19];
channel noise for privacy, which enforces differential privacy
(DP) guarantees via power control [16], [20]; and channel noise
for sampling, which was introduced above [14]. Also related to
this work are DP mechanisms based on stochastic quantization
[21].

In this paper, inspired by [7], we study Bayesian feder-
ated learning protocols based on the digital transmission of
gradients from edge devices to the edge server (see Fig. 1).
Like [14], which considered analog transmission, we aim at
leveraging channel noise for both channel-driven MC sampling
and DP. The main contributions of this paper are as follows.

• Quantized federated LMC (FLMC): We introduce a
quantized federated implementation of LMC based on
stochastic quantization, binary transmission, and channel-
driven sampling;

• Power allocation policy with DP guarantees: We an-
alyze the DP guarantees of LMC, and we design an
approach to determine power control parameter to meet
the requirements of both MC sampling and DP;

• Experiments: We demonstrate an experimental compari-
son of digital and analog wireless FLMC implementations
under DP constraints.

The remainder of this paper is organized as follows. Section
II formulates the system models and definitions. The privacy
anaysis and power control design are presented in Section III.
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organized in iterations s = 1, 2, . . . , Sb + Su with Sb denoting the burn-in period, across which

the server maintains sample iterates ✓[s]. At each s-th communication round, the edge server

broadcasts the current sample ✓[s] to all edge devices via the downlink channel. We assume that

downlink communication is ideal, so that each device receives the sample ✓[s] without distortion.

This assumption is practically well justified when the edge sever communicates through a base

station with less stringent power constraint than the devices. By using the received vector ✓[s]

and the local dataset Zk, each device computes the gradient of the local cost function (4) as

(Local gradient) rfk

�
✓[s]
�

= �
NkX

n=1

r log p(zn|✓[s]) � 1

K
r log p(✓[s]), (10)

which is transmitted over the wireless shared channel to the edge server for updating (6). As we

will see, channel noise can be repurposed to contribute to the additive random term ⇠[s+1] in the

LMC update (6). The steps in (10) and (6) are iterated across multiple communication rounds

until a convergence condition is met. As a result, the server obtains a sequence of global model

parameter vectors ✓[s], with s = 1, 2, . . . , Sb + Su.

C. Communication Model

All devices communicate via the uplink to the edge server on the shared wireless channel

using uncoded transmission and non-orthogonal multiple access (NOMA). We assume a block

flat-fading channel, where the channel coefficients remain constant within a communication

block, and they vary in a potentially correlated way over successive blocks. Each block contains

d channel uses, allowing the uncoded transmission of a gradient vector. Due to memory and

processing complexity constraints, on-device machine learning models are typically of small

size, so that the model parameters dimension d can be assumed to be limited to a few tens

of thousands of entries [47]. In this case, considering that typical coherence blocks may be

of the same order of magnitude [48], [49], it is generally feasible to communicate the entire

gradient vectors within one communication block. For larger model sizes, the gradient would

need to be communicated across multiple coherence blocks – a setting that we leave for future

investigations.

We assume symbol-level synchronization among the devices that transmit a gradient vector

simultaneously in each block, enabling over-the-air computing. This can be achieved by using
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Quantization

a > 0. Each of the quantized gradient parameters g̃[s]
k,i is

modulated into one BPSK symbol. As a result, a block of
m BPSK symbols is produced to communicate the quantized
local gradient vector g̃[s]

k in a communication round.
Accordingly, at the s-th communication round, the received

signal at the server is given by the superposition

y[s] =

KX

k=1

H[s]
k P[s]

k g̃[s]
k + z[s], (9)

where H[s]
k = diag[h[s]

k,1, · · · , h[s]
k,m] and P[s]

k =

diag[P [s]
k,1, · · · , P [s]

k,m] are diagonal matrices collecting
respectively the channel gains and power control parameters
for m consecutive symbols in a block; while z[s] is the channel
noise, which is i.i.d. according to distribution N (0, N0I). We
assume perfect channel state information (CSI) at all nodes,
so that, as we will see, each device can compensate for the
phase and amplitude of its own channel.

