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Abstract—Deep neural networks (DNNs) have become a pop-
ular approach for wireless localization based on channel state
information (CSI). A common practice is to use the raw CSI
in the input and allow the network to learn relevant channel
representations for mapping to location information. However,
various works show that raw CSI can be very sensitive to
system impairments and small changes in the environment. On
the contrary, hand-designing features may hinder the limits of
channel representation learning of the DNN. In this work, we
propose attention-based CSI for robust feature learning. We
evaluate the performance of attended features in centralized and
distributed massive MIMO systems for ray-tracing channels in
two non-stationary railway track environments. By comparison
to a base DNN, our approach provides exceptional performance.

Index Terms—Localization, Massive MIMO, Attention, Trans-
former, Deep Learning.

I. INTRODUCTION

The deployment of massive multiple-input multiple-output
(MIMO) technology in the fifth generation (5G) mobile cel-
lular systems can enable high-accuracy positioning services,
where ambitious meter-level accuracy requirements are set [1].
Recently, deep learning has become a renowned approach for
achieving exceptionell localization performance [2]–[4]. Such
DNN-based methods take advantage of a large amount of
channel state information (CSI) available at a massive MIMO
base station (BS) to train a model with the channel prints
from the known locations. The model then utilizes the channel
estimates of the unknown transmitter to determine its position
related information.

A common approach is to use the raw CSI as an input to the
DNN architecture. However, the raw CSI can be very sensitive
to system impairments and slight variations in the environ-
ment. Thus, we might require a vast number of location-tagged
CSI to achieve sufficiently rich representation learning of
distinct locations. A variety of works have addressed the issue
of imperfect channel estimates by suggesting to hand-design
more robust features, mainly by exploiting the approximately
sparse angle- and delay-domain channel representation in a
MIMO-OFDM system. For instance, the work in [2] suggests
a decimated delay-domain CSI representation followed by
autocorrelation to capture features that are invariant to the sys-
tem impairments. Similarly, the work in [4] suggests utilizing
angle-delay channel representation as input to a convolutional
neural network (CNN) based model. However, hand designing
the input features hinders the limits of the DNNs for achievable
representation learning of the channel.

Alternatively, we can improve the feature learning process
at the beginning of the DNN itself by leveraging the attention

MLP head

Linear projection of  subcarriers

Transformer (Attention)
Subcarrier  + position
encoded embedding

(Optional) 
Extra learnable 

+ position encoded
embedding

AveragingOR

Fig. 1: Overview of the attention-aided model. We linearly embed
each subcarrier, add position embeddings, and feed the representation
vectors to a Transformer-like block with an attention module for
feature extraction. For location estimation, we average over the
attended features. Instead, we can use an extra learnable [LID]
embedding too.

mechanism [5] and allowing the neural network to attend on
different parts of the input. The attention module is at the
core of every Transformer architecture. The Transformer was
initially proposed in [6] for natural language processing (NLP)
and recently has been successfully applied as an alternative to
CNNs in computer vision [7]. While the attention mechanism
has become a de facto standard for signal processing in NLP
and vision, its ability for CSI feature learning in wireless com-
munications and wireless localization, in particular, remains
underexplored.

Our Contributions

In this work, we firstly propose an efficient and a general
robust feature learning process incorporated into an end-to-
end DNN. Our model is based on the attention mechanism,
which serves as an adaptive filter for CSI features resilient
to imperfect channel estimates and temporal variations in
the environment. To achieve both, robustness and scalability,
we show that we can use a Transformer-like architecture to
feed the whole channel estimate without using convolution
layers, fusion approaches, recurrence, or decimating the input
channel. An overview of the proposed model is depicted in
Fig. 1. Secondly, we provide a comprehensive evaluation of
the proposed method by applying it to ray-tracing channels
obtained along two railway tracks in carefully modeled chang-
ing surrounding environments. Finally, we present insights
regarding localization accuracy in a centralized and distributed
antenna system.
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II. SYSTEM MODEL

