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Abstract—In this paper, we adapt to cell-free Massive
MIMO (multiple-input multiple-output) the finite-blocklength
framework introduced by Östman et al. (2020) for the charac-
terization of the packet error probability achievable with Mas-
sive MIMO, in the ultra-reliable low-latency communications
(URLLC) regime. The framework considered in this paper
encompasses a cell-free architecture with imperfect channel-
state information, and arbitrary linear signal processing per-
formed at a central-processing unit connected to the access
points via fronthaul links. By means of numerical simulations,
we show that, to achieve the high reliability requirements in
URLLC, MMSE signal processing must be used. Comparisons
are also made with both small-cell and Massive MIMO cellu-
lar networks. Both require a much larger number of anten-
nas to achieve comparable performance to cell-free Massive
MIMO.

Index Terms—Cell-free Massive MIMO, centralized opera-
tion, finite-blocklength regime, ultra-reliable low-latency com-
munications, saddlepoint approximation.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a key
technology in 5G, owing to its ability to substantially in-
crease the spectral efficiency of cellular networks [1]. An
important challenge in Massive MIMO is the large pathloss
variations and inter-cell interference, in particular for the
cell-edge user equipments (UEs) [2]. An alternative net-
work structure, known as cell-free Massive MIMO, was
recently proposed to overcome this issue [3], [4]. In this
type of network, all the UEs in a large coverage area may be
jointly served by multiple distributed access points (APs).
The fronthaul connections between the APs and the central
processing unit (CPU), enable the division of the processing
tasks for coherently serving all the active UEs.

The aim of this paper is to investigate the design of cell-
free Massive MIMO architectures to support ultra-reliable
low-latency communications (URLLC)—a novel use case in
next-generation wireless systems (5G and beyond) aimed at
providing connectivity to real-time mission-critical applica-
tions, such as remote control of automated factories [5]. The
low latency required in such applications and the typically
small payload contained by the transmitted data packets,
make the use of nonasymptotic (i.e., finite-blocklength)
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information theoretic tools fundamental for the design of
such systems [6].

State of the Art: In most of the recent literature where
the advantages of cell-free Massive MIMO over traditional
architectures are illustrated, ergodic capacity is used as
performance metric (see, e.g., [7] and references therein).
Unfortunately, this metric is asymptotic in the blocklength
and, hence, not adequate for scenarios in which the packet
length is short due to latency constraints. One recent excep-
tion is [8], where a conjugate beamforming scheme for cell-
free Massive MIMO architectures is developed on the basis
of the so-called normal approximation [9]. Unfortunately,
this approximation, although capturing finite-blocklength
effects, tends to loose accuracy at the low error probabilities
that are of interest in URLLC [10]. Furthermore, the analysis
in [8] is conducted under the assumption of perfect channel
state information (CSI). Hence, it neglects the overhead due
to pilot transmission, which is often significant in the short-
blocklength regime [11].

Contributions: We illustrate how to use the so-called
random-coding union bound with parameter s (RCUs) from
finite-blocklength length information theory [12], to derive
both a firm upper bound, and an easy-to compute approx-
imation, based on the saddlepoint method [13, Sec. XVI],
on the uplink (UL) and downlink (DL) error probabilities
achievable in a cell-free Massive MIMO system deployed to
support URLLC. To do so, we extend to cell-free Massive-
MIMO the finite-blocklength framework derived in [10] for
cellular Massive-MIMO networks. Numerical simulations
are used to show that, in a practically relevant automated-
factory deployment scenario, cell-free Massive MIMO with
fully centralized processing outperforms cellular Massive
MIMO in terms of the fraction of the coverage area in which
URLLC services can be provided.

Notation: Lower-case bold letters are used for vec-
tors and upper-case bold letters are used for matrices. The
circularly-symmetric Gaussian distribution is denoted by
CN (0, σ2), where σ2 denotes the variance. We use E[·] to
indicate the expectation operator, and P[·] for the probability
of a set. The natural logarithm is denoted by log(·).

II. A FINITE-BLOCKLENGTH UPPER-BOUND ON THE
ERROR PROBABILITY

A finite-blocklength information-theoretic upper bound
on the error probability achievable in a cell-free Massive
MIMO architecture needs to capture the following elements:
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• it must allow for linear processing to separate the
signals generated by/intended to the different UEs;

• it must allow for pilot-based CSI acquisition and ap-
ply to the scenario where decoding is performed by
assuming that the acquired CSI is exact;

• it must apply to a scenario in which the additive noise
term includes not only thermal noise, but also channel
estimation error and residual multiuser interference
after linear processing.