In the following sections, we will design the power alloca-
tion parameters {{P [s]

k,i}m
i=1}K

k=1 for each communication round.
The transmission of each device is subject to the average per
block transmission power constraint:

(Power constraint) 1

m

mX

i=1

��P [s]
k,ig̃

[s]
k,i

��2  P0, 8k, s. (10)

We define the maximum signal to noise ratio (SNR) as
SNRmax = P0/N0, which is obtained when a device transmits at
full power.

C. Differential Privacy

We assume an “honest-but-curious” edge server that may
attempt to infer information about local data sets from the
received signals y[s]. The privacy constraint is described by the
standard (✏, �)-DP constraint, with some ✏ > 0 and � 2 [0, 1).
DP hinges on the divergence between the two distributions
P (y[s]|D0) and P (y[s]|D00) of the signal received when the data
sets D0 and D00 differ a single data point, i.e., kD0 �D00k1 = 1.
Formally, we have (✏, �)-DP if the inequality

max
D0,D00:kD0�D00k1=1

�
Pr(|LD0,D00(y[s])|  ✏)

 
� 1 � � (11)

is satisfied, where the DP loss LD0,D00(y[s]) is

LD0,D00(y[s]) = ln
P (y[s]|D0)

P (y[s]|D00)
. (12)

The probability in (11) is taken with respect to the distribution
P (y[s]|D0). We note that the DP constraint (11) is applied
at each communication round, and that the overall privacy
guarantees across iterations can be obtained by using standard
composition theorems [19, Sec. 3.5]. To ensure DP requirement
as [15], [23], we make the following assumption on the
gradients.

Assumption 1 (Bounded Gradients). Each element of the local
gradients is bounded by some constant ` > 0 as��g[s]

k,i

��  `, for all k, s, i. (13)

In practice, the condition (13) can be met by clipping each
entry of the gradient as min{1, `/|g[s]

k,i|}g[s]
k,i before quantization

[23].

III. POWER CONTROL FOR QUANTIZED FEDERATED
LANGEVIN MONTE CARLO

In this section, we first present the transmitter and receiver
designs for the proposed quantizedd federated Langevin Monte
Carlo (FLMC), and then analyze its DP properties. Finally, we
address the design of power control parameters in (9).

A. Signal Design

As described in Sec. II-B, each device applies stochastic
quantization as in (8). Followed by BPSK transmission under
the assumption of perfect CSI, we consider channel inversion,
whereby the power control matrix in (9) is selected as P[s]

k =

A[s](H[s]
k )�1. The diagonal matrix A[s] = diag[A[s]

1 , · · · , A[s]
m ] is

to be designed with the goal of ensuring that the server can
approximate the LMC update (6), while also guaranteeing the
power constraint (10) and the DP constraint (11).

The server normalizes the received signal as (A[s])�1y[s] to
obtain an estimate of the global gradient. Accordingly, the
server approximates the LMC update (6) as

✓[s+1] = ✓[s] � ⌘

"
KX

k=1

g̃[s]
k +

�
A[s]

��1
z[s]

#
. (14)

B. Privacy Analysis

We now consider the DP constraint (11) for any device k. To
this end, we fix the quantized gradients {g̃j}j 6=k of the other
devices, and consider neighboring data sets D0

k and D00
k for

device k that differ only by one sample, i.e., kD0
k � D00

kk1 = 1.
As the DP constraint (11) is applied to every iteration, we omit
the index of the communication round s for ease of notation.
Then, the privacy loss (12) for device k can be written as

LD0,D00(y) = ln

Qm

i=1
P (Aig̃

0
k,i + Ai

P
q 6=k

g̃q,i + zi

��{g̃q,i}q 6=k, D0
k)

