
ar
X

iv
:2

30
4.

10
86

0v
1

 [
cs

.L
G

]
 2

1
A

pr
 2

02
3

On the Importance of Exploration

for Real Life Learned Algorithms

Steffen Gracla, Carsten Bockelmann and Armin Dekorsy

Dept. of Communications Engineering, University of Bremen, Bremen, Germany

Email: {gracla, bockelmann, dekorsy}@ant.uni-bremen.de

Abstract

The quality of data driven learning algorithms scales significantly with the quality of data available. One of the

most straight-forward ways to generate good data is to sample or explore the data source intelligently. Smart sampling

can reduce the cost of gaining samples, reduce computation cost in learning, and enable the learning algorithm to

adapt to unforeseen events. In this paper, we teach three Deep Q-Networks (DQN) with different exploration strategies

to solve a problem of puncturing ongoing transmissions for URLLC messages. We demonstrate the efficiency of two

adaptive exploration candidates, variance-based and Maximum Entropy-based exploration, compared to the standard,

simple ǫ-greedy exploration approach.

Index Terms

5G, Machine Learning, URLLC, Puncturing, Exploration

I. INTRODUCTION

In recent years the topic of machine learning (ML) has reemerged with force due to breakthroughs in big data

technology. Data driven learning methods boast a profile of strengths that complements the more traditional model-

based design well, being able to extract approximate solutions from empirical data where models fail. As such,

researchers from all fields of study are examining the feasibility of introducing ML into their areas of expertise,

with promising results in communication technologies [1].

While the early findings for ML in communication systems are encouraging, some challenges lie ahead in

transferring the theoretical findings to real life applications. Central to the strength of data driven technology is the

quality of the learning data set itself; Although data collection has increased considerably in all areas of life, good

real life data can remain costly and difficult to obtain. A variety of approaches have been proposed to alleviate this

issue. For example, by generating data in a parameterized simulation environment, the data generation can be tuned

to act as an inductive bias for optimal learning [2]. However, it has been observed that such data can suffer from a

model gap where the simulation environment does not capture real life in sufficient detail to transfer learnings [3].

Further, approaches such as the Prioritized Experience Replay [4] aim to increase sample efficiency by extracting

This work was partly funded by the German Ministry of Education and Research (BMBF) under grant 16KIS1028 (MOMENTUM).

This work was accepted for presentation at IEEE SPAWC 2022.

http://arxiv.org/abs/2304.10860v1

1

as much information as possible from the available data. While this is valuable, these algorithms cannot increase

the inherent quality of the data set. If information required for successful learning is not captured by the data set,

the algorithm cannot learn it. Ultimately, the most straight-forward way to extract high quality samples from an

environment is intelligent exploration.

This issue is of particular importance for the field of Reinforcement Learning (RL), where the algorithm generates

its own data set as it learns. A common, simple approach to help RL-agents explore their environment is the ǫ-

greedy exploration, in which the agents make a random decision at a probability ǫ instead of acting on their own.

The parameter ǫ is annealed over the course of training as the agent gets ready to exploit what it has learned. While

better than no exploration, this simple mechanism comes with a set of drawbacks: 1) In real life, high volumes of

random actions can be costly; 2) The exploration is likely to generate redundant samples, exploring actions that

the agent is already confident about; 3) If certain events are especially rare or only appear late during training, the

random exploration probability ǫ may have already been annealed too much to discover them. Ideally, we would

like to emulate curiosity during exploration, intelligently deciding to take a risk where uncertainty is high.

In this paper, we highlight some pitfalls of weak exploration. We examine a medium access control problem

where an agent is tasked with scheduling URLLC messages. In order to do this, they may opt to puncture an

existing transmission on orthogonal resource channels as proposed for 5G NR URLLC or wait to see whether a

channel will become free in the near future. We train three simple Deep Q-Networks (DQN) [5] for this purpose:

1) A DQN with ǫ-greedy exploration; 2) A DQN with stochastic output; And 3) a DQN with an approximate

Maximum-Entropy-Learning [6] constraint that imposes a uniform prior onto the output, in effect pulling the agent

away from committing to just one course of action.

