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Abstract—The performance of millimeter wave (mmWave)
communications critically depends on the accuracy of beam-
forming both at base station (BS) and user terminals (UEs)
due to high isotropic path-loss and channel attenuation. In high
mobility environments, accurate beam alignment becomes even
more challenging as the angles of the BS and each UE must be
tracked reliably and continuously. In this work, focusing on the
beamforming at the BS, we propose an adaptive method based on
Recurrent Neural Networks (RNN) that tracks and predicts the
Angle of Departure (AoD) of a given UE. Moreover, we propose
a modified frame structure to reduce beam alignment overhead
and hence increase the communication rate. Our numerical
experiments in a highly non-linear mobility scenario show that
our proposed method is able to track the AoD accurately and
achieve higher communication rate compared to more traditional
methods such as the particle filter.

Index Terms—mm Wave Adaptive Beam Tracking, Beam
Tracking with Neural Networks

I. INTRODUCTION

Millimeter wave (mmWave) communication systems, oper-
ating in frequency bands of 30-300 GHz, are considered as a
promising technology for 5G and beyond cellular systems to
achieve a high data rate thanks to wide frequency bands [1].
Due to the large isotropic path loss, large antenna arrays are
typically deployed at base station (BS) and/or user terminals
(UEs) in order to form narrow beams between BS-UE pairs.
The classical beam sweeping mechanism is highly inefficient
as its complexity increases substantially with the number of
antenna arrays and its practical implementation using quan-
tized phases may limit its accuracy. Therefore, a number
of low-complexity schemes for initial beam alignment have
been proposed in the literature (see e.g. a compressed sensing
approach in [2] and references therein). However, the exist-
ing schemes cannot be adapted directly to the high-mobility
scenario, where the displacement of UEs may significantly
increase the probability of beam misalignment. In such a
scenario, the angle of each UE shall be estimated continuously
through beam tracking methods (e.g. [3]–[6] and references
therein). For example, [4]–[6] proposed variants of Kalman
filter (KF) to address this problem. Since their restricted
channel model together with high complexity makes these
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methods [4], [5] impractical in high mobility environments,
[6] considered the use of particle filtering (PF) in a time-
varying channel and demonstrated an improved performance
by modeling the non-linearities of the channel compared to
other KF variants. Further, [7] attempted to overcome the
computational burden.

In this work, by focusing on the beamforming at the BS,
we propose a beam tracking approach based on Recurrent
Neural Networks (RNN) that can be applied to any arbitrary
UE mobility pattern. The proposed method takes advantage of
the temporal correlations within measurement data and learns
the amount of adjustment required for the beam direction from
the sequence of measurements by approaching the problem as
a classification task. Based on the proposed scheme, we define
a modified frame structure with variable length which can
be adapted to reduce overhead. The numerical examples in a
highly non uniform linear motion scenario using the Quadriga
channel generator demonstrate that our proposed scheme can
track the AoD accurately and achieve higher communication
rate compared to the PF.

Finally, we remark that a number of recent works exten-
sively adapted machine/deep learning for beamforming design
over the mmWave channels (see e.g. [8], [9], [11]–[13]). In
[11], a convolutional neural network (NN) is proposed for
an optimal beamformer design. A deep learning framework
was proposed for beam selection by using the channel state
information (CSI) in [12], while [14] demonstrates an auto-
encoder/decoder architecture for robust angle estimation. Al-
though [8], [9] also addressed beam tracking using machine
learning tools, the proposed method differs from these ap-
proaches. In [8], only fully connected layers, unable to capture
time correlations of input data, are considered. The work of
[9] aims to infer the correct beam index by predicting (i.e.
regression problem) the channel vector under the assumption
of a linear motion path. More recently, the work in [10] applied
a Reinforcement Learning principle for UAV beam tracking,
where the authors deal with the design of the reward function
by introducing thresholds for the reward. These threshold
values need to be optimized depending on the operational
SNR. In contrast, our model does not require any SNR
specific design parameter. While a comparison of the NN
based methods is an interesting topic for future work, due
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to the limited space, we have restricted our comparison with
the well assessed and understood PF scheme.

