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Learning to Detect with Constant False Alarm Rate
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Abstract—We consider the use of machine learning for hypoth-
esis testing with an emphasis on target detection. Classical model-
based solutions rely on comparing likelihoods. These are sensitive
to imperfect models and are often computationally expensive. In
contrast, data-driven machine learning is often more robust and
yields classifiers with fixed computational complexity. Learned
detectors usually provide high accuracy with low complexity but
do not have a constant false alarm rate (CFAR) as required in
many applications. To close this gap, we propose to add a term
to the loss function that promotes similar distributions of the
detector under any null hypothesis scenario. Experiments show
that our approach leads to near CFAR detectors with similar
accuracy as their competitors.

Index Terms—hypothesis testing, deep learning

I. INTRODUCTION

The deep learning revolution has led many to apply machine
learning methods to classical problems in all fields including
statistics. Examples range from estimation [[1H6] to detection
[7H12]. Deep learning is a promising approach for deriving
high accuracy and low complexity alternatives when clas-
sical solutions are intractable. To facilitate this switch, we
must ensure that the learned solutions are accurate but also
satisfy other classical requirements. In this paper, we focus
on learning detectors for composite hypothesis testing. We
claim that current solutions deliver on their promises but lack
the Constant False Alarm Rate (CFAR) requirement which is
critical in many applications. To close this gap, we provide a
framework for learning accurate CFAR detectors.

Detection theory begins with simple hypothesis testing
where a detector must decide between two fully specified
distributions. The classical solution is the Likelihood Ratio
Test (LRT) which is optimal in terms of maximizing the
detection probability subject to a false alarm constraint. Com-
posite hypothesis testing is a more challenging setting where
the hypotheses involve unknown deterministic parameters.
A CFAR detector is invariant to these parameters and has
identical false alarm probabilities as long as no target is
present. This allows the user to set the thresholds a priori.
A popular approach is the Generalized Likelihood Ratio Test
(GLRT) which can be interpreted as estimating the unknown
parameters and then plugging them into a standard LRT. GLRT
performs well when the number of unknowns is relatively
small and is asymptotically CFAR. On the other hand, it is
generally sub-optimal in finite sample settings and may be
computationally expensive.

Data-driven classifiers are the machine learning counterpart
to model-based detectors. In simple settings with no unknown
deterministic parameters, it is well known that the optimal
Bayes classifier converges to the LRT with a specific false
alarm rate. More advanced classifiers can also maximize the

cumulative detection rate over a wide range of false alarms,
also known as the area under the curve (AUC) [13} [14]].

There is a growing body of works on using machine
learning for target detection. In the context of hyperspectral
imagery, [11]] introduced the use of support vector machines
(SVM). Deep neural networks (DNN) were proposed in [8].
An important ingredient of these works is the use of an
artificial training set where real noise data is augmented with
synthetically planted targets. In the context of radar detection,
SVMs were considered in [[10]. Specific CFAR radar detectors
were developed by relying on CFAR features [15H17]].

The main contribution of this paper is a framework for
learning CFAR detectors denoted by CFARnet. The framework
is general purpose and can be applied to arbitrary composite
hypothesis testing problems. CFARnet is based on adding
a penalty function to the optimization which decreases the
distances between the distributions under different parame-
ter values. To optimize CFARnet we rely on empirical and
differentiable distances that have recently become popular in
unsupervised deep learning. Our numerical experiments, show
that the resulting networks are approximately CFAR while
paying a negligible price in terms of accuracy.

The CFAR notion is closely related to the topics of “fair-
ness” and “out of distribution (OOD)” generalization which
have recently attracted considerable attention in the machine
learning literature, e.g., L8] [19]. CFAR can be interpreted as
a fairness property with respect to the unknown deterministic
parameters. The closest work is [20] which also enforces
“equalized odds” using a distance between distributions. A
main difference is that CFAR is a one-sided fairness property
and requires equal rates only in the null hypothesis. Algorith-
mically, [20] compares the high dimensional joint distribution
of the predictions and the unknown parameters, whereas we
only consider the scalar distribution of the predictions. This
makes our method significantly cheaper in terms of computa-
tional complexity. Indeed, we rely on a simple kernel based
distance and do not require sophisticated adversarial networks.