In the following, we will first introduce the setup and notations of our URLLC puncturing problem and review

the design of our ML agents. We will then detail the differences in the employed exploration mechanisms and

follow with practical examinations of their behavior in learning and in experiencing new situations. We conclude

by summarizing our findings.

A. Related Work

The use of ML for QoS-optimal URLLC puncturing has been investigated by, e.g., [7], [8]. They show the general

feasibility of using ML algorithms to learn efficient trade-off estimation in URLLC puncturing. Research on smart

exploration or data generation strategies has a long history. The authors in [9] provide a rich survey of exploration

mechanisms in the context of RL. More recently, methods such as SAC [3], Munchhausen DQN [10], and, in the

context of communication technology, [11] have re-explored the concept of entropy-penalties to state-of-the-art RL.

Our work brings the two topics together and highlights the importance of exploration in communication technology.

II. PRELIMINARIES

This paper assumes knowledge of stochastic gradient descent learning and feed-forward neural networks (NN).

Matrices and vectors are denoted in boldface.

2

III. SETUP & NOTATIONS

In this section, we first describe mathematically the challenge of URLLC puncturing that we wish to learn a

good strategy for, and secondly review the design and training of DQN for decision making with deterministic or

aleatoric output.

A. URLLC Puncturing Simulation

Fig. 1 schematically displays the puncturing simulation. We assume our agent is a puncturing module that is part

of a greater medium access protocol within a centralized communication traffic scheduler. As typical in OFDM,

transmissions are scheduled by the greater protocol on discrete sub-frames of fixed length. Multiple orthogonal

transmissions can be scheduled at the same time on N available resources. Each sub-frame is divided into 7

discrete blocks that we call mini-slots, akin to the numerologies specified in 5G NR. At the beginning of each

sub-frame, the greater protocol fills each available resource n with a probability po for a length of lo ∼ U(5, 7)

mini-slots drawn from a uniform random distribution. Further, at the beginning of each sub-frame, a power gain

hn, t = |h̃|2n, t for each resource n with |h̃|n, t ∼ Rayleigh(1) is drawn from a i.i.d. Rayleigh distribution for each

resource. This introduces a measure of stochasticity into the simulation environment.

Time t moves discretely with the beginning of each mini-slot. On every t, with a probability pp, a URLLC

puncturing request may be posed to the puncturing agent. Puncturing requests occupy one mini-slot and come in

two types: 1) The normal type has to be scheduled within the current sub-frame or else be discarded; 2) The critical

type has to be scheduled within the next mini-slot or else be discarded. Only a low percentage pp, c of requests are

critical. The agent can then select one out of N +1 options: Either schedule the request to one of the N available

resource or do nothing. If the agent decides to schedule to a resource n, then any transmission ongoing in that

resource is voided.

We therefore formulate three objectives for our puncturing agent:

1) Do not interrupt ongoing transmissions unnecessarily;

2) Puncture normal requests with as little influence on ongoing transmissions as possible;

3) Puncture critical requests immediately.

Mathematically, we formulate these objectives in a weighted reward sum, as is typical for RL. At the end of

each mini-slot time step t, we determine three rewards (rC, t, rd, t, rd, c, t) ∈ R for ongoing transmissions, normal

requests and critical requests, respectively.

rC, t =

N
∑

n=1

log(1 + hn, t) (1)

is the sum capacity achieved by ongoing transmissions within the mini-slot.

rd, t =











−1 if normal request discarded

0 else

, (2)

rd, c, t =











−1 if critical request discarded

0 else

(3)

3

n = 1

n = 2

Sub-frame

t

Mini-slot

URLLC request:

Actions:

1. Wait

2. Puncture 1

3. Puncture 2

Fig. 1. URLLC Puncturing simulation for N = 2 Resources. Ongoing transmissions occupy at most one sub-frame of 7 discrete blocks, or

mini-slots. At a time step t, there is a URLLC request. The puncturing agent can decide to wait, or puncture either of the mini-slots on the

resources n.

are indicator functions for whether the objectives 2) and 3) were violated. All three rewards are collected with their

respective weights in the reward sum

rt = wCrC, t + wdrd, t + wd, crd, c, t (4)

for the learning agents to process.