Qm

i=1
P (Aig̃00

k,i + Ai

P
q 6=k

g̃q,i + zi

��{g̃q,i}q 6=k, D00
k )

=

mX

i=1

ln

h
�(g0

k,i) exp
⇣

2(zi�Ai
P

q 6=k g̃q,i)

N0/Ai

⌘
+ (1 � �(g0

k,i))
i

h
�(g00

k,i) exp
⇣

2(zi�Ai
P

q 6=k g̃q,i)

N0/Ai

⌘
+
�
1 � �(g00

k,i)
�i ,

(15)
where, with some abuse of notation, P (X|Y ) represents the
distribution of random variable X evaluated at X when condi-
tioned on the value Y of random variable Y ; the last step
uses the fact that the distributions in (15) are mixture of
Gaussians; and we have zi ⇠ N (0, N0). To attain the maximum
DP loss in (15), we consider the worst-case choice of data
sets D0 and D00D. To this end, without loss of generality, we
set �(g0

k,i) = �(`) and �(g00
k,i) = �(�`) by Assumption 1.

Furthermore, the value of the sum
P

j 6=k
g̃q,i is within the range

of [�(K�1), (K�1)], and hence have the following inequality
|LD0,D00(y)|

max

(�����
mX

i=1

ln

h
�(`) exp

⇣
2(zi+Ai(K�1))

N0/Ai

⌘
+ (1 � �(`))

i

h
�(�`) exp

⇣
2(zi+Ai(K�1))

N0/Ai

⌘
+ (1 � �(�`))

i
�����,

�����
mX

i=1

ln

h
�(`) exp

⇣
2(zi�Ai(K�1))

N0/Ai

⌘
+ (1 � �(`))

i

h
�(�`) exp

⇣
2(zi�Ai(K�1))

N0/Ai

⌘
+ (1 � �(�`))

i
�����

)

, L⇤(z), (16)
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Figure 1. Differentially private quantized federated Bayesian learning system based on LMC.

Section IV describes numerical results.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a wireless federated edge
learning system comprising an edge server and K edge devices.
The devices are connected to the server via a shared wireless
channel. Each device k has its own local dataset Dk, which
includes Nk data samples Dk = {dk,n}Nk

n=1. The global data set
is denoted as D = {Dk}Kk=1. The devices communicate to the
server via a NOMA digital channel with BPSK modulation as
in [9]. Unlike [9], which focuses on conventional frequentist
learning, here the goal is to carry out Bayesian learning
by approximating the global posterior distribution p(θ|D) at
the server. Furthermore, as in [7], which considers analog
transmission, we impose privacy constraints via DP.

A. Federated Langevin Monte Carlo

The machine learning model adopted by the system is
defined by a likelihood function p(d|θ), as well as by a prior
distribution p(θ). Accordingly, the likelihood of the data at
device k is obtained by assuming identical and independent
(i.i.d.) observations as

p(Dk|θ) =

Nk∏

n=1

p(dn,k|θ). (1)

The target global posterior is

p(θ|D) ∝ p(θ)

K∏

k=1

p(Dk|θ), (2)

which can be expressed in terms of the product p(θ|D) ∝∏K

k=1
p̃(θ|Dk) of the local sub-posteriors at each device k

p̃(θ|Dk) ∝ p(θ)1/Kp(Dk|θ). (3)
We introduce the local cost function

fk(θ) = − log p(Dk|θ)− 1

K
log p(θ), (4)

which accounts for prior and likelihood at device k, as well as
the global cost function

f(θ) =

K∑

k=1

fk(θ). (5)

LMC is a gradient-based MCMC sampling scheme. As such,
it aims at producing samples from the global posterior p(θ|D)

in (2) by leveraging information about the gradient of the local
cost functions (4). At each s-th iteration, LMC produces the
next sample θ[s+1] as

(LMC) θ[s+1] = θ[s] − η
K∑

k=1

∇fk(θ[s]) +
√

2ηξ[s+1], (6)

where η is the step size, and {ξ[s]} is a sequence of i.i.d. random
vectors following the Gaussian distribution N (0, Im), which are
independent of the initialization θ[0] ∈ Rm.