II. BACKGROUND ON STATISTICAL DISTANCES

We begin with a brief background on statistical distances.

Definition 1. Let X ~ p(X) and Y ~ p(Y') be two random
variables. A statistical distance d(X;Y) is a function that
satisfies d(X;Y) > 0 with equality if and only if p(X) =
p(Y).

A distance which has recently become popular is the Max-



imum Mean Discrepancy (MMD) [21]:

dyvp (X3Y) = E[k(X, X')]
+EK(Y,Y)] - 2E[k(X,Y)] (D)

where X and X' are independent and identically distributed
(iid.), and so are Y and Y’. The function k(-,-) is a
characteristic kernel over a reproducing kernel Hilbert space,
e.g., the Gaussian Radial Basis Function (RBF).

Recent advances in deep generative models allow us to
optimize distances as MMD in an empirical and differentiable
manner. For this purpose, we need to represent each distri-
bution using a small dataset. Let {X;}~; and {Y;}Y, be
i.i.d. realizations of X and Y, respectively. Then, an empirical
version of the MMD can be used where the expetations in (1)
are replaced by their empirical estimates. More advanced met-
rics can be obtained using the tools of generative adversarial
networks (GANS). In this paper, we only deal with distances
between scalar random variables and simple MMD distances
suffice.

III. PROBLEM FORMULATION

We consider a binary hypothesis test. Let  be an observed
random vector whose distribution p(x;z) depends on an
unknown deterministic parameter z. The value of z defines
two possible hypotheses

z € 2
z¢ 2. )

y=0:
y=1:
The goal is to design a detector g(x) € {0,1} as a function
of x that will identify the true hypothesis y € {0,1}.

Performance is measured in terms of probability of correct
detection, also known as True Positive Rate (TPR):

Prpr(z) = P(j(x) = L,y = 1) 3)

and probability of false alarm, also known as False Positive
Rate (FPR):

Prpr(z) = P(j(z) = 1;y = 0) “4)

In practice, the user typically provides a false alarm constraint
Prpr < « that must be satisfied and the goal is to maximize
Prpr.

It is standard to consider detectors of the form

g(w):{o T(x) <~

1 T(x) =~ )

where T'(x) is a function of the measurements and v is a
threshold. This structure allows users to tune Prpr by adjust-
ing the threshold. Performance is usually visualized using the
Receiver Operating Characteristic (ROC) which plots the TPR
as a function of the FPR. In signal processing applications,
users are often interested in a region of very low FPRs, e.g.,
1071 —1072 and the goal is to maximize the TPR probabilities
in this area.

A main challenge in detection theory are the unknown
parameters under the null hypothesis y = 0. The false alarm

probability (FPR) is generally a function of these parameters
and cannot be controlled without their knowledge. Therefore,
it is often preferable to restrict the attention to CFAR detectors.

Definition 2. A detector T'(x) is CFAR if its distribution is
invariant to the value of z € 2.

As we will review below, many classical detectors are CFAR
or asymptotically CFAR. With the growing trend of switching
to machine learning, the goal of this paper is to introduce a
framework for learning CFAR detectors.

IV. CLASSICAL LIKELIHOOD BASED DETECTORS

In this section, we provide a short background on classical
detectors based on likelihood ratios. In the simple case where
Zy = {zo} and Z; = {z;} are singletons, hypothesis testing
has an optimal solution known as the Likelihood Ratio Test
(LRT) due to Neyman Pearson [22, p. 65]. LRT theory states
that the optimal detector for maximizing detection subject to
a given false alarm probability is:

p(x;z =21)
p(x;z = zo)
and the threshold v is chosen to satisfy the false alarm (FPR)
constraint.

The more realistic scenario is composite hypotheses testing
where one or both of the hypotheses involve unknown param-
eters and there is no simple and optimal solution. A popular
heuristic is the Generalized Likelihood Ratio Test (GLRT)
that estimates the unknown parameters using the Maximum
Likelihood technique and plugs them into the LRT detector:

TLRT (w) = 210g (6)

maxzez, p(T;2)
maXge z, p(:l:, Z)
Setting the threshold to ensure a fixed Prpgr iS non trivial.
Fortunately, under regular conditions, GLRT is asymptotically
CFAR and thus its threshold can be set for all values of the
unknown parameters simultaneously.