B. Deep Q-Networks

In order to select the most beneficial out of a number of options, one might consider the long term benefit of

selecting each option. In RL, the long term benefit is typically defined using the immediate reward rt as defined in

(4) as

Rt,Ai
= Eπ

[

∞
∑

τ=t

λτ−trτ |A = Ai

]

(5)

for an action Ai, given that we follow some policy π afterwards. Future rewards are typically scaled down

exponentially by a discount factor λ ∈ [0, 1] to devalue uncertain consequences in the far future. If this long

term benefit Rt,Ai
is fully known, optimal decisions may be chosen by greedily selecting whichever action Ai has

the highest Rt,Ai
in each time step t.

DQN attempt to approximate the long term benefit function (5) via neural networks. Feed-forward neural networks

are parameterized mathematical functions with one or multiple inputs and outputs. The relation between input and

output can be influenced by tuning the m network parameters θ ∈ R
m. The parameters θ are tuned automatically,

typically using variants of stochastic gradient descent, such that the optimal parameters minimize an objective

function. A DQN Q(St, θ) specifically will take as an input a vector St that describes the current state of the

system, to be described subsequently, and output an estimate for the long term benefit function Rt,Ai
for all

available actions Ai. When data points (St, Ai, rt, St+1) are experienced, the network parameters can be tuned to

improve the estimate by minimizing the temporal difference error

LTD = (Q(St, Ai, θt)

− (rt +max
i

Q(St+1, Ai, θt)))
2. (6)

This loss compares the networks current estimate Q(St, Ai, θ) with an updated estimate that incorporates the

experienced immediate reward rt and following state St+1.

4

In this paper, we consider two variations on DQN. The first has the same number of N + 1 outputs as there are

actions available, i.e., the decision to either do nothing or puncture one of the N available resources. The second

type has twice the number of outputs, two for each action. Using the well-known reparameterization trick, these

pairs of outputs are interpreted as mean and log-standard deviation for a Normal distribution from which the output

estimates are subsequently sampled. This gives the second type of DQN an inherent variance in decision making;

The standard deviation may also be interpreted as a measure of uncertainty in the network output.

We summarize the system state St in a simple vector with the entries

• S1, t ∈ [0, 1] is the current relative mini-slot position within the sub-frame;

• S2, t ∈ {0, 1} is 1 if there is a puncturing prompt, else 0;

• S3, t ∈ {0, 1} is 1 if there is a critical puncturing prompt, else 0;

• S4:4+N, t ∈ [0, 1] is each resources current relative remaining occupation.

IV. EXPLORATION MECHANISMS

In this paper, we compare three different learning agents. All three use DQN as described in the previous section,

using three different exploration mechanisms: 1) ǫ-greedy exploration; 2) Variance based exploration; 3) Variance

and approximate Maximum-Entropy based exploration. This section will introduce their workings and differences.

1) ǫ-greedy exploration (EG) is using a DQN with deterministic output. At each time step t, this exploration

mechanism has two options. At a probability ǫ, a random action is selected with uniform probability from the set

A, i.e., either do nothing or puncture a communication resource. Alternatively, at a probability 1− ǫ, the agent

selects the action with the highest current DQN long term benefit estimate, maxAi
Q(St, Ai, θt). Over the course

of training, the probability ǫ is decayed, allowing the network to increasingly exploit the knowledge it has learned.

2) Variance based exploration (VB) is using a DQN with stochastic output. It introduces another term LLP to the

loss function (6) that is the sum of log probability densities lp(Q(St, Ai, θt)) for the networks current sampled

long term benefit estimates. Therefore,

L = LTD + wLPLLP, (7)

with LLP =
N+1
∑

i=1

lp(Q(St, Ai, θt)). (8)

Parameter wLP can be tuned to scale the relative importance of each loss term. Low variances lead to high log

probability densities; Therefore, in order to minimize this new loss, the DQN is enticed to keep variance high while

still learning appropriate benefit estimates.

3) Variance and approximate Maximum-Entropy based exploration (ME) is using a DQN with stochastic output.