A bound satisfying this requirement is the so-called RCUs
given in [12]. To introduce this bound, let us consider the
following scalar input-output relation:

v[k] = gq[k] + z[k], k = 1, . . . , n. (1)

Here, q[k] denotes the kth entry of the length-n codeword
transmitted by a given user, v[k] is the corresponding re-
ceived signal after linear processing, g denotes the effective
channel after linear processing, which we assume to stay
constant over the duration of the packet, and z[k] is the addi-
tive noise signal, which also includes the residual multiuser
interference after linear processing.

To derive the bound, we shall assume that the receiver
does not know g but has access to an estimate ĝ that is
treated as perfect. This estimate may be obtained via pilot
transmission, or may simply be based on the knowledge of
first-order statistics of g. The first situation is relevant in
the UL of Massive MIMO, whereas the second situation
typically occurs in the DL (see, e.g., [14]).

To determine the transmitted codeword, the decoder per-
forms scaled nearest-neighbor (SNN) decoding, i.e., it seeks
the codeword that, after being scaled by the estimated chan-
nel gain ĝ, is closest to the received vector. Mathematically,
the decoder solves the following optimization problem:

q̂ = arg min
q̃∈C

‖v − ĝq̃‖2. (2)

Here, v = [v[1], . . . , v[n]]T, the vector q̂ stands for the
codeword chosen by the decoder, and C denotes the set of
length-n codewords.

The RCUs provides a random coding bound on the er-
ror probability ε = P[q̂ 6= q] achieved when the decoder
operates according to the rule (2). The following theorem
provides such a bound for the so-called Gaussian random
ensemble.

Theorem 1 ([10, Th. 1]): Assume that g ∈ C and ĝ ∈ C
in (1) are random variables drawn according to an arbi-
trary joint distribution. There exists a coding scheme with
m = 2b codewords of length n operating according to the
mismatched SNN decoding rule (2), whose error probability
ε is upper-bounded by

ε = P[q̂ 6= q]

≤ Eg,ĝ

[
P

[
n∑
k=1

ıs(q[k], v[k]) ≤ log
m− 1

u

∣∣∣∣g, ĝ
]]

(3)

for all s > 0. Here, u is a random variable that is uniformly

distributed over the interval [0, 1] and ıs(q[k], v[k]) is the
so-called generalized information density, given by

ıs(q[k], v[k]) = −s |v[k]− ĝq[k]|2

+
s|v[k]|2

1 + sρ|ĝ|2
+ log

(
1 + sρ|ĝ|2

)
. (4)

Finally, the average in (3) is taken over the joint distribution
of g and ĝ.

Proof: See [10, App. A].
We refer the interested reader to [10] for more details

about this bound, including its relation to the so-called
generalized mutual information. Note that the bound is valid
for all values of s > 0 and can be tightened by performing
an optimization over this parameter.

Unfortunately, the bound (3) is difficult to evaluate numer-
ically. Indeed, the probability inside the expectation in (3) is
not known in closed form, and evaluating it accurately for the
error-probabilities of interest in URLLC is time consuming.
One common approach to simplify its evaluation is to invoke
the Berry-Esseen central limit theorem [13, Ch. XVI.5] and
replace the probability in (3) with a closed-form approxima-
tion that involves the GaussianQ(·) function and the first two
moments of the generalized information density, which are
known in closed form. The resulting approximation, which
is usually referred to as the normal approximation, has been
recently used in [8] within cell-free Massive MIMO analyses.
Unfortunately, as shown in [10, Fig. 1], this approximation
is accurate only when the rate R = (logm)/n is close to
the expected value of the generalized information density;
this is typically not the case for the low error-probabilities
of interest in URLLC.

An alternative approximation, which turns out to be ac-
curate for a much larger range of error-probability values,
including the ones of interest in URLLC, can be obtained
using the so-called saddlepoint method [13, Ch. XVI]. The
resulting approximation is also in closed form for the setup
considered in the present paper. As a consequence, the
saddlepoint approximation has essentially the same compu-
tational complexity as the normal approximation (although
its overall expression, given in [10, Th. 2], is arguably more
involved). The saddlepoint approximation depends on the
cumulant generating function of the generalized information
density and on its first and second derivatives, evaluated at
a point that depends on the chosen rate R. In contrast, the
normal approximation depends on the mean and the variance
of the generalized information density, i.e., on the value
of the first and second-order derivatives of the cumulant
generating function computed at the fixed value 0.

