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Abstract—We develop online scheduling policies to minimize
the sum average age of information (Aol) subject to transmission
capacity and long-run average resource constraints in a multi-
source two-hop system, where independent sources randomly
generate status update packets which are sent to the destination
via a relay through error-prone links. A stochastic optimization
problem is formulated and solved in known and unknown
environments. For the known environment, an online near-
optimal low-complexity policy is developed using the drift-
plus-penalty method. For the unknown environment, a deep
reinforcement learning policy is developed by employing the
Lyapunov optimization theory and a dueling double deep Q-
network. Simulation results show up to 136% performance
improvement of the proposed policy compared to a greedy-based
baseline policy.

Index Terms—Age of information (Aol), multi-source, two-hop,
drift-plus-penalty, deep reinforcement learning.

I. INTRODUCTION

Timely delivery of status updates of a remotely monitored
process to a destination is needed to support the emerging
time-critical applications in the future Internet of things (IoT)
in 5G and 6G wireless generations, e.g., industrial control,
smart home systems, and drone control. Age of information
(Aol) has been proposed to characterize the information fresh-
ness in status update systems [1]. The Aol is defined as the
time elapsed since the latest received status update packet
was generated [1]], [2]. Nowadays, the Aol has attracted much
interest in different areas, e.g., queuing systems [3]-[S]], and
scheduling and sampling problems [6]—[14]. The reader can
refer to [[15]] for an extensive survey on the Aol.

We consider a multi-source two-hop status update sys-
tem with stochastic arrivals and capacity limited error-prone
(wireless) links. The sources independently generate different
types of status update packets which arrive at a buffer-aided
transmitter. The transmitter transmits the packets to a buffer-
aided relay which further forwards them to the destination.
The considered setup emerges in, e.g., vehicular networks,
where status updates about various physical processes related
to a vehicle are sent to a controller (e.g., a road side unit) to
support vehicle safety applications; here, the communication
from the vehicle to the controller requires the use of a relay,
which could be another vehicle or an unmanned aerial vehicle
(see [[16] and examples therein). We provide online scheduling
policies aiming at minimizing the sum average Aol (AAol)
subject to transmission capacity constraints and a constraint
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on the average number of all transmissions in the system.
A stochastic optimization problem is formulated and solved
in two different scenarios regarding the knowledge of system
statistics: (i) known and (ii) unknown environments. For the
known environment, a near-optimal low-complexity drift-plus-
penalty-based scheduling policy (DPP-SP) is developed using
drift-plus-penalty method [17]. For the unknown environ-
ment, we propose a deep reinforcement learning algorithm by
employing the Lyapunov optimization theory and a dueling
double deep Q-network (D3QN). Finally, simulation analysis
are provided to examine the performance of the proposed
scheduling policies; the results show up to 136% performance
improvement compared to a greedy-based baseline policy.

Related Work: Recently, the Aol in relaying systems has
been studied in, e.g., [[6], [9], [11], [18]-[25]. The work [6]
studied the Aol minimization in a multi-source relaying system
with the generate-at-will model (i.e., possibility of generating
a new update at any time) and error-prone channels. In [9]], the
authors studied the Aol in a single-source energy harvesting
relaying system with error-free channels and designed offline
and online age-optimal policies. In [22], the authors consid-
ered a single-source relaying system under stochastic packet
arrivals where the source communicates with the destination
either through the direct link or via a relay. They proposed two
different relaying protocols and derived the respective AAol
expressions. In summary, only a few works, such as [6], [9],
[10], have incorporated a resource constraint (as we do in this
paper) when analyzing the Aol in a relaying system, and most
of the related works, e.g., [9]], [18]], [20], [22], consider single-
source relaying systems.