To implement LMC in the described federated setting, at
each s-th communication round, the edge server broadcasts
the current sample θ[s] to all edge devices via the downlink
channel. We assume ideal downlink communication. By using
the received vector θ[s] and the local dataset Dk, each device
computes the gradient of the local cost function (4) as

g[s]
k = −

Nk∑

n=1

∇ log p(dn|θ[s])− 1

K
∇ log p(θ[s]). (7)

While [7] explored the use of analog communication to trans-
mit the local gradients in (7), in this work we assume that
the devices apply entrywise binary quantization in order to
enable BPSK-based transmission. The edge server aggregates
the received signals to obtain an approximation of the update
term −η∇f(θ[s])+

√
2ηξ[s+1] in (6). As we will see, and as first

proposed in [7], channel noise can be leveraged to contribute
to the additive random term ξ[s+1] in the LMC update (6),
as well as a DP mechanism. After S communication rounds,
the server obtains a sequence of samples of model parameter
vectors {θ[s]}Ss=1.

B. Communication Model

The devices communicate via NOMA on the uplink to the
edge server. At any s-th communication round, each entry g[s]

k,i

of the gradient vector g[s]
k = [g[s]

k,1, · · · , g[s]
k,m]T is quantized via

one-bit stochastic quantization [22]

g̃[s]
k,i =

{
1 with probability Φ(g[s]

k,i),

−1 with probability 1− Φ(g[s]
k,i),

(8)

where function Φ(·) returns a probability that increases with the
input argument. An example is given by the sigmoid function
Φ(x) = σ(x) =

(
1 + exp(−ax)

)−1 for some fixed parameter

2



a > 0. Each of the quantized gradient parameters g̃[s]
k,i is

modulated into one BPSK symbol. As a result, a block of
m BPSK symbols is produced to communicate the quantized
local gradient vector g̃[s]

k in a communication round.
Accordingly, at the s-th communication round, the received

signal at the server is given by the superposition

y[s] =

K∑

k=1

H[s]
k P[s]

k g̃[s]
k + z[s], (9)

where H[s]
k = diag[h[s]

k,1, · · · , h[s]
k,m] and P[s]

k =

diag[P [s]
k,1, · · · , P [s]

k,m] are diagonal matrices collecting
respectively the channel gains and power control parameters
for m consecutive symbols in a block; while z[s] is the channel
noise, which is i.i.d. according to distribution N (0, N0I). We
assume perfect channel state information (CSI) at all nodes,
so that, as we will see, each device can compensate for the
phase and amplitude of its own channel.

In the following sections, we will design the power alloca-
tion parameters {{P [s]

k,i}mi=1}Kk=1 for each communication round.
The transmission of each device is subject to the average per
block transmission power constraint:

(Power constraint) 1

m

m∑

i=1

∣∣P [s]
k,ig̃

[s]
k,i

∣∣2 ≤ P0, ∀k, s. (10)

We define the maximum signal to noise ratio (SNR) as
SNRmax = P0/N0, which is obtained when a device transmits at
full power.

