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Abstract—Location awareness is essential in Sth generation
(5G) ecosystem to enable location-based services and to efficiently
manage the network. This paper presents a method for efficient
localization based on the fusion of heterogeneous observations
gathered with different technologies in the 5G ecosystem. In
particular, a soft information (SI)-based approach is developed
for hybrid localization fusing 5G and Wi-Fi measurements.
Results obtained in an indoor environment compliant with 3rd
Generation Partnership Project standards quantify the benefits
of hybrid localization via SI with respect to the case of a single
technology.

Index Terms—Location awareness, 5G, Wi-Fi, machine learn-
ing, wireless networks.

I. INTRODUCTION

Accurate location information is a key enabler for a variety
of location-based services (LBSs) and efficient management in
5th generation (5G) networks [1]-[6]. LBSs in the 5G ecosys-
tem include autonomy [7], smart environments [8], crowdsens-
ing [9], and Internet-of-Things [10]. Localization-of-Things
(LoT) [11] can be achieved in 5G ecosystem via observations
that are both radio access technology (RAT)-dependent (i.e.,
related to 3rd Generation Partnership Project (3GPP) technolo-
gies) and RAT-independent (i.e., related to non-3GPP tech-
nologies such as Wi-Fi, Bluetooth, ultra-wideband, and global
navigation satellite system). However, LoT in 5G ecosystem
is challenging due to the complex wireless environments and
the LBSs tight requirements [12]. Therefore, it is important
to develop algorithms able to efficiently exploit and fuse
heterogeneous observations.

Localization techniques typically rely on single-value es-
timates (SVEs) of power-, time-, or angle-based metrics, to
serve as a input to a localization algorithm [13]. In par-
ticular for 5G networks, such SVEs are obtained through
the exchange of specific reference signals between the next
generation NodeBs (gNBs) and the user equipment (UE) to
be localized. Example of SVE is the downlink time difference
of arrival (DL-TDOA) obtained from the positioning reference
signal (PRS) [14]. In a 5G ecosystem, SVEs from RAT-
independent observations can also be exploited to increase the
localization accuracy via hybrid localization and data fusion.
However, the accuracy of SVE-based localization techniques
degrade in challenging wireless environments due to biases
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in SVEs caused by multipath propagation and non-line-of-
sight conditions [15]. This can undermine the capabilities of
meeting the performance constraints defined by the 3GPP
for most demanding LBSs. Moreover, data fusion techniques
typically require the knowledge of models to account for the
relationship among the different types of observations [16];
such models may be difficult to obtain in complex environ-
ments. Therefore, there is a growing interest in conceiving
localization algorithms that are able to cope with the wireless
environment and at the same time allow for seamless fusion
of different types of observations.

Recently, soft information (SI)-based localization has been
proposed, which shows a significant performance gain com-
pared to classical SVE-based localization [11]. SI-based ap-
proach shows several advantages compared to classical SVE-
based localization: it is more robust to detrimental effects
caused by the wireless propagation conditions and uses prob-
abilistic models which allows for ease integration of different
types of observations. Such models can be tailored to the
environment via unsupervised machine learning techniques.

This paper explores the use of SI-based methods for LoT
in 5G ecosystem. We advocate the exploitation of SI for
localization in 5G ecosystem, which allows to improve local-
ization accuracy and provides an unified framework for fusing
heterogeneous measurements. In order to validate the proposed
approach, hybrid localization in an indoor environment is con-
sidered. In particular, the fusion of DL-TDOA measurements
from 5G network and time-of-flight (TOF) measurements from
Wi-Fi is carried out via SI. The key contributions of this paper
include:

o development of SI-based techniques for LoT in 5G

ecosystem;

o quantification of SI-based localization performance gain

over classical SVE-based techniques.

Results in terms of empirical cumulative distribution func-
tion (ECDF) for the horizontal localization error are obtained
via rigorous simulation in a 3GPP standardized scenario,
namely indoor open office (I00) [17].

The remaining sections are organized as follows: Section II
gives a brief overview of DL-TDOA localization in 5G
networks, Section III describes SI-based localization for 5G
ecosystem, and Section IV presents the simulation settings
and performance results. Finally, our conclusions are given
in Section V.

Notations: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors are
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denoted by bold lowercase and uppercase letters, respectively.
For example, a random variable and its realization are denoted
by x and x; a random vector and its realization are denoted
by x and x, respectively. ||-||2 denotes the norm 2 operator.

II. DL-TDOA LOCALIZATION IN 5G NETWORKS

DL-TDOA measurements are obtained via the exchange
of the PRS between gNBs and UEs. The PRS is used ex-
clusively for localization purposes and is obtained starting
from a pseudo-random Gold sequence long 31 bits, where
the sequence seed is initialized according to the ID of the
transmitting gNB [18]. The sequence is modulated according
to quadrature phase-shift keying (QPSK) and mapped into the
time-frequency grid of a 5G slot.! In time, the PRS occupies
L, with L € {2,4,6,12}, consecutive symbols within a 5G
slot. In frequency, the PRS shows a comb-like structure where
the QPSK symbols are mapped into only one subcarrier every
K, with K € {2,4,6,12}, while the others are padded to
zero. The periodicity K of the occupied subcarrier is referred
to as comb size. This particular time-frequency structure
helps avoiding collisions with neighbor transmitting gNBs.
The detailed procedure describing the mapping process of
the QPSK symbols into the resource elements a; j, i.e., the
k-th subcarrier for the [-th symbol, composing the slot grid
is described in [18]. The n-th sample of the [-th orthogonal
frequency division multiplexing (OFDM) baseband symbol
allocated for PRS transmission is obtained via inverse fast
Fourier transform (IFFT) as