III. CELL-FREE MASSIVE MIMO NETWORK

We consider a fully centralized network with L APs,
each equipped with M antennas, which are geographically
distributed over the coverage area. The APs serve jointly K
single-antenna UEs, and are connected via fronthaul links to
a CPU, which facilitates the AP coordination. The standard



time-division duplexing protocol of cellular Massive MIMO
is used, where the n available channel uses are used for
three purposes: np symbols for UL pilots; nul symbols for
UL data; and ndl symbols for DL data. The signals received
by each AP are sent to the CPU over the frounthaul links.
Then, the CPU performs both channel estimation and data
detection.

The channel between AP l and UE i is denoted by hil ∈
CM . We use a correlated Rayleigh fading model where hil ∼
CN (0M ,Ril) remains constant for the duration of a code-
word transmission. The normalized trace βil = tr(Ril)/M
determines the average large-scale fading between AP l and
UE i, while the eigenstructure of Ril describes its spatial
channel correlation [14, Sec. 2.2]. The collective channel
vector hi = [hT

i1 . . .h
T

iL]T ∈ CML follows a CN (0ML,Ri)
distribution, where Ri = diag(Ri1, . . . ,RiL).

A. Pilot Transmission and Channel Estimation

The UL pilot signature of UE i is denoted by φi ∈ Cnp

and satisfies ‖φi‖2 = np. The elements of φi are scaled
by the square-root of the pilot power

√
ρul and transmitted

over np channel uses. This yields the received signal

Ypilot
l =

√
ρul

K∑
i=1

hilφ
H

i + Zpilot
l (5)

where Zpilot
l ∈ CM×np is noise with i.i.d. elements dis-

tributed as CN (0, σ2
ul). Assuming that the covariance matri-

ces {Ril} are known at the CPU, the minimum mean-square
error (MMSE) estimate of hil is [14, Sec. 3.2]

ĥil =
√
ρulnpRilQ

−1
il

(
Ypilot
l φi

)
(6)

with Qil = ρul
∑K
i=1 Ril + σ2

ulIM . The MMSE estimate
ĥil and the estimation error h̃il = hil − ĥil are inde-
pendent random vectors, distributed as ĥil ∼ CN (0,Φil)
and h̃il ∼ CN (0,Ril − Φil), respectively, with Φil =
ρulnpRilQ

−1
il Ril. To perform coherent processing of the

signals at multiple APs, it is necessary to have knowledge
of the collective channel hi, whose estimate is obtained as
ĥi = [ĥT

i1 . . . ĥ
T

iL]T.

B. Uplink Data Transmission

We denote by xul
i [k] the signal transmitted by UE i over

channel use k. In the UL of a fully centralized operation,
each AP l acts only as a remote-radio head, i.e., as a relay
that forwards its received baseband signal rul

l [k] to the CPU,
which performs detection after linear processing. Specifi-
cally, for k = 1, . . . , nul, the CPU computes

yul
i [k] =

L∑
l=1

uH

ilr
ul
l [k] = uH

i rul[k] (7)

where ui = [uT
i1 . . . uT

iL]T ∈ CML is the centralized linear-
combining vector and rul[k] ∈ CML is the collective UL

data signal, given by

rul[k] =

rul
1 [k]

...
rul
L [k]

 =

K∑
i=1

hix
ul
i [k] + zul[k] (8)

with zul[k] = [zulT

1 [k] . . . zulT

L [k]]T ∈ CML being the
collective noise vector.

We assume that the CPU treats the channel estimate ĥi as
perfect and that the transmitted codeword is drawn from a
codebook Cul. The estimated codeword x̂ul

i is thus obtained
by performing mismatched SNN decoding with ĝ = uH

i ĥi,
i.e.,

x̂ul
i = arg min

x̃ul
i ∈Cul

‖yul
i − ĝx̃ul

i ‖2 (9)

with yul
i = [yul

i [1], . . . , yul
i [nul]]

T and x̃ul
i =

[x̃ul
i [1], . . . , x̃ul

i [nul]]
T. An upper bound on the error

probability then follows by applying (3). This bound is
valid for any combining vector. Numerical results will be
given for the MMSE and maximum ratio (MR) combining
schemes.