GLRT is probably the most popular solution to composite
hypothesis testing. It gives a simple recipe that performs well
under asymptotic conditions. Its main downsides are that it
is sensitive to deviations from its theoretical model, it is
generally sub-optimal under finite sample settings and that it
may be computationally expensive. Both the nominator and
denominator of the GLRT involve optimization problems that
may be large scale, non-linear and non-convex. Therefore,
there is an ongoing search for robust and low cost alternatives.

Terrr(x) = 2log @)

V. MACHINE LEARNING FOR DETECTION

In this section, we explain the use of machine learning
for hypothesis testing. The starting point to any data-driven
learning is a training set. Hypothesis testing relies on a
probabilistic model p(x;z) and we need to use this model in
order to generate a synthetic dataset. Hybrid settings involving
a mixture of real and artificial samples are also common. For
example, it is standard to plant synthetic targets on real noise
samples [L1]. Due to space limitations, we leave these hybrid
extensions for the journal version of this paper.



The main challenge in generating data is that y € {0,1}
and z are not random variables but deterministic parameters
without any prior distribution. A natural heuristic is to assume
uniform fake priors, e.g., choose half of labels as y = 0 and
half as y = 1 and assume that z is uniformly distributed on its
corresponding domains. For each y; and z;, we then generate
a measurement x; according to the true p (x;z;) and obtain a
synthetic dataset

Dn = {zi,2i, yi }7 1. ®)

Next, a class of possible detectors 7 is chosen in order
to tradeoff expressive power with computational complexity
in test time. The class is usually a fixed differentiable neural
network architecture. In our context, it also makes sense to
reuse existing ingredients from classical detector as non-linear
features or internal sub-blocks.

Finally, the learned detector is defined as the minimizer of
an empirical loss function

1 A
min N ZL(T(:ci),yi). )

where L(-;-) is a classification loss function. Ideally, we
would like to minimize the zero-one loss which corresponds
to the average probability of error. Practically, for efficient
optimization, a smooth and convex surrogate loss, as the hinge
or cross entropy functions, is preferable. The overall procedure
for learning a detector is summarized in Algorithm 1.

Algorithm 1 Fitting detectors for p(x; z)

o Choose p'?*¢(y).

o Choose p'*¢(z;y).

e Foreachi=1,--- N:
Generate ;.
Generate z; given y;.
Generate x; given z;.

« Solve

. N ~
M7 e % Yoim1 L(T (i), yi)-

fake (
fake (

Learned detectors have strong theoretical guarantees in
simple testing problems where y uniquely defines z. With a
sufficiently expressive class of detectors and a large enough
training set, minimizing the zero-one loss leads to the Bayes
optimal detector. It is identical to the LRT with the threshold

Py =0)
Py = 1)
Minimizers of Bayes risk consistent surrogates, as the hinge
loss, also asymptotically converge to this LRT [23]]. Thus, any
simple LRT can be approximated by tuning p*®(y) to achieve
a desired PppRr.

To approximate LRT for a wide range of Pppgr it is
preferable to minimize the AUC. There are many works in
the machine learning literature on fitting classifiers with this
goal through an increased computational complexity [13} [14].

Y= (10)

There are also variants that focus on partial regimes in the
ROC [24].

To evaluate the machine learning approach to detection we
turned to numerical experiments. We completed a wide range
of simulations in different target detection scenarios comparing
the classical solutions with different learned detectors based
on various loss functions. We examined both simple and
composite settings, with and without hidden variables. The
conclusions were that learned detectors usually perform simi-
larly to the their corresponding (G)LRTs. In some experiments,
some detectors had a small advantage but the differences were
not uniform nor significant. Our conclusion is therefore that
simple classifiers with wide priors on the unknown parameters
are practically sufficient for achieving an optimal ROC in
most problems. On the negative side, most of the experiments
showed that the learned detectors were not CFAR and resulted
in significantly different false alarm rates for different values
of z € Z;. To close this gap, in the next section we propose
a framework for learning CFAR detectors.

VI. LEARNING CFAR DETECTORS

In this section, we introduce CFARnet, a framework for
designing CFAR detectors using machine learning. CFARnet
introduces two modifications to Algorithm 1. First, we aug-
ment the classification loss with a penalty function that ensures
similar distributions for all values of z € H. Second, in order
to optimize this penalty, we generate multiple {wij}jj\il for
each z; and use them to empirically approximate the CFAR
penalty.