Our work is an extension of work [7]], where the authors
provided scheduling policies for minimizing the Aol in a
one-hop buffer-free network with stochastic arrivals and an
error-free link. In contrast, in our two-hop network, all links
are error-prone, and we further consider an average resource
constraint. The most related work to our paper is [10], where
the authors studied the Aol minimization problem in a single-
source relaying system with the generate-at-will model under
a resource constraint on the average number of forwarding
transmissions at the relay. Different to [[10], we consider a
multi-source setup and, also, stochastic arrivals, which gener-
alize the generate-at-will model adopted in [[10]]. Even though
[10] also develops a low-complexity double threshold relaying
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Fig. 1: A multi-source two-hop status update system in which
different status updates arrive at random time slots at the transmitter,
which then sends the packets to the destination via a buffer-aided
relay over unreliable links.

policy, the thresholds need to be optimized numerically. In
contrast, we provide: 1) an online near-optimal low-complexity
scheduling policy, i.e., DPP-SP, and 2) a deep reinforcement
learning policy that copes with unknown environment.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

As depicted in Fig. [T} we consider a status update system
consisting of two independent sources, a buffer-aided trans-
mitter, a buffer-aided relay, and a destination. We consider
two sources for simplicity of presentation. We assume that
each status update is encapsulated in one packet and the buffer
size in the transmitter and the relay is one packet per source.
There is no direct communication link between the transmitter
and the destination, and thus, the transmitter sends all status
update packets to the destination via the relay. Each buffer
stores the most recently arrived packet of a source to maintain
the freshest information.

We consider a discrete-time system with unit time slots
t € {0,1,2,...}. The sources, indexed by i € {1,2},
independently generate status update packets according to
the Bernoulli distribution with parameter p;. Let w;[t] be a
binary indicator that shows whether a packet from source
i arrives at the transmitter at the beginning of slot ¢, i.e.,
u;[t] = 1 indicates that a packet arrived; otherwise, u;[t] = 0.
Accordingly, Pr{u;[t] = 1} = p;.

Wireless Channels: As the wireless channels fluctuate over
time, reception of updates (both by the relay and the destina-
tion) are subject to errors. However, unsuccessfully received
packets can be retransmitted; we assume that all retrans-
missions have the same reception success probability. Let
p1 and po be the successful transmission probabilities of
the transmitter-relay and relay-destination links, respectively.
Also, let pi[t] be a binary indicator of a successful packet
reception by the relay in slot ¢, i.e., p1[t] = 1 indicates that
the transmitted packet is successfully received by the relay;
otherwise, p1[t] = 0. Similarly, let ps[t] be a binary indicator
of a successful packet reception by the destination in slot ¢, i.e.,
p2[t] = 1 indicates that the transmitted packet is successfully
received by the destination; otherwise, pa[t] = 0. We have
Pr{pi[t] = 1} = py and Pr{pz[t] = 1} = po. We assume that
instantaneous and error-free feedback is available for each link,
and there is no interference between the links.

Decision Variables: We assume that at most one transmis-
sion per slot is possible over each link. Let aft] € {0, 1,2}
denote the (transmission) decision of the transmitter in slot ,
where aft] = 4, i € {1,2}, means that the transmitter sends
the packet of source i to the relay, and «[t] = 0 means that the

transmitter stays idle. Similarly, 8[t] € {0,1,2} denotes the
relay’s decision in slot ¢, where S[t] = i, ¢ € {1,2}, means
that the relay forwards the packet of source 7 to the destination,
and S[t] = 0 means that the relay stays idle. We assume that
there is a centralized controller performing the scheduling.

Age of Information: Let 6;[t] denote the Aol of source i
at the transmitter in slot ¢. Also, let ¢;[t] denote the Aol of
source 4 at the relay and J;[¢t] denote the Aol of source i
at the destination in slot . We make a common assumption
(see e.g., [12], [13] and references therein) that Aol values
are upper-bounded by a finite value N. This accounts for the
fact that once the available information about the process of
interest becomes excessively stale, further counting would be
irrelevant. The evolution of the Aols is given as

0, i wlt 1] =1,
0;[t+ 1] =
[t +1] {min (6;[t] + 1,N), otherwise,
Gilt+1] = min (6;[t] + 1,N) if alt] =i, p1[t] =1,
’ | min (¢i[t] +1,N), otherwise,
Silt+1] = min (¢;[t] +1,N), if Blt] =i, polt] =1,
‘ min (6;[t] +1,N), otherwise.