We consider uplink transmission over orthogonal frequency-
division multiplexing (OFDM) in a massive MIMO system.
We assume R single-antenna transmitters placed in a space
R3 at positions ur = [ur,1, ur,2, ur,3]T with r ∈ R, where
R denotes the set of user location indices and |R| = R.
The base station (BS) is equipped with Nr antenna elements.
Alternatively, we also consider Nr spatially distributed an-
tennas among M remote radio heads (RRHs) at positions
bm = [bm,1, bm,2, bm,3]T with m ∈ M, where M is the
set of RRH indices and |M| = M . In case of distributed
antennas, we assume that all RRHs are connected via high-
speed fronthaul links to the central unit (CU), i.e., the delay
between the RRHs and the CU is negligible. Further, we
consider S scattering objects in the ROI at respective positions,
ps = [ps,1, ps,2, ps,3]T with s ∈ S , where S denotes the set
of scattering object indices and |S| = S.

A. Dynamic Environment

In this paper, we consider that the propagation environment
changes in each time snapshot t ∈ {1, . . . , T}. More specif-
ically, by fixing the positions of the receiver and transmitter,
we realize the time-varying conditions of the environment
by altering the positions of S′ scatterering objects, where
S′ = |S ′| and S ′ ⊆ S. Thus, we have

pts,i = ps,i + zs,i, (1)

where zs,i is the zero-mean Gaussian noise with variance σ2
z

at i−th coordinate. Similarly, we account for the uncertainty
in the position of antenna of the transmitter at t, utr, i.e.,

utr,i = ur,i + nr,i, (2)

where nr,i is the zero-mean Gaussian noise with variance σ2
n

at i−th coordinate. Note that the variations in the position of
the scatterers alter the gain, delay and angle information of
the individual multi-bounce non-line-of-sight (NLOS) paths.
In Fig. 2, we show an example of the RMS delay-spread,
τRMS, as well as the RMS angle of arrival spread in azimuth,
ϕRMS, for a single random ur over T = 200 time snapshots
and L = 4 strongest paths. Here, the delay is normalized with
respect to the strongest path. Moreover, the uncertainty in the
position of antenna, allows us to account for the effect of
imperfect channel estimates at the receiver. In Sec. II-B, we
detail the geometric channel model and the relationship with
the position parameters, where recognizing the impact of the
antenna position offset in the channel is easy to perceive.

Additionally, to keep this work more general, we consider
that the electromagnetic properties of the scattering objects
change over time, which impacts the amplitude gain of the
radar cross section (RCS) of the scattering objects. We assume
that material types change randomly and have a permittivity
value of εκ at time t with κ ∈ K, where K is the set of material
types. Finally, we also consider atmospheric attenuation in
the environment. Thus, in case of a rainy period R with the
probability P (R), we assume additional attenuation to the
line-of-sight (LOS) path.
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Fig. 2: Delay- and angle-spread at ur over T = 200 time snapshots.

B. Channel Model

We assume that the signal from each transmitter r is
received at Nr antennas over a set of active subcarriers N ′c =
{k1, . . . , kN ′

c
} subcarriers. The frequency-domain channel for

the k−th subcarrier reads [8]

ĥtk =

L∑

`=1

ηt`e
j2πk∆fτt`a

(
ϕtaz,`, ϕ

t
el,`

)
. (3)

In above, ηt` and τ t` denote the `−th path’s complex gain and
propagation delay at time t. The subcarrier spacing is ∆f =
B/Nc, where B is the bandwidth and Nc is the total number
of subcarriers. The angles of arrival (AoA) in azimuth and
elevation are denoted by ϕtaz,` and ϕtel,`, respectively. The
expression for the steering vector at the receiver is given by

a
(
ϕtaz, ϕ

t
el

)
= az

(
ϕtel

)
⊗ ax

(
ϕtaz, ϕ

t
el

)
. (4)

The array steering vectors ax(·), and az(·) are

ax
(
ϕtaz, ϕ

t
el

)
=
[
1, ej

2π
λc
d sin(ϕtel) sin(ϕtaz), . . .