Maximum Entropy Learning, known from algorithms such as Soft Actor-Critic [3], seeks to encourage exploration

by rewarding a learning agent for keeping their decisions at high entropy, i.e., similar relative likelihood. As a

proxy, we apply the softmax function to the networks long term benefit estimates (6), transforming the outputs into

a pseudo-probability distribution to be able to calculate their entropy. This implies that smi(Q(St, A, θt)) ∈ [0, 1]

5

TABLE I

TRAINING CONFIGURATION

Steps t per episode 3000 Episodes 30

Resources N 2 Rew. Discount λ 0.99

Prob. Tx po 70% Prob. URLLC pp 10%

ǫ Initial 0.99 Episodes ǫ → 0.0 50%

Adam Learning Rate 1e− 4 Target Update 1e− 4

Hidden Layers × Nodes 2× 128 VB Weight wLP 1e− 2

Cap. Weight wC 1 URLLC Weight wd 5

Critical Weight wd, c 5 ME Weight wME e

and
∑N+1

i=1
smi(Q(St, A, θt)) = 1. We calculate the entropy of these new terms and add it as a second term to

the temporal difference loss function (6),

L = LTD + wMELME , (9)

with LME =
N+1
∑

i=1

log[smi(Q(St, A, θt))]. (10)

Parameter wME is used to tune the relative importance of the loss terms. This new loss applies a uniform prior to

the DQN output, encouraging the network output to be similar in magnitude. To promote the value of one action

over the others, the parameter update needs to escape the pull of this new loss term.

V. EXPERIMENTS

This chapter investigates the impact of the three different choices in exploration strategy, ǫ-greedy (EG), Variance

based (VB), and approximate Maximum Entropy (ME), detailed in the previous chapter. We first iterate specific

implementation details used in this paper, then evaluate the success of each strategy in terms of initial learning

sample efficiency and ability to explore new, unseen events. Finally, we break down the impact that these exploration

strategies have on the overall puncturing performance.

A. Implementation Details

The used DQN are vanilla implementations with target networks [12] as the only addition, which we found

required to reach acceptable learning stability. All simulation and DQN parameters can be found in Table I. We

select reward weights wC , wd assuming they have been tuned by an expert to reach the desired balance of URLLC

time outs and transmission interruptions for a given application. For the EG DQN we opted for a linear decay of the

exploration probability ǫ to zero after half of the training episodes. For numerical stability, the softmax values in

(10) are clipped to [sm(·)]1
1 × 10

−3 . The Adam optimizer [13] is used to perform gradient descent updates. We found

most success using the penalized tanh activation function [14]. We focus on a small number of N = 2 resources to

restrict computational and design complexity, though the methods and conclusions presented are expected to scale

6

0 5 10 15 20 25 30

Episode

2000

4000

S
u
m

R
ew

ar
d

EG

VB

ME

Fig. 2. The sum rewards achieved within a single training episode for ǫ-greedy (EG), Variance Based (VB), and Maximum Entropy (ME) Deep

Q-Networks. The dashed black line shows the mean rewards achieved by manual scheduling. The EG DQN does not achieve strong results

until its exploration parameter ǫ is annealed to zero. Both other exploration candidates are adaptive and achieve competitive results much more

quickly.

to higher N . The design and tuning of stable NN learning for highly complex tasks represents its own challenge

and would distract from the key research aim.

Simulation and learning are implemented in Python3.9 and TensorFlow. For further implementation details, the

full code implementation is available online in [15].

B. Exploration Performance

For the initial training, we set the probability pp, c of encountering critical URLLC events to zero. Three networks

EG, VB, ME, with exploration strategies as described in Section IV, are trained according to Table I. Training is

repeated three times for each type, as the simulation and data generation have an inherent variance due to the

simulation’s stochastic setup. The mean rewards achieved during training by each variant are depicted in Fig. 2.

The dark dotted line denotes the mean rewards achieved by manual scheduling, which all three networks are able

to meet eventually. As expected, the EG DQN generates many more samples to reach comparable performance to

the other two candidates, as the exploration strategy is in no way adaptive. This also results in many episodes with

mediocre performance.