C. Downlink Data Transmission

In the DL of a fully centralized network, the CPU uses
the UL channel estimates to compute the precoding vector
(by exploiting channel reciprocity) and to transmit the DL
data signal xdl

i [k] to UE i over channel use k. Let wil ∈ CM

denote the precoder that AP l assigns to UE i. In the DL,
the received signal at UE i over channel use k, where k =
1, . . . , ndl, is

ydl
i [k] =

L∑
l=1

hH

il

K∑
i′=1

wi′lx
dl
i′ [k] + zdl

i [k] (10)

= hH

i wix
dl
i [k] + hH

i

K∑
i′=1,i′ 6=i

wi′x
dl
i′ [k] + zdl

i [k] (11)

where wi = [wT
i1 . . . wT

iL]T ∈ CML is the collective
precoding vector, and zdl

i [k] ∼ CN (0, σ2
dl) is the receiver

noise. Without loss of generality, we assume that

wi =
√
ρdl
i w̄i (12)

where ‖w̄i‖2 = 1 so that ρdl
i can be thought of as the DL

transmit power.
Since no pilots are transmitted in the DL, the UE does

not know the precoded channel g = hH
i wi in (11). Instead,

we assume that the UE has knowledge of its expected value
E[hH

i wi] and uses this quantity to perform mismatched SNN
decoding. Specifically, we set ĝ = E[hH

i wi] and compute
the estimated codeword x̂dl

i as

x̂dl
i = arg min

x̃dl
i ∈Cdl

‖ydl
i − ĝx̃dl

i ‖2 (13)

with ydl
i = [ydl

i [1], . . . , ydl
i [ndl]]

T and x̃dl
i =

[x̃dl
i [1], . . . , x̃dl

i [ndl]]
T. Different precoders yield different

error probabilities at the UEs. A common heuristic comes



from UL-DL duality [14, Sec. 4.3.2], which suggests
to choose the precoding vectors wi as a function of the
combining vectors: wi = ui/

√
E[‖ui‖2].

IV. NUMERICAL ANALYSIS

We present numerical simulations aimed at investigating
the performance of cell-free Massive MIMO in the URLLC
regime as a function of the number of APs. Comparisons are
made with a cellular Massive MIMO network to quantify
the advantages of the cell-free paradigm.

A. Network Parameters
We consider an automated-factory propagation scenario

in which the total coverage area is 150 m × 150 m, and the
total number of UEs is K = 40. In the cellular setting, we
treat the coverage area as one single square cell with a base
station (BS) located in the middle of the cell. We assume
that the BS is equipped with a uniform linear array with LM
co-located antennas, with half-wavelength spacing. The UEs
are independently and uniformly distributed within the cell.
The cell-free setting is deployed in the same area with the
same total number of UEs and the same total number of
antennas. Specifically, there are L APs with M antennas
each, located at the intersections of a square grid deployed
within the coverage area. For a fair comparison, we proceed
as in [7] and consider the same propagation model for cell-
free Massive MIMO and cellular Massive MIMO. Hence, we
assume that the APs are at 10 m above the ground. As in [7],
this vertical distance is only used to impose a minimum
distance among APs and UEs. Specifically, the antennas and
the UEs are assumed to be located in the same horizontal
plane, so that the azimuth angle is sufficient to determine
the directivity. We use the same UE locations and pilot
assignments in both cellular and cell-free networks.

We assume that the scatterers are uniformly distributed
in the angular interval [ϕi − ∆, ϕi + ∆], where ϕi is the
nominal angle-of-arrival of UE i, where i = 1, . . . ,K, and
∆ is the angular spread. Hence, the (m1,m2)th element of
Ril is equal to [14, Sec. 2.6]

[Ril]m1,m2
=
βil
2∆

∫ ∆

−∆

ejπ(m1−m2) sin(ϕi+ϕ̄)dϕ̄. (14)

We set ∆ = 25◦ and let the large-scale fading coefficient,
measured in dB, be βil = −30.5 − 37.6 log10(dil/1 m),
where dil is the distance between the UE i and the AP l.
The communication takes place over a 20 MHz bandwidth
with a total receiver noise power of σ2

ul = σ2
dl = −96 dBm

(consisting of thermal noise and a noise figure of 5 dB in the
receiver hardware) at both the APs and UEs. Furthermore,
we employ a wrap-around topology as in [14, Sec. 4.1.3].
The UL and the DL transmit powers are equal and given by
ρul = ρdl = −10 dBm. We assume n = 300, np = K =
40, nul = ndl = (n−np)/2 and log2m = 160 information
bits, wherem is the size of the UL and DL codebooks Cul and
Cdl, respectively. Note that the assumption np = K = 40
implies that an orthogonal pilot sequence is assigned to each
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Fig. 1: Network availability for εtarget = 10−5 with MMSE combin-
ing/precoding as a function of the total number of antennas in the system
LM . Here, K = 40, np = 40, ∆ = 25◦, the scenario size is 150 × 150
m, ρul = ρdl = −10 dBm, log2m = 160, and n = 300.