C. Differential Privacy

We assume an “honest-but-curious” edge server that may
attempt to infer information about local data sets from the
received signals y[s]. The privacy constraint is described by the
standard (ε, δ)-DP constraint, with some ε > 0 and δ ∈ [0, 1).
DP hinges on the divergence between the two distributions
P (y[s]|D′) and P (y[s]|D′′) of the signal received when the data
sets D′ and D′′ differ a single data point, i.e., ‖D′−D′′‖1 = 1.
Formally, we have (ε, δ)-DP if the inequality

max
D′,D′′:‖D′−D′′‖1=1

{
Pr(|LD′,D′′(y[s])| ≤ ε)

}
≥ 1− δ (11)

is satisfied, where the DP loss LD′,D′′(y[s]) is

LD′,D′′(y[s]) = ln
P (y[s]|D′)
P (y[s]|D′′) . (12)

The probability in (11) is taken with respect to the distribution
P (y[s]|D′). We note that the DP constraint (11) is applied
at each communication round, and that the overall privacy
guarantees across iterations can be obtained by using standard
composition theorems [23, Sec. 3.5]. To ensure DP requirement
as [24], [25], we make the following assumption on the
gradients.

Assumption 1 (Bounded Gradients). Each element of the local
gradients is bounded by some constant ` > 0 as∣∣g[s]

k,i

∣∣ ≤ `, for all k, s, i. (13)

In practice, the condition (13) can be met by clipping each
entry of the gradient as min{1, `/|g[s]

k,i|}g[s]
k,i before quantization

[24].

III. POWER CONTROL FOR QUANTIZED FEDERATED
LANGEVIN MONTE CARLO

In this section, we first present the transmitter and receiver
designs for the proposed quantized federated Langevin Monte
Carlo (FLMC), and then analyze its DP properties. Finally, we
address the design of power control parameters in (9).

A. Signal Design

As described in Sec. II-B, each device applies stochastic
quantization as in (8). Followed by BPSK transmission under
the assumption of perfect CSI, we consider channel inversion,
whereby the power control matrix in (9) is selected as P[s]

k =

A[s](H[s]
k )−1. The diagonal matrix A[s] = diag[A[s]

1 , · · · , A[s]
m ] is

to be designed with the goal of ensuring that the server can
approximate the LMC update (6), while also guaranteeing the
power constraint (10) and the DP constraint (11).

The server normalizes the received signal as (A[s])−1y[s] to
obtain an estimate of the global gradient. Accordingly, the
server approximates the LMC update (6) as

θ[s+1] = θ[s] − η
[

K∑

k=1

g̃[s]
k +

(
A[s]

)−1
z[s]

]
. (14)

B. Privacy Analysis

We now consider the DP constraint (11) for any device k. To
this end, we fix the quantized gradients {g̃j}j 6=k of the other
devices, and consider neighboring data sets D′k and D′′k for
device k that differ only by one sample, i.e., ‖D′k −D′′k‖1 = 1.
As the DP constraint (11) is applied to every iteration, we omit
the index of the communication round s for ease of notation.
Then, the privacy loss (12) for device k can be written as

LD′,D′′(y) = ln

∏m

i=1
P (Aig̃

′
k,i +Ai

∑
q 6=k

g̃q,i + zi
∣∣{g̃q,i}q 6=k,D′k)

∏m

i=1
P (Aig̃′′k,i +Ai

∑
q 6=k

g̃q,i + zi
∣∣{g̃q,i}q 6=k,D′′k )

=

m∑

i=1

ln

[
Φ(g′k,i) exp

(
2(zi−Ai

∑
q 6=k g̃q,i)

N0/Ai

)
+ (1− Φ(g′k,i))

]

[
Φ(g′′k,i) exp

(
2(zi−Ai

∑
q 6=k g̃q,i)

N0/Ai

)
+
(
1− Φ(g′′k,i)

)] ,

(15)
where, with some abuse of notation, P (X|Y ) represents the
distribution of random variable X evaluated at X when condi-
tioned on the value Y of random variable Y ; the last step uses
the fact that the distributions in (15) are mixture of Gaussians;
and we have zi ∼ N (0, N0). To attain the maximum DP loss in
(15), we consider the worst-case choice of data sets D′ and D′′.
To this end, without loss of generality, we set Φ(g′k,i) = Φ(`)

and Φ(g′′k,i) = Φ(−`) by Assumption 1. Furthermore, the value
of the sum

∑
j 6=k

g̃q,i is within the range of [−(K−1), (K−1)],
and hence have the following inequality
|LD′,D′′(y)|