B. Problem Formulation

Let D = {aft],B[t]},—, 5, be a sequence of decision
variables in the system. For a given D, we denote the sum
average Aol at the destination (S-AAol) by 6(D) and the
average number of total transmissions per slot in the system
by K (D), which are defined as
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where 1, is an indicator function which equals to 1 when the
condition in {-} holds, and E{-} is the expectation with respect
to the system randomness (i.e., random wireless channels and
packet arrival processes) and the decision variables at] and
B[t]. The main aim of the paper is to solve the following
stochastic optimization problem

3(D)

§(D) = limsup

T—00

K (D) = limsup

T—o0

(1a)
(1b)

minimize
D
subject to K (D) < Tax,

where the real value T'y,ax € (0,2] is the maximum allowable
average number of transmissions per slot in the system. Notice
that the Slater condition 26 Eq. 9.32] clearly holds for prob-
lem (T)), i.e., there exists some D for which K (D) < ['yax.
Problem (1) could be cast as a CMDP problem, and
structural analysis of optimal policies can be conducted [8|
Sec. III]. However, such approach suffers from the curse
of dimensionality problem. Our focus is to provide a low-
complexity scheduling policy to solve the main problem (TJ).

III. ONLINE LOW-COMPLEXITY SCHEDULING POLICY

In this section, we devise drift-plus-penalty-based schedul-
ing policy, DPP-SP, inspired by the drift-plus-penalty method



[17]], to solve the main problem (I)). The proposed DPP-SP is
a heuristic{]_] policy that has low complexity and, as empirically
shown in Section |V| obtains near-optimal performance.

According to the drift-plus-penalty method [17]], the time
average constraint (Ib) is enforced by transforming it into
queue stability constraint. Accordingly, a virtual queue is
associated for constraint in such a way that the stability
of the virtual queue implies satisfaction of the constraint. Let
H [t] denote the virtual queue, with H[0] = 0, associated with
constraint (TB) in slot ¢ which evolves as

H[t + 1] = max{H[t] — T'max + D(a[t]), 0}, 2)

where D(alt]) = Liam20y + Ligpe20y- By [17, Ch. 2], the
time average constraint is satisfied if the virtual queue is
strongly stable, i.e., imsupy_, .. 7+ Zthl E{H[t]} < +oo.
Next, we define the Lyapunov function and its drift which are
used to define the virtual queue stability condition.

We define a quadratic Lyapunov function as L(H|[t]) =
$H?[t] [17, Ch. 3]. The Lyapunov function indicates the
size of the virtual queue: if the Lyapunov function is small,
the virtual queue is small, and if the Lyapunov function
is large, the virtual queue is large. By minimizing the ex-
pected change of the Lyapunov function from one slot to
the next, the virtual queue can be stabilized [17, Ch. 4].
Let Z[t] = {s[t], H[t]} denote the system state in slot ¢,
where s[t] = (01[t], z1[t], y1[t], O2[t], z2[t], y2[t]) in which
zi[t] 2 Yilt] — 0;[t] and y;[t] £ 6;[t] — i[t] are the relative
Aols at the relay and the destination in slot ¢, respectively.
The one-slot conditional Lyapunov drift, Alt], is defined as
the expected change in the Lyapunov function over one slot
given the current system state Z[t], thus given as

Alt) =E{L(H[t +1]) - L(H[t]) | Z[]}, 3

where the expectation is with respect to the (possibly random)
decisions made in reaction to the current system state.
Applying the drift-plus-penalty method to main problem (1)),
we seek for a control policy that minimizes an upper bound on
the following drift-plus-penalty function, ¢|t], at every slot:

olt] = Alt] + VI E{6:[t + 1] + it + 1]| Z[t]} =
Alt]+ VY E{20i[t + 1] + 2a5[t + 1) + it + 1)) | 2]1] %4,)

where the expectation is with respect to the channel random-
ness (i.e., p1[t] and ps2[t]) and (possibly random) decisions
made in reaction to the current system state; parameter V' > 0
adjusts a trade-off between the size of the virtual queue and
the objective function.

To obtain the upper bound of the drift-plus-penalty function,
we derive an upper bound for the drift term A[t], given by the
following proposition.