UE and no pilot contamination occurs. As pointed out in [10],
this is crucial to achieve the reliability levels required in
URLLC.

B. Performance Analysis

The average UL and DL error probabilities εul and εdl

for an arbitrary UE within the coverage area are computed
for fixed UEs’ positions and averaged over the small-scale
fading and the additive noise. As performance metric, we use
the network availability η, which we define as the probability,
computed with respect to the random UEs’ positions, that
the error probability is below a given target εtarget, i.e.,

η = P[ε ≤ εtarget] (15)

where ε is replaced with εul or εdl if UL or DL is con-
sidered. We evaluate the network availability η for a fixed
εtarget = 10−5 versus the number of antennas in the system
LM . We consider MMSE channel estimation, and both
MMSE (Fig. 1) and MR (Fig. 2) combining/precoding.

For the case of MMSE channel estimation with MMSE
combining/precoding (Fig. 1), a network availability above
0.95 in both UL and DL is obtained in the cell-free setting
with L = 200 single-antenna APs (M = 1). Increasing the
number of antennas per AP does not seem to help even in the
DL, where channel hardening is expected to improve as M
grows [15]. Indeed, although channel hardening improves,
larger pathlosses due to smaller AP densities may have a
bigger impact on the DL error probability. For example,
when M = 4, the cell-free setting requires L = 100 APs
(LM = 400) to achieve η ≥ 0.95 in both UL and DL.
The cellular network requires a total number of M = 400
antennas to achieve η = 0.95. This illustrates the superiority
of the cell-free architecture in providing URLLC services.

In all the cases considered in Fig. 1, the DL limits the
performance. This is because the UEs have no CSI and per-
form mismatched decoding by relying on channel hardening.
For example, in the cell-free setting with M = 1, the UL
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Fig. 2: Network availability for εtarget = 10−5 with MR combin-
ing/precoding in the same setup of Fig. 1.

requires only L = 81 to reach η = 1. However, the DL
requires L = 225 to reach η = 1.

It is interesting to note that for both UL and DL, the
network availability exhibits a much sharper transition from
low values to high values in the cell-free setting than in
the cellular setting. This is particularly evident for the DL,
where η goes from around 0.05 to around 0.95 as L is
increased from 150 to 200. For the same number of antennas,
η increases from 0.46 to 0.64 with cellular Massive MIMO.

With MR combining/precoding (Fig. 2), a network avail-
ability close to 0.95 can be achieved in the DL of the cell-free
setting with single-antenna APs only when L = 400. Note
that, with this number of APs, the DL outperforms the UL.
This phenomenon, which was previously noted in [10, Sec.
III-D] in the context of cellular Massive MIMO and URLLC
services, is due to two reasons:

1) The number of APs is sufficiently large for channel
hardening to occur.

2) MR combining/precoding maximizes the array gain
without mitigating the interference, which implies that
when the desired signal experiences a deep fade, the
magnitude of the UL interference is unaffected. On
the contrary, when the desired signal experiences a
deep fade, the DL interference becomes small, too. This
results in a larger error probability in the UL compared
to the DL. This phenomenon, however, does not occur
when MMSE combining/precoding is used. A more
detailed discussion can be found in [10, Sec. III-D].

Finally, it is worth highlighting that if cooperation between
APs is not allowed in the cell-free network—a scenario re-
ferred to in [7] as “level-1 cooperation: small-cell network”,
the network availability is zero when using APs with both
M = 1 and M = 4 for the system parameters considered
in Fig. 1 and Fig. 2. Thus, allowing the APs to cooperate
is crucial when deploying a cell-free network intended to
support URLLC.

V. CONCLUSIONS

We analyzed a cell-free Massive MIMO system sup-
porting URLLC services, in terms of network availability.

Numerical results, based on a saddlepoint approximation
of the RCUs bound (stated in Theorem 1) on the per-
user UL and DL error probabilities, revealed that, in an
automated-factory scenario, cell-free Massive MIMO with
fully centralized processing outperforms cellular Massive
MIMO. The analysis revealed also the importance of using
MMSE linear processing in place of MR processing to obtain
satisfactory performance. Furthermore, it was illustrated that,
when the UEs have no CSI and rely on channel hardening, the
DL is typically the bottleneck from a system performance
perspective, and deploying a sufficiently large number of
APs, so as to achieve a critical AP density, is crucial. It
turned out that, for a given total number of antennas, it is
more beneficial to deploy many single-antennas APs, than
fewer multiple-antenna APs.
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