II. SYSTEM MODEL

A. Frame Structure and Signaling Scheme

Fig. 1 illustrates the proposed frame structure consisting
of two different types depending on the operating mode: (a)
initialization frame and (b) secondary frame. Frame (a) is
used at the initialization of the system. During initial beam
alignment (BA) phase, a beam alignment takes place where
the BS transmits a number of pilots to sweep the beam space.
The BS receives feedback (FB) signal from the UE on the
previously transmitted pilots on the uplink (UL) channel, in the
UL-FB phase, as explained in Section II-C. During the Data
Transmission phase, the data is transmitted in downlink (DL)
channel. The final phase refers to Secondary Probing SP phase
of variable length dedicated to transmit a reduced number
of pilots for further channel probing. Frame (b) of length
TF ′ < TF comes into operation once a reliable connection
between a BS-UE pair is established after the initialization
frame (a). During the first phase UL-FB, the BS receives
feedback on the previous probing (SP) from UEs. The second
and third phases are identical to that of the initialization frame
(a).

Initial BA UL-FB Data Transmission (DL) SP

TACQ TFB,I TDL TSP

TF

UL-FB Data Transmission (DL) SP

TFB,SP TDL TSP

TF ′

(a)

(b)

Fig. 1: Frame structures depending on operating mode. Note, the
UL-FB slot at the beginning receives feedback from the previous SP.

B. Transmission Scheme and Measurement Equation

Suppose the transmitter (BS), with N
TX

uniformly and lin-
early positioned elements, sends pilot symbols to the receiver
receiver (UE), with N

RX
elements over the time-varying MIMO

channel at frame k by

Hk(t, τ) = αkaRX
(ϕk)a

H
TX
(θk)δ(t− τk)ej2πνkt (1)

where αk, τk, νk denotes the attenuation coefficient, the delay,
and the Doppler shift, respectively, {di} is the antenna spacing
with d1 = 0, λ is the wavelength, a

TX
(θk) is a steering vector

at the Tx given by

a
TX
(θk) = [ej

2π
λ d1 cos(θk), ..., ej

2π
λ dNTX

cos(θk)]T (2)

for the angle-of-departure (AoD) denoted by θk, a
RX
(ϕk) is

defined similarly for the angle-of-arrival (AoA) denoted by ϕk.
Since we consider a LoS path between the UE/BS, we have
ϕk = θk. The model above can be easily extended to multiple
paths. The parameters (θk, αk, τk, νk) remain constant over a
frame duration.

We consider the beamforming vector f and the combining
vector c according to a predefined beam codebook. Namely,
by focusing on the beamforming codebook at the BS side,

denoted by CB = {f1, . . . , fG}, where we let fi = f(θ̃i) =
1√
NTX

a
TX
(θ̃i), i ∈ {1, . . . , G} for some angles θ̃i. Then, the

observed signal at the UE for frame k after the combining
vector is given by

zk(t) = αkc
H(ϕ̃)a

RX
(ϕk)a

H
TX
(θk)f(θ̃)x(t− τk)ej2πνkt + η(t)

(3)
where η(t) ∼ N (0, σ2

η) is the additive Gaussian noise.
The objective of initial BA is to acquire an accurate AoA

estimate θ̃ ∈ {θ̃1, . . . , θ̃G} so that the corresponding beam-
forming vector f(θ̃) is used for the DL data transmission.
We also assume that the codebooks available for UL and DL
operation at the BS are identical.