Proposition 1. The upper bound for the conditional Lyapunov

'Even though the drift-plus-penalty method introduced in [[17, Ch. 4] is
guaranteed to give an asymptotically optimal policy, there is no guarantee on
the optimally of DPP-SP because of having non-i.i.d. (over slots) objective
function, i.e., the sum Aol at the destination.

drift in @) is given by

Alt] < B+ HY(E{D(a[t]) | Z[t]} — Tmax), )
where B = 1/2I'2  + 2.
Proof. See [8, Appendix CJ. O

Let us express the evolution of the Aols and the relative
Aols by the following compact formulas

Gi[t + 1] = (1 — ui[t + 1])(9L[t] + 1),
zilt +1] = (1 = pr[t]L{agg=iy )z [t] + wslt + 1](6:[t] + 1),
yilt + 1] = (1 = pa[t] Ly ppg=iy )vilt] + pr[t1 L {ap=iy i [?6)

Using Proposition [I] and substituting (6) into @), the upper
bound for the drift-plus-penalty function ¢[t] is given as

plt] < B+ H[)(E{D(alt]) | Z[t]} — 'max)
+V 325 (B{(1 = pa(t]Lp10-i uilt]
+(1 = pr [t apymiy)walt] + @i[t] + 260;[t] + 2 | Z[t}(}7)).
Now, we turn to minimize the upper bound of the drift-
penalty-function given in (7). To this end, we first compute the
expectations with respect to the channel randomness, i.e., we
have E{pg[t]ﬂ{g[t]:i} | Z[t)} ZpQE{IL{B[t]:Z-} | Z[t]} and
]E{pl [t]]l{a[t]:i} | Z[t]} = plE{ﬂ{a[t]:i} | Z[t]} Then, after
removing the terms in that are independent of the decision
variables, we need to minimize the following expression:

HE{L 1203 | Z[t]} — Vo2 3o B{L 10)=iy | Z[t] }yslt]
+H[E{ L a0 | Z[H]} — V1 3o, E{L (a1} !Z[ﬂ}xi[t(]é)

where the expectation is with respect to the (possibly random)
decisions.

To minimize the expression in (), we follow the approach
of opportunistically minimizing a (conditional) expectation
(17} p. 13], i.e., the expression in (B) is minimized by the
algorithm that observes the current system state Z[t] and
chooses «t] and S[t] to minimize

H[t]L{agn20y — V1 22 Larg=iywilt]
+H[t]L (s 201 — Vo2 22, Lip=iyyilt]-

The expression in (9) is separable in «ft] and S[t], thus we
obtain «ft] and S[t] by solving the following problems

(€))

inimi Hlt|1 -V 1 —nxi|t 10
[minimize [t a0y — V1 22 Liapg=iy@ilt],  (10)
inimi Hit)1 -V 1 —nyit]l. (11
[minimize - H{t[1(g0) = VP2 2 Lpm=nyuilt]- (D

It can be inferred from problem (I0) that if

H[t] > max;{Vpi2;[t]}, then the optimal action is «a[t] = 0;
otherwise, the optimal action is «ft] = arg max,{Vpyz;[t]}.
Problem has the similar solution with respect to 3[¢].

In summary, the proposed DPP-SP works as follows: at
each slot ¢, the controller observes Z[t] and determines the
transmission decision variables according to the transmission
decision rules given by (12)), shown at the top of the next
page. As seen in (12), DPP-SP performs only two simple
operations to determine the actions at each slot, and thus,
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HJt], then «[t] = arg max,{Vp1z;[t]}; otherwise, aft] =0,
HJt], then p[t] = argmax,;{Vpay;[t]}; otherwise, S[t] = 0.

DPP-SP has low complexity and can support systems with
large numbers of sources.

What remains is to show that DPP-SP, operating according
to @I}, satisfies constraint @]); this is shown in the following
theorem.

Theorem 1. For any finite V and N, the virtual queue under
DPP-SP that operates according to (12)) is strongly stable,
implying that DPP-SP satisfies constraint (1b).

Proof. See [8, Appendix D]. O

IV. A DEEP LEARNING ALGORITHM

In this section, we develop a deep (reinforcement) learning
algorithm to solve the main problem (I) in an unknown
environment, i.e., when the packet arrival rates and the suc-
cessful transmission probabilities of the (wireless) links are
not available for the controller. Due to the time average
constraint (Ib)), we first use the Lyapunov optimization theory
to convert the main problem (T]) into an MDP problem which is
then solved by a model-free deep learning algorithm, namely,
D3QN (i.e., dueling double deep Q-network) [27]. While there
is no guarantee that the proposed deep learning algorithm
provides an optimal policy to the main problem (I), its
advantage is that it can cope with unknown environments. We
note that to implement the proposed learning algorithm, we
do not need to bound the Aol values.