Next, we take the networks as trained in the previous step and confront them with a critical URLLC event in

the first mini-slot of a sub-frame and both resources occupied. Unlike normal URLLC events, critical events must

be scheduled immediately or else time out. We record the inferred results in Table II. It shows the magnitude

difference (MD) in preference between action one compared to action two or three, calculated as

Q(St, A1, θt)/((Q(St, A2, θt) +Q(St, A3, θt))/2); (11)

the log standard deviation of selecting action one; and the mean log standard deviation of selecting actions 2 and 3.

We note that all three DQN show preference for action one, i.e., doing nothing, therefore letting the critical URLLC

request time out. This is to be expected, as neither DQN have seen a critical event during their training thus far

and therefore cannot have learned the requirement to schedule it immediately. In these results we can already spot

the effects of our exploration strategies, where the EG DQN has by far the largest difference in magnitude between

the preferred action and the other actions and the ME DQN has the smallest difference. Further, the VB DQN has

considerably lower certainty in its decision to commit to doing nothing compared to the ME DQN.

7

TABLE II

MEAN (MD) AND LOG STD. (LS) REACTION TO NEW EVENT

EG VB ME

MD 80± 0.03% 6± 0.05% 2± 0.00%

ls 1 - −2.26± 0.28 −13.84± 0.88

ls 2 & 3 - −0.27± 0.09 −13.96± 1.18

TABLE III

MEAN AND STD. TRAINING STEPS UNTIL EXPLORING NEW EVENT

EG VB ME

6800 ± 4525 96± 17 22± 2

For the final step, we again load the pre-trained DQN and again confront them with the new critical event situation

from the previous step. This time, we train them on this experience, confront them again, and repeat until a DQN

first decides to take a puncturing action, i.e., an action other than action 1. Due to the stochastic nature of the

simulation we repeat this ten times for each pre-trained network. Table III displays the mean training steps required

until each DQN decides to explore this new situation. On some training runs, the EG DQN is stopped early after not

deciding to explore for 10 000 steps, while both other exploration strategies are able to start exploring massively

more early in every training.

C. Puncturing Performance Impact

After examining how the adaptive mechanisms have improved their respective networks’ exploration strategies, we

next examine their impact on asymptotic reward sum performance. Fig. 3 breaks down the ratio of transmissions

interrupted by puncturing over the course of training, while Fig. 4 shows the ratio of URLLC prompts missed

over the course of training. Both VB and ME show slightly weaker asymptotic performance on the transmissions

interrupted. We attribute this to three factors:

1) All networks converge to slightly different puncturing strategies with slightly different focus on each sub-

task, for similar approximate overall performance on the optimization metric rt. For example, the manual

puncturing, represented by the black dotted line, puts a heavy focus on catching URLLC requests, leading to

a slightly increased amount of transmissions interrupted;

2) Adding another term to the optimization function, in the form of exploration penalties, does represent a

potential loss in optimality. The optimization focus is no longer to just optimize the target metric rt, but to

balance it with additional constraints. This effect is somewhat mitigated by VB and ME still being greedy

schemes, i.e., selecting the highest estimate action, which leads to accuracy on the non-maximum estimates

being less important. Further, this effect is controllable via the weighting factors wLP, wME. In this paper,

8

0 5 10 15 20 25 30

Episode

0%

50%

T
x

In
te

rr
u
p
te

d EG

VB

ME

Fig. 3. Relative transmissions interrupted for puncturing for ǫ-greedy (EG), Variance Based (VB), and Maximum Entropy (ME) Deep Q-Networks

over the course of training. The dashed line represents the mean result achieved by manual puncturing.

0 5 10 15 20 25 30

Episode

0%

10%

20%

U
R

L
L

C
M

is
se

d EG

VB

ME

Fig. 4. Relative URLLC prompts missed over the course of training for ǫ-greedy (EG), Variance Based (VB), and Maximum Entropy (ME)

Deep Q-Networks. The dashed line represents the mean result achieved by manual puncturing.

the weight for ME in particular was set to a value that leads to excellent exploration performance for this

application, as expressed in Table II and Table III;

3) The training regimen used in this paper was not adjusted for each network’s training and may therefore favor

one variant over another.