. . . , ej
2π
λc
d(Mx−1) sin(ϕtel) sin(ϕtaz)

]T
,

(5)

az
(
ϕtel

)
=
[
1, ej

2π
λc
d cos(ϕtel), . . . , ej

2π
λc
d(Mz−1) cos(ϕtel)

]T
,

with λc = c/fc, where fc being the carrier frequency and c
the speed of light, and d = λc/2 the antenna element spacing.
In this work, we use a ray-tracer to obtain the delays, angles
and path gains. The channel for the r−th user location Ht

r

over N ′c subcarriers can then be written as

Ht
r =

[
ĥtk1 , ĥ

t
k2 , . . . , ĥ

t
kN′

c

]
∈ CNr×N

′
c . (6)

For convenience, we drop the superscript t from our notation.



III. ATTENTION AIDED LOCALIZATION

A. Problem Formulation

Our goal in this work is to solve the problem of localization
of the user from the obtained imperfect channel estimates in
a changing surrounding environment. To do so, we rely on
deep learning and formulate the DNN as a function fΨ(·)
parameterized by Ψ where, given the input channel Hr, we
aim to learn a set of robust features and directly map them
into a position estimation, ûr. The set of optimal parameter
values Ψ is learned by minimizing a given loss function,

arg minJ(Hr,ur; Ψ); J = E
∥∥fΨ(Hr)− ur

∥∥2
. (7)

B. Input Channel Representation

We view the received channel matrix Hr as a set of N ′c
channel vectors of size ĥn ∈ C1×Nr , where n ∈ N ′c. We
handle the complex-valued CSI as three independent real num-
bers, i.e., ĥ

(Re)
n = Re

{
ĥn

}
, ĥ

(Im)
n = Im

{
ĥn

}
, and ĥ

(Abs)
n =

Abs
{

ĥn

}
, representing the real, imaginary and absolute parts.

Additionally, the whole dataset, i.e., both the training and
testing sets, is scaled by dividing each part with the maximum
absolute value in it, ∆Re = max(max({{|Ht,(Re)

r |}Rr=1}Tt=1)).
Similarly, we normalize the imaginary, ∆Im, as well as the ab-
solute part, ∆Abs. The input representation of each subcarrier
for the network depicted in Fig. 1 becomes hn ∈ R1×3Nr .

C. Transformer and Attention

We maintain the same number of D hidden units across
the Transformer block shown in Fig. 3a. Therefore, we firstly
project each subcarrier into an embedding through a linear
layer with learnable parameters E ∈ R3Nr×D, i.e.,

ei = hiE. (8)

A characteristic of the attention module is that it is
permutation-equivariant concerning the input embedded sub-
carriers. However, the structure of the whole channel, i.e.,
the arrangement, can reveal meaningful correlations among
frequency-selective subcarriers. Thus, as we use no recurrence
and no convolution, we inject some information about the
indices of the subcarriers into the model.

1) Subcarrier Positional Encoding: We rely on absolute
positional encoding [9] to represent the arrangement of sub-
carriers. Specifically, we assign a learnable real-valued vector
embedding gi ∈ R1×D to each subcarrier index i. Then, given
the input channel, gi is added to the subcarrier embedding ei at
position i. Hence, the input to the Transformer block becomes
êi = ei+gi. By doing so, we differentiate the channel at each
subcarrier and assign position dependent attention.

2) Location Identification: To add global context informa-
tion on the whole channel, we can prepend to the set of
subcarrier embeddings a special symbol [LID]. This is consid-
ered as another learnable vector, e0, whose representation is
a compressed characterization of the whole channel from the
r−th transmitter and it can be used to feed into the multi-layer

(a) Transformer block.

(b) MLP head.

(c) Base DNN.

Fig. 3: DNN model details. a) Transformer block with the attention
module for feature learning, b) MLP-head for location estimation,
and c) the base-DNN we commonly used in the previous work [3].

perceptron (MLP), i.e., the MLP-head detailed in Fig. 3b for
the final features to location mapping. We should note that
we investigated averaging over all representations to combine
the attended features as the input into the MLP-head, finding
[LID] is sufficient but performs worse than the averaging. We
report the performance in the Sec. IV. The main reason for
using the special vector is future self-supervision and transfer-
learning investigation. In the following, we keep the [LID].
Thus, the set of vectors as input to the transformer block
becomes C = N ′c + 1.