The main idea is adding a penalty to the objective function
that promotes a CFAR. The penalty is defined as a sum
of distance functions between the distributions of 7' under
different values of z:

R = > (@) T())

z,Zz€ 2y

(1)

where d(-;-) is any statistical distance as detailed in Section

The distributions of 7'(x) and 7'(&) are implicitly defined

through
x ~ p(x;2)
z ~ p(x;z). (12)

Clearly, any CFAR test must satisfy R(7T") = 0.

To minimize a loss with a CFAR penalty, we need to
represent each distribution using a small dataset. For each
z;, we synthetically generate multiple observations x;; for
j = 1,--- , M. Similarly, for each z; we compute multiple
x;;. We then plug these into the empirical distances as detailed
in Sec.

RP) =3 d ({Ta L) (T@))L)  a3)

Altogether, we recommend to use a hyper-parameter o > 0
that trades off the importance of the classification accuracy
versus the CFAR penalty. The overall procedure for learning
a CFAR detector is summarized in Algorithm 2.
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Fig. 1. Performance graphs in terms of FPR, TPR and thresholds for o € {0, 1}. Top row is with Gaussian noise and indeed the Gaussian GLRT is best both
in terms of ROC and CFAR. NET succeeds in achieving its ROC but is not CFAR. CFAR-NET is both accurate and CFAR. Bottom row is with non-Gaussian
noise and the learned detectors beat the Gaussian GLRT in accuracy. CFAR-NET is near CFAR with a slight decrease in accuracy.

Algorithm 2 Fitting CFAR detectors for p(x;z)

o Choose pfake(y).
o Choose p'*¢(z;y).
e Foreachi=1,--- N:
Generate ;.
Generate z; given y;.
Forj=1,---,M:
Generate x;; given z;.
e Solve . o
ming - & SN L(T(2:), i) + aR(T).

fake (

VII. NUMERICAL EXPERIMENTS

In this section, we demonstrate the advantages of CFARnet
via numerical experiments. We consider a basic yet realistic
target detection scenario in which both the target amplitude
and the noise scaling are unknown:

z=Al+on (14)

where 1 is a target vector of ones, n is a random vector with
i.i.d. noise variables, and z = [A, o] are deterministic unknown
parameters

-1<AL], 0.5 <o < 1. (15)
The goal is to decide between
y=0: A=0
y=1: A#0. (16)

We compare three detectors:

o GLRT: assuming Gaussian noise, the classical GLRT has
a simple closed form solution Tgrrt = (71)?/(x’x)
and is known to be CFAR.

o NET: a learned neural network as in Algorithm 1. We
choose a uniform fake prior for the unknown parameters
in (T3). The architecture is based on four non-linear
features: the sample mean of x, its sample variance and
robust versions of the two based on the median. These
features are passed through a fully connected neural
network, and are optimized to minimize a cross entropy
loss using PyTorch.

o CFAR-NET: a learned neural network as in Algorithm 2.
Architecture and implementation are all identical to NET.
Loss is cross entropy with an MMD CFAR penalty with
parameter o = 1.

The first experiment considers Gaussian noise. In the first
row of Fig. 1, we plot the two ROCs for different values of o.
To examine the CFAR property, we also plot the FPRs under
different parameters. As expected, it is easy to see that the
Gaussian GLRT performs well and is CFAR. NET provides
similar accuracy as illustrated in its ROC but is non-CFAR and
results in significantly different FPR when we change o. On
the other hand, CFAR-NET is both accurate and near CFAR.

The second experiment is more challenging and considers
non-Gaussian noise. The setting is identical as before except
for the noise distribution

p(ni) = (1 — €)N(0,1) + eN(0, 100) (17)



where € = 0.1. There is no simple GLRT for this setting.
The results are provided in the second row of Fig. 1. In this
case, the Gaussian GLRT is no longer optimal and the two
learned detectors provide a significantly better ROC. In terms
of CFAR, GLRT is still invariant to the nuisance parameter,
but the FPR of NET is dependent on its value. As promised,
CFAR-NET is both accurate and CFAR.
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