C. Initial Channel State Estimation

In order to focus on tracking the UE’s angular location
at the BS side, we further assume that the UE is equipped
with a single antenna. The UE initially listens to the chan-
nel during the initial BA period where the BS sends pilots
through T probing directions according to the predefined
codebook CB. By replacing f(θ̃) with fi for i = 1, . . . , T
in (3) followed by suitable sampling every TACQ/T , we
obtain T discrete observations or measurements, denoted by
z = {zθ̃1 [1], ..., zθ̃T [T ]}, where zθ̃i [i] is the received signal
when probing in the direction θ̃i at the ith sampling instant.
After this initial BA phase, the UE selects the best beam
direction θ̃m corresponding to maxi=1,...,T (zθ̃i [i]) and feeds
back z to the BS during UL-FB phase.

III. BEAM TRACKING METHODS

A. Classical Beam Tracking

Beam tracking based on Bayesian statistical inference prin-
ciples have been extensively investigated in literature [4]–
[6]. In this subsection, we provide a brief overview of the
PF technique similar to that described in [6]. The filtering
problem consists of estimating the internal states in dynamical
systems when partial observations are available in the presence
of random perturbations. The objective is to compute the
posterior distributions of the states of a Markov process, given
some noisy and/or partial observations. Based on the system
model described in (3) state is sequentially estimated by using
the measurement zθ̃m [k] (for brevity zk) at each time frame.
Due to the nonlinear dependency between the state space
and the measurements in the problem at hand, the PF is
particularly well suited among Kalman filtering methods. By
letting θ̃[k], zk denote the state and the observation at frame
k obtained from (3) after a suitable sampling1, we model
the transition of the state as θ̃[k] = θ̃[k − 1] + uk where
uk ∼ N (0, σ2

θ̃
) is the process noise (i.e. perturbation). We

can modify [6] by focusing on particles (beams) within a
reduced region of interest of the beam space. These regions
can be selected adaptively, for instance in the case of static or
slow moving users, the space in proximity of the main beam
direction of the previous step will have a denser distribution
of particles.

1It is also possible to consider multiple measurements for a given frame.



B. Proposed method with Recurrent Neural Networks

The particle filter discussed previously incurs increased
complexity and overhead in the massive MIMO regime and
in high mobility channels. In this section we consider a RNN
approach for the aforementioned tracking problem by exploit-
ing the time correlation between measurement data. Since the
underlying channel parameters such as the AoD, the range, and
the Doppler shift in (II-B) evolve in time with some memory,
a recurrent NN architecture seems a viable solution for this
problem. In recent years, Long Short-Term Memory (LSTM)
networks have been used to create large recurrent networks
that in turn can be used to address complicated sequence
problems in machine learning and achieve state-of-the-art
results. The LSTM network, is trained using backpropagation
through time and overcomes the vanishing gradient problem
in this way. LSTM networks have memory blocks that replace
neurons which are connected through layers. A block contains
gates that manage the block’s state and output, thus developing
a memory state for recent sequences. A block operates upon an
input sequence and each gate within a block uses the sigmoid
activation units to control whether they are triggered or not,
making the change of state and addition of information flowing
through the block conditional.
The input data sequence of interest are the observed signal
values zk at frame k. These input values referred to as input
features, are used to train the network to output estimates of
the UE’s future AoD under a supervised learning framework.
The input features of the NN are generated based on the
windowed input method where features corresponding to the
previous time steps are inputs to the current step. Due to
the fact that the measurements in (3) are equivalent to the
beam space representation of the channel at discrete angles,
they can be viewed as a pseudo-spectrum. On this basis, we
define our input features using a sliding window technique
consisting of these values. As the initial feature set, we take the
pseudo-spectrum S ≡ z described in section II-C and define
the window length parameter L such that L bins around the
current main beam direction θ̃m[k] are selected at each time
step (total of L′ = 2L + 1 bins, as in Fig. 2). These inputs
are updated at every measurement frame. With reference to
Fig. 1, the updates are made at interval TSP,FB which relates
to the secondary probe transmitted during interval TSP of
the previous frame. The number of directions to be scanned
during the secondary probation can be adaptively selected,
leading to a trade-off between overhead and improved channel
exploration. If the user has moved out of span of the current
window, at the next time instance (this can happen if for
example the window length is very small or that the grid points
are very fine) the initial BA shall be performed by using the
initialization frame (a) and the label generated for the current
time frame will be the last element of the label vector (i.e.
farthest from current) to minimize the distance to the next
user position (note that this will only happen during inference
mode). An exemplary graphical representation of this input is
depicted in Fig. 3.