≤max

{∣∣∣∣∣
m∑

i=1

ln

[
Φ(`) exp

(
2(zi+Ai(K−1))

N0/Ai

)
+ (1− Φ(`))

]

[
Φ(−`) exp

(
2(zi+Ai(K−1))

N0/Ai

)
+ (1− Φ(−`))

]
∣∣∣∣∣,

∣∣∣∣∣
m∑

i=1

ln

[
Φ(`) exp

(
2(zi−Ai(K−1))

N0/Ai

)
+ (1− Φ(`))

]

[
Φ(−`) exp

(
2(zi−Ai(K−1))

N0/Ai

)
+ (1− Φ(−`))

]
∣∣∣∣∣

}

, L∗(z), (16)
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where z ∼ N (0, Im). We can now use (16) to evaluate
numerically a bound on left-hand side of (11) as Pr(|L∗(z)| ≤
ε) ≥ 1− δ with z ∼ N (0, Im).

To compare with analog FLMC in [7], we reproduce the
privacy loss in [7] as

LD′,D′′(y) =

m∑

i=1

2ziAi∆k,i + (Ai∆k,i)
2

2N0

, (17)

where zi ∼ N (0, N0), and ∆k,i = |g′k,i − g′k,i|, and we have
∆k,i ≤ 2`. To gain some insight about the comparison between
(16) and (17), consider the high-SNR regime in which the
power of channel noise N0 approaches 0. In this case, the
privacy loss (17) in the analog scheme goes to infinity, and
hence no (ε, δ)-DP level with δ < 1 is possible. This is in sharp
contrast with the digital scheme, for which the privacy loss (16)
is upper bounded by m ln Φ(`) − m ln Φ(−`). This discussion
illustrates the potential advantages of the digital scheme in the
presence of privacy constraints in the high-SNR regime.

C. Power Control

The design of power control parameters in the power gain
matrix A[s] must comply with the power constraints, the LMC
noise requirements, and the DP constraints.

For the power constraint (10), plugging in the choice P[s]
k =

A[s](H[s]
k )−1 yields the inequalities

1

m

m∑

i=1

(
A[s]

i

h[s]
k,i

)2

≤ P0, ∀k, s. (18)

Furthermore, in order to guarantee that the noise powers
N0η

2(A[s]
i )−2 in the update (14) are no smaller than the power

2η required by the LMC update (6) we impose the LMC noise
requirement (see also [14])

A[s]
i ≤

√
ηN0

2
, ∀i, s. (19)

Finally, to impose the DP constraint, given the desired level
of privacy loss ε, we numerically estimate the probability δ in
(11) as a function of power gain parameters A[s]

i by drawing
samples from the noise z[s] ∼ N (0, N0I).

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
quantized FLMC, and compare it with the analog transmission
scheme introduced in [14]. Throughout this section, we assume
the channel coefficients to be constant within a communication
block, and homogeneous across the devices, i.e., h[s]

k,i = h[s]

for all devices k = 1, · · · ,K and all elements i = 1, · · · ,m.
Under this assumption, the power gains for quantized FLMC
are obtained via a numerical search to maximize the value
of A[s]

i under the three constraints reviewed in the previous
sections. In a similar manner, for analog FLMC, we have [7]

A[s]
i = min

{
|h[s]|
√
P0

`
,

√
ηN0

2
,

√
N0T −1(1− δ)

2m`2

}
, ∀k, s,

(20)
where the last term is the inverse function of T (x) defined by
the error function erf(x) =

2√
π

∫ x

0

e−t2 dt as

T (x) = erf

(
ε− x
2
√
x

)
− erf

(
−ε− x
2
√
x

)
, (21)

Figure 2. MSE as a function of SNR (ε = 5, δ = 0.01).

which is obtained by plugging (17) into (11), and leveraging
the tail probability of Gaussian distribution. We also consider
benchmark schemes without DP constraint.