3) Attention: In case of self-attention [6], we consider three
input copies and project them using the same set of weights,
Wq = Wk = Wv . To this end; we write the self-attention as

oi =

C∑

j=1

exp (αi,j)∑C
j′=1 exp (αi,j′)

(ējWv) (9)

where αi,j is the attention coefficient between the two embed-
dings at positions i and j,

αi,j =
1√
D

(ēiWq) (ējWk)
T
. (10)

In above, ēi = LayerNorm(êi; γ, β) where γ and β are
hyperparameters [10].

4) MLP-head: At the output of the Transformer block of
the proposed model, the representation vector ōi is

ōi = MLP1 (ôi) + (oi + êi) , (11)

where ôi = LayerNorm (oi + êi; γ, β).
As we discussed, the input to the MLP head can be ō0 or an

averaged representation over N ′c representation vectors. In the
case of ō0, then ûr = MLP2(ō0)W2, where W2 ∈ RD×D′

is the weight matrix of the output linear layer, and D′ is the
number of output units representing the position coordinates.



IV. SIMULATIONS AND RESULTS

In this section, we evaluate and compare the performance of
the proposed approach w.r.t. various factors. In the results, we
have labeled this approach as WiT, i.e., Wireless Transformer.
Moreover, we discuss a few other aspects encountered during
this work. Finally, we conclude this work.

A. Scenarios and Datasets

To obtain all the multi-path related parameters for the
modeled scenarios, we make use of the available shooting
and bouncing ray (SBR) approach with low-angular sepa-
ration [11] in the ray-tracing tool from Matlab [12]. By
using the ray-tracer, we are able to simulate the temporal
aspects of the scenarios under consideration by simply running
T = 200 realizations with altered input geometries, changing
the position of the considered moving objects, and varying
over different material properties as explained in Sec. II. The
initially imported scenario is from the OpenStreetMap [13],
and then the 3D tool [14] is used for modeling the moving
objects and changing environment. In this work, we consider
two scenarios, as shown in Fig. 4. We assume a single-BS
for the first scenario, S-scenario, M = 1 and R = 360.
For the second scenario, HB-scenario, we consider a DAS
with M = 8 and R = 406. In both cases Nr = 64,
fc = 3.5GHz, L = 4, and B = 20MHz. We consider
every 16−th subcarrier as active, where Nc = 512, N ′c = 32
and Nc ≡ N ′c (mod 16). The receivers are at a height
of 20m. Since ur,3 = 1.5m ∀ r ∈ R, we only consider
D′ = 2 during the training. We consider the default relative
permittivity values εκ for κ ∈ {concrete, brick, metal, wood}
[15] and add the atmospheric attenuation in the event of rain
with P (R) = 0.3. The obtained sample size is RT . However,
if the received power is less than −130dBm, then we discard
such measurement at time t from the ray-tracer. Thus, the
dataset has a total of 69 212 and 81 200 samples for S- and
HB-scenario, respectively. It is worth noting that the proposed
network appears not to saturate within 1800 epochs, in contrast
to the base-DNN [3]. However, we limited the training range
due to time constraints on limited available resources.

B. Training Details

As shown in Fig. 3, we adopt ReLU for the intermediate
non-linear operations in both MLP1(·) and MLP2(·). The
proposed network is trained for 1800 epochs with a batch
size of 512. We use Adam solver with weight decay [16],
and the initial learning rate is set to 3 · 10−4. Each layer has
D = 650 units followed by a dropout rate of 0.1. For the
LayerNorm(·), the additive factor γ = 1 and the multiplicative
parameter β = 0.0001. The base-DNN, which we used in [3]
as a backbone of the then proposed model, consists of four
layers, each followed by a dropout with a dropout rate of 0.2 as
detailed in Fig. 3c. The hidden dimensionality is kept the same,
D. Early stopping is applied for training the base-DNN if the
validation loss does not improve for 80 consecutive epochs.
The dataset is split into 0.75 and 0.25 for training and holding
out validation and testing, respectively. During the training, the