The labels generated for the supervised learning task consist
of a hot-one-encoded vector with the same dimension as
the sliding window such that the vector contains all zeros
except at the position which corresponds to the next angular
position (i.e. AoD) of the UE. The network outputs a value
between ’0’ and ’1’ for each position in the window which
can be interpreted as the probability of the target AoD in the
next instant. The significance of this technique is that the NN
output becomes invariant to the value of the AoD itself, rather
the predicted value is the amount of correction (in discrete
grid points) needed for the next beam. This classification-
type solution is an alternative to works attempting to regress
values [9]. It is well known that for limited data inputs and
training, classification outperforms regression. It’s also worth
noting that by defining the problem as a classification task,
we directly bypass the problem of dealing with ambiguities
within the regressed values (e.g. regressing 370◦ and 10◦ for
a desired value of 10◦).

0 1 G-1 Gm-L k m+L

0 0 0 1 0

sliding feature window (input features)

pseudo-spectrum

last element in window
CUT

label vector

Fig. 2: Schematic of the sliding window and the corresponding label
vector. Here the 1 indicates that the UE moves one grid point (discrete
angle from grid) in the next time frame.

input : measurements zk and θ̃m[k] as in (3) for time frames
k ∈ {0, 1, ..., K} and sliding window size 2L+ 1

output : feature set F , label set L
initialization;
set W = S and Fk = [wk−L, ...., wk+L] while k ≤ K − 1 do

insert z(θ̃m[k]) at mth position of W
center sliding window of length 2L+ 1 at position m
acquire θ̃m[k + 1] and calculate dθ̃ = θ̃m[k + 1]− θ̃m[k] ;
if |dθ̃| ≤ L then

set position (L+ 1 + dθ̃) of Lk to 1 and the rest 0;
else

set position (L+ 1 + sgn(dθ̃)L) of Lk to 1 and the rest 0;
end

end
Algorithm 1: Algorithm for feature and label generation
from dataset. m denotes the index of the main beam.

C. Neural Network Architecture

The recurrent network architecture is depicted in Fig. 4
consisting of two LSTM layers followed by a fully connected
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Fig. 3: Graphical representation of the input features for the RNN in
a dynamic scenario where the UE has a cyclic motion. The window
length parameter L is set to 8 for a total of 90 time frames.



layer before the final classification layer. Here we have used a
bi-directional LSTM (biLSTM) layer in order to preserve the
information contained within the time series from the future
samples. For conciseness we refrain from discussing different
recurrent implementations here. An important remark here is
that as the final layer of the classifier we have chosen the
sigmoid activation function as opposed to a softmax due to
the fact that when angular grids of the labels are smaller than
the beam width of the array, it is possible that a certain beam
can cover multiple grid points.
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Fig. 4: RNN architecture with the LSTM layer directly fed by
the input data. Note that it is also possible to replace the sigmoid
activation at the final layer with a softmax layer.

IV. SIMULATIONS AND NUMERICAL RESULTS

In this section we use the Fraunhofer Quadriga [15] channel
generator with a mobile UE to train a network to predict the
UE’s AoD. The parameters generated by Quadriga at each time
instance include channel coefficients, delay values and position
coordinates (trajectory) among others. In the following we
assume a ULA at the BS with NTX = 64. Since this ULA is
not available in Quadriga, we have self-defined a 64 element
ULA to obtain the channel parameters. These values are then
used to simultaneously generate multiple realizations of the
measurement values for the NN and state variables for the PF
along the same trajectory. As can be seen in Fig. 5, the UE
trails a trajectory with variable speed along a circular path
(start:S) followed by a linear path. The circular path can be
a representation of a likely scenario for a BS installed at the
corner of an urban round-about. The significant challenge of
a circular path is the non-linearity in AoD values with time.
The dataset contains 26 realizations of the the same trajectory,
where in each case the parameters vary.