As for the learning model, as in [14], we consider a Gaussian
linear regression with likelihood

p(vn|θ,un) =
1√
2π
e−

1
2
(vn−θTun)2 , (22)

and the prior p(θ) is assumed to follow Gaussian distribution
N (0, Im). Therefore, the posterior p(θ|D) is the Gaussian
N
(
(UUT + I)−1Uv, (UUT + I)−1

)
, where U = [u1, · · · ,uN ] is

the data matrix and v = [v1, · · · , vN ]T is the label vector. We use
synthetic dataset {dn = (un, vn)}Nn=1 with N = 1200 following
the learning model in (22), with input un drawn i.i.d from
N (0, Im) where m = 5. The ground-truth model parameter
is θ∗ = [0.418,−0.289, 0.3982, 0.8231, 0.5251]T. Unless stated
otherwise, the data set is evenly distributed to K = 20 devices;
the constant channel h[s] is set to 0.04 for all communication
rounds; the power of channel noise is set to N0 = 1; the
bound of gradient element is set to ` = 30; learning rate is
set to η = 1.28 × 10−4 for analog FLMC and η = 8.28 × 10−3

for digital FLMC, which are tuned by using the smoothness
and strongly convexity parameters (see [14]). We consider
a sigmoid function for quantization probability in (8) as
Φ(x) = [1 + exp(−ax)]−1, and set a = 0.05 by default.

The total number of communication rounds is chosen as
S = 300, which are comprised of Sb = 200 samples for the
burn-in period, and the following Su = S − Sb = 100 samples
for evaluation. The quality of the samples is measured by mean
squared error (MSE)

MSE =
1

Su

Sb+Su∑

s=Sb+1

‖θ[s] − µ‖2, (23)

where µ is the mean of the ground-truth posterior distribution.
All the results are averaged over 1000 experiments.

We first investigate the impact of SNR in Fig. 2 on the
performance of digital and analog FLMC schemes. In this
experiment, we set the DP level as ε = 5 and δ = 0.01.
Confirming the discussion in the previous section, in the high-
SNR regime, digital FLMC is seen to outperform analog
FLMC, since the latter one must back off the transmitted power
in order to meet the DP constraint. In contrast, SNR lower than
17.5 dB, analog FLMC is preferable.
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Figure 3. MSE as a function of privacy level ε (SNRmax = 25 dB, δ = 0.01).

Figure 4. MSE as a function of privacy level ε for different parameter of the
stochastic binary quantization a (SNRmax = 25 dB, δ = 0.01).

We now further investigate the impact of the privacy level
on the digital and analog FLMC schemes in Fig. 3. In this
experiment, we set SNRmax = 25 dB. The error of all schemes is
seen to decrease by relaxing the DP constraint, until ε = 7.5 for
the digital scheme and ε = 15 for the analog scheme. Relaxing
the DP constraint cannot reduce the error, as the performance
becomes limited by the transmitted power constraint or by
LMC noise requirement. The digital FLMC scheme outper-
forms analog FLMC under a stricter DP requirement, i.e., when
ε ≤ 7.5. This provides further validation of the advantage of
the digital scheme when the SNR is large enough.

Finally, in Fig. 4, we study the impact of varying the
parameter a of the quantization probability function Φ(x) =

[1 + exp(−ax)]−1. Note that a small a implies a more noisy
quantizer. In this experiment, we also set SNRmax = 25 dB.
Under strict DP requirement ε < 2, the quantizer with the small
value a = 0.01 outperforms other choices, since the higher
level of randomness is applied to meet the DP constraint.
Conversely, by relaxing the DP requirement, quantizer with
larger value of a become advantageous.
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