TABLE I: Summarized Results
S S HB

T = 1 T = 200 T = 200
Method MAE 95−th MAE 95−th MAE 95−th
Base-DNN 1.98 5.16 3.59 8.83 4.13 10.01
WiT [LID] 0.74 1.88 2.36 6.54 1.18 2.83
WiT (avg.) 0.31 0.84 1.70 4.70 0.68 1.61

location coordinate values, i.e., ur,i, are scaled within [0, 1].
The estimates are scaled back to evaluate the performance.
Performance is reported in terms of mean absolute error,
MAE, and the 95−th percentile,

MAE =

∑Rtest

r′=1 ‖ûr′ − ur′‖
Rtest

. (12)

C. Localization Accuracy

Next, we investigate a few aspects that impact localization
performance.

1) Static Scenario: First, we investigate the impact of the
learned features in the S-scenario for the static environment,
T = 1. To have a sufficient amount of training samples, the
inter distance between any two locations ‖ui − uj‖ is much
smaller than that of a dynamic scenarios. Thus, the dataset for
this case consists of 72 000 channel and location pairs. The
attention based features consistently perform better compared
to the raw CSI and a base-DNN. The accuracy is improved
by more than 50%. The localization performance, comparison
to the base-DNN, and comparison to the actual test locations
in R2 is depicted in Figs. 5a, 5b, 5c and 5d.

2) Mobility Scenario: Similarly, for the dynamic scenarios
and T = 200, the proposed features, learned by the attention
mechanism, are much more robust than the raw CSI and the
base-DNN, reducing the localization error by a significant
margin.

3) Distributed Antennas: As we mentioned earlier, for the
HB-scenario we consider Nr distributed antennas among M =
8 infrastructure nodes. From Fig. 5b, we can observe that the
proposed approach provides significantly better performance.

4) Impact of Features Averaging: Table I shows the sum-
marized results and the performance gap when comparing
the averaging over features and the case of using the unique
representation vector for each set of subcarriers. Again, the
performance difference is evident in both DAS and single-
BS scenarios. Yet, this compressed representation version can
outperform the base-DNN.

Discussion

A naive application of the attention mechanism would
involve inputting every channel coefficient into the network,
such that each real-valued channel coefficient attends to ev-
ery other. With the increased number of antenna elements
and subcarriers in massive MIMO, this would not scale to
realistic future systems. Still, one of the critical challenges
of utilizing the attention mechanism on a more extensive set
of subcarriers is its efficiency due to the computation and
memory complexity. Furthermore, we have noticed that the
applied residual connections play a crucial role in retaining
the position information on the subcarriers representation after



(a) S-scenario. (b) HB-scenario. (c) An example model from S-scenario.

Fig. 4: Considered railway trajectories are a) the Schwechat area (S-scenario) and near b) the Vienna central station (HB-scenario). Example
of model used for ray-tracing is shown in c). Train moves parallel to the trajectory, and other objects change their position for every t too.
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Fig. 5: Localization error in (a) S-scenario for T = 1 and for T = 200
and (b) HB-scenario for T = 200 time snapshots. Proposed learned
features outperform the base DNN across all the locations. In c) and
d) actual versus estimates in the trajectory for T = 200 are shown.

the attention module. Without the residual connection, the
information about the original structure of the channel is lost.
Removing the residual connections might lead to the loss of
such information after the attention module. Moreover, with
randomly initialized parameters for self-attention vectors, the
position has no relation to its original input.

V. CONCLUSION

We presented an end-to-end and DNN-based localization
method with robust feature learning. We proposed to input
each subcarrier into the network, and using the attention
mechanism we were able to better capture the dependence in
the CSI over the subcarriers, providing superior localization
performance compared to the base-DNN with raw CSI. We
investigated dynamic scenarios where the scattering events
over T time snapshopts cause time variations in the channel.
We showed that the proposed method is able to cope with
imperfect channel estimates. In this work, we also modeled
two ray-tracing based scenarios over railway tracks. Finally,
we showed that the proposed method excels by even a greater
margin when a distributed antenna system is considered.
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