Fig. 6 shows the performance of PF compared to the
proposed method. The number of particles is set to 100 as
in [6] and the other parameters have been accommodated
correspondingly to the array size. The Oracle defines the
real AoD, GT denotes the Ground Truth value which is the
rounded (within 1 degree) value of the corresponding real
value, included in the plots to signify that the network has
been trained to predict up to a pre-chosen gridded accuracy.

−100 −80 −60 −40 −20 0 20 40 60 80 100 120 140 160 180
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Fig. 5: Quadriga simulated trajectory of a mobile UE. The green
markings on the trajectory imply that the linear speed of the UE
changes from there onward. The notation BERLIN-UMa-LOS de-
scribes the scenario defined by the Quadriga software to generate the
coefficients (in this case a LoS environment in Berlin, Germany).

Fig. 6 shows the estimated AoD values associated with the UE
along the marked circular section (A-D) of the trajectory from
Fig. 5. A few remarks are in order. 1) The section of the path
used for inference, has not been seen by the network during
training and validation. 2) Note that when the AoD progression
becomes highly nonlinear along the path, the PF deviates
significantly from the true value. This could be attributed
to the channel model considered in [6], which ignores the
Doppler induced time-variance of the channel. Additionally,
even though the PF outperforms other EKF variants, the
particles are not fully able to capture the channel dynamics.
For both estimators, at each time index the reported values
are the average estimated value (binned avg. for RNN) over 26
independent runs. In Tab. I, MSE of the RNN estimated angles
for various window lengths (L′) and probe lengths are shown.
It is observed that with a larger window (more memory) and
larger number of probes, the estimation error decreases.

In Fig. 7, a comparison of the achievable rate between
the proposed RNN scheme, the PF from [6] and an Oracle
estimator is provided. The reported values correspond to the
predictions form Fig. 6 . The plotted values at each time index
are averaged for 26 runs. It’s worth mentioning, the change in
the Oracle rate occurs as the result of the UE moving closer
to the BS, leading to a higher received signal power. The
achievable rate is calculated according to:

r(θ̃, θ) =

(
1− TX

TFR

)
· log2

(
1 +

P |cH(θ̃)H(θ)f(θ̃)|2

σ2
η

)
(4)

where θ and θ̃ are the actual and estimated AoD of the UE.
The channel is defined H(θ) = αa

RX
(θ)aH

TX
(θ)ej2πνTs , where

Ts is the sampling time. TX and TFR ∈ [TF , TF ′ ] denote the
intervals in each frame type of Fig. 1 defined as:

TX =

{
TACQ + TFB,I + TSP initialization frame
TFD,SP + TSP secondary frame
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TABLE I: RNN Estimation MSE vs. Window/Probe Length

# probes = 1 # probes = 3
L′=17 L′=29 L′=17 L′=29

MSE(◦) 0.058 0.051 0.048 0.044

Note that the values for the proposed estimator in Fig. 7 are
obtained with a combination of TX , depending on whether any
future values move out of the current frame ( in Fig. 6 this is
not the case, only a secondary TX is used). However for the
Oracle we use the initial TX since a full BA must takes place
for the exact AoD to be discovered. The above results have
been obtained with ση = 1 and we assume P = 1.
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Fig. 7: Comparison of achievable instantaneous rate.

V. CONCLUSION

In this paper, we proposed a RNN based approach for beam
tracking at the BS side. This model is trained based on past
channel measurements to predict the amount on alignment
correction for the next time frame. Furthermore, this model
places no restriction on the mobility on the UE. Based on this
model, we proposed a frame structure which can adapted be
to channel conditions. Our simulations demonstrate that our
proposed scheme outperforms PF both in terms of prediction
and communication rates, especially at the high mobility
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