VI. CONCLUSIONS

In this paper we examined an optimization problem in puncturing ongoing transmissions for URLLC messages

of differing priority. We implemented three learning agents, one with a standard ǫ-greedy deterministic Deep Q-

Network (DQN) and two DQN with stochastic output. For the stochastic DQN we implemented exploration strategies

based on a variance penalty and Maximum Entropy Learning, respectively. Both stochastic DQN exploration

strategies encourage the learning agent to explore when uncertain and to not commit too heavily onto a single

course of action. While all three agents were able to learn to solve the optimization problem, we showed how the

adaptive exploration strategies can lead to significant gains in learning sample efficiency and ability to adapt to

unforeseen events, both of which we consider to be crucial for real life learned algorithms. However, no exploration

algorithm is universally optimal, and therefore must be applied mindful of their limitations.

REFERENCES

[1] H. Dahrouj, R. Alghamdi, H. Alwazani, S. Bahanshal, A. A. Ahmad, A. Faisal, R. Shalabi, R. Alhadrami, A. Subasi, M. T. Al-

Nory, O. Kittaneh, and J. S. Shamma, “An Overview of Machine Learning-Based Techniques for Solving Optimization Problems in

Communications and Signal Processing,” IEEE Access, vol. 9, pp. 74 908–74 938, 2021.

9

[2] A. T. Z. Kasgari, W. Saad, M. Mozaffari, and H. V. Poor, “Experienced Deep Reinforcement Learning with Generative Adversarial

Networks (GANs) for Model-Free Ultra Reliable Low Latency Communication,” arXiv:1911.03264, Oct. 2020.

[3] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel, and S. Levine, “Soft Actor-Critic

Algorithms and Applications,” arXiv:1812.05905, Jan. 2019.

[4] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized Experience Replay,” arXiv:1511.05952, 2015.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing Atari with Deep Reinforcement

Learning,” arXiv:1312.5602, 2013.

[6] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey et al., “Maximum Entropy Inverse Reinforcement Learning,” in Proc. AAAI, vol. 8.

Chicago, IL, USA, 2008, pp. 1433–1438.

[7] Y. Huang, S. Li, C. Li, Y. T. Hou, and W. Lou, “A Deep-Reinforcement-Learning-Based Approach to Dynamic eMBB/URLLC Multiplexing

in 5G NR,” IEEE Internet Things J., vol. 7, no. 7, pp. 6439–6456, Jul. 2020.

[8] J. Li and X. Zhang, “Deep Reinforcement Learning-Based Joint Scheduling of eMBB and URLLC in 5G Networks,” IEEE Wireless

Commun. Lett., vol. 9, no. 9, pp. 1543–1546, 2020.

[9] S. Amin, M. Gomrokchi, H. Satija, H. van Hoof, and D. Precup, “A Survey of Exploration Methods in Reinforcement Learning,”

arXiv:2109.00157, 2021.

[10] N. Vieillard, O. Pietquin, and M. Geist, “Munchausen Reinforcement Learning,” arXiv:2007.14430, 2020.

[11] A. Srivastava and S. M. Salapaka, “Parameterized MDPs and Reinforcement Learning Problems–A Maximum Entropy Principle-Based

Framework,” IEEE Trans. Cybern., pp. 1–13, 2021.

[12] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep Exploration via Bootstrapped DQN,” Advances in neural information processing

systems, vol. 29, 2016.

[13] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv:1412.6980, 2015.

[14] S. Hayou, A. Doucet, and J. Rousseau, “On the Impact of the Activation Function on Deep Neural Networks Training,” in Proc. ICML,

2019, p. 9.

[15] S. Gracla, “Adaptive Scheduling Model Selection,” https://github.com/Steffengra/on exploration, 2020.

https://github.com/Steffengra/on_exploration

	I Introduction
	I-A Related Work

	II Preliminaries
	III Setup & Notations
	III-A URLLC Puncturing Simulation
	III-B Deep Q-Networks

	IV Exploration Mechanisms
	V Experiments
	V-A Implementation Details
	V-B Exploration Performance
	V-C Puncturing Performance Impact

	VI Conclusions
	References