We define the expected time average reward function, ob-
tained by policy 7, as

R(m) £ lim SUPT 500 % ZtT:O E{r[t]},

where r[t] = f(L(H[t 1)) — LH[) + VY, 6t + 1]) is
the immediate reward function, and L(H|t]) = 3 H?[t] is the
quadratic Lyapunov function with virtual queue H [t] given by
(2). Now, we want to solve the following problem

13)

maximize R(7). (14)

Problem can be formulated as an MDP problem, where
r[t] is the immediate reward, the state is Z[t] = {s[t], H[t]},
and the action is a[t] = («[t], 8[t]). To solve the MDP prob-
lem, we apply D3QN. Implementation details are presented
in the next section. Finally, because the Slater condition holds
and the Aol values are bounded by a finite [V, it can be shown
that the following theorem follows.

Theorem 2. For any finite V and N, the deep learning policy,
i.e., D3QON, which solves (not necessarily optimally) problem
(T4), makes the virtual queue be strongly stable, implying that
it satisfies the time average constraint (ID).

V. NUMERICAL RESULTS

In this section, we numerically evaluate the S-AAol (i.e.,
sum average Aol at the destination) of the proposed poli-
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Fig. 2: The S-AAol of the proposed and the baseline policies.
cies. For the deep learning policy, we consider a fully-
connected deep neural network consisting of an input layer
(|Z[t]] = 6+ 1 = 7 neurons), 2 hidden layers with 512 and
256 neurons and ReLU activation function, and an output layer
(| A| = 9 neurons). The number of steps per episode is 600, the
discount factor is 0.99, the mini-batch size is 64, the learning-
rate is 0.0001, and the optimizer is RMSProp. The parameter V'
is set to 100. The results are averaged over 100,000 time slots.
The system parameters, i.e., the arrival rates g = (11, f12), the
channel reliabilities p = (p1,p2), and the constraint budget
I'hax are specified in the figure captions.

For benchmark, we consider a greedy “baseline policy”,
which determines the transmission decision variables at each
slot ¢ according to the following rule: If D; < TI'max
then «ft] = argmax; z;[t] and B[t] = argmax; y;[t]; other-
wise, a[t] = 0 and B[t] = 0, where D; denotes the average
number of transmissions until slot ¢. This policy satisfies the
time average constraint (ID). It is worth noting that the baseline
policy and DPP-SP have similar computational complexity.

For a single-source setup, Fig. compares the perfor-
mance of DPP-SP (with N = 90) against an optimal policy,
which is obtained by solving the linear program [26/ Ch. 4]
associated with the CMDP problem of the main problem (TJ
(see [8, Sec. III]). One source is considered for the computa-
tional tractability of the linear programming. The figure reveals
that DPP-SP has near-optimal performance because it well



coincides with an optimal policy.

Fig. depicts the S-AAol of the proposed policies and
the baseline policy as a function of the constraint budget ', ax
for two sources and unbounded Aols. The figure shows that
the deep learning policy obtains near-optimal performance
when the constraint budget becomes sufficiently large, e.g.,
T'nax > 0.8; however, it is more complex (mainly in terms
of training) than DPP-SP. Besides, the S-AAol performance
gap between the baseline policy and the proposed policies
is extremely large when the constraint budget is small; this
is because in such cases, performing good actions in each
slot becomes more critical due to having a high limitation
on the average number of allowed transmissions. The figure
shows that the proposed policies achieve up to almost 136%
improvement in the S-AAol performance compared to the
baseline policy. Finally, we observe that, as the constraint
budget increases, the S-AAol values decrease; however, from
a certain point onward, increasing the constraint budget does
not considerably decrease the S-AAol.

VI. CONCLUSION

We developed transmission scheduling policies in a multi-
source two-hop system with stochastic arrivals and error-prone
channels subject to the transmission capacity and average num-
ber of transmissions constraints. We formulated a stochastic
optimization problem and solved it in known and unknown
environments. For the known environment, we devised the
online near-optimal low-complexity DPP-SP, representing an
efficient online scheduler for systems with large number of
sources. For the unknown environment, we devised a deep
learning policy combining the Lyapunov optimization theory
and D3QN. The simulation results showed the effectiveness of
the proposed policies, obtaining up to 136% improvement in
the S-A Aol performance compared to a greedy-based baseline
policy. Thus, an age-optimal scheduler design is crucial for
resource-constrained two-hop status update systems, where
greedy-based scheduling is inefficient.
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