Ptx Nez nk
sin] = Nt Z A, €Xp 271'N—FT (1)
k=0

where Py is the transmitted power and Nt is the number of
IFFT points, i.e., the total number of subcarriers allocated for
transmission. The OFDM symbols s;[n] with l = {1,2,..., L}
are then pulse-shaped and up-converted to obtain s(t). The
value of Nyt is determined by the allocated PRS bandwidth.
In particular, the number of subcarriers allocated for PRS
is quantified in terms of resource blocks (RBs), where each
RB represents 12 contiguous subcarriers. Hence, the number
of IFFT points is Ngpr = 12NRrp, where Nrp takes value
between 24 and 272, with a granularity of 4. The actual PRS
bandwidth is calculated as B = 2*Af N1, where i is the
numerology, with u € {0,1,2,3,4} and Af = 15KHz is the
smaller subcarrier spacing allowed in 5G.

In order to obtain DL-TDOA measurements, an UE first
estimates the time-of-arrivals (TOAs) of the PRSs transmitted
by a set of gNBs satisfying constraints on the received signal
quality (e.g., signal-to-noise ratio greater than a predefined
threshold) [19]. The TOA is typically estimated evaluating the
crosscorrelation between the transmitted and received signals
as

Rin| = i z[m]s*[n — m) (2)

'A 5G slot is composed by 14 consecutive symbols and a varying number
of subcarriers, depending on the allocated transmission bandwidth.

where Ny is the number of received signal samples, z[n] =
z(nTy) is the sampled version of the received signal at the UE,
Ts is the sampling time, s[m] represents the L-symbol long
transmitted PRS, and N is chosen such that Ny = LNpp.2
Several criteria can be employed to estimate the TOA from
(2), including maximum peak search or maximum likelihood
algorithms used to estimate the channel impulse response
[20]-[22]. Once TOAs are estimated, the UE computes the
DL-TDOA and transmits the values back to the network. Con-
sider Npg gNBs, indexed by ¢ = 1,2,..., Npg, as involved
in the localization process with gNB 1 serving as reference
gNB without loss of generality. The DL-TDOA relative to the
gNBs pair (i,1) can be written as

Fia == 7 ©

fori=2,3,..., Ngs, where 7; and 7; are the estimated TOA
of the PRSs transmitted by the gNBs i and 1, respectively.
Based on the DL-TDOA measurements, the UE position p €
R? can be estimated via a least squares (LS) approach. In
particular, define the vectors

d=co[T2,1,73,1,-- (4a)

(4b)

. ’%NBs,l]T
d(p) = [d2,1(p), d3.1(P), - - -, dnye,1 (D))"

where ¢y is the signal propagation speed, d;i(p) =

[lp —pg%Hg —|lp _p1(3ls) 5, and pg% the i-th gNB position.

Then, an estimate of the UE position p can be obtained as

p = argmin (d - d(p)) (d - d(p)). &

Different strategies can be adopted to solve (5) depending
on the accuracy and computational constraints. An exhaustive
search of the minimum can be carried out on a discretized ver-
sion of the monitored area. Alternatively, iterative algorithms
aiming at finding an approximate solution can be employed,
such as Levenberg-Marquardt algorithm [23].

IITI. SI FOR 5G ECOSYSTEM

SI is composed by soft feature information (SFI) related to
the measurements data, and soft context information related to
contextual data (e.g., mobility model and environmental map)
[11]. This work will focus on SFI that can be extracted directly
from RAT-dependent and RAT-independent observations. In
particular, DL-TDOA measurements 7; ; and range estimates
7 based on Wi-Fi TOF measurements are considered.

In non-Bayesian settings, given a generic measurement
vector (MV) y and a feature vector (FV) 6, the associated
SFI can be written as L,(0) o fy(y;0), ie., the SFI is
proportional to the likelihood function of 8 given y. The MV
y represents any type of position-related measurements (e.g.,
DL-TDOA, TOF, or received waveform samples), while the
FV @ is a function of the UE position p (e.g., distance, angle,
or other quantities which depends on the UE position). For
DL-TDOA measurements in 5G networks, the SFI can be
written as L3, (d; j(p)) and it is referred to as soft range

2The sampling time 77 is related to the bandiwidth of the transmitted PRS.
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Fig. 1. 100 scenario with gNBs (red annolous), Wi-Fi APs (green triangles),
and a particular instantiation of the UEs (blue dots).

information (SRI) [11], [24] as the FV is related to the
distance. Given the SRI, the UE position p can be estimated
as
NBs
P = argmax 11 <. (dir(p)) (6)
i=2
where the MVs from different gNBs are assumed statistically
independent for a given the UE position. Similarly, SRI for
Wi-Fi range measurements is given by L:(d(p)), where 7
and d(p) represent the estimated range and true distance
between the UE and Wi-Fi access point (AP), respectively.
The characterization of the relation between the MV and
FV via a probabilistic model provides a richer information
compared to SVE and an efficient way to fuse heterogeneous
measurements. In particular, as long as MVs obtained from
different technologies can be considered statistically indepen-
dent given the UE position, thus the resulting SFI can be
obtained via simple multiplication of individual SFIs.> For
hybrid localization in 5G ecosystem, consider a 5G network
composed of Ngg gNBs and a UE measuring DL-TDOAs as
in (3). In addition to performing measurements with 5G gNBs,
the UE is able to acquire TOF measurements from Nap Wi-Fi
APs deployed in the same monitored environment. Thus, the
UE position can be efficiently estimated via SI-based approach
as
Nps Nap

p = arg max { H L:  (di1(p)) H L;, (dn(l’))} - (D

The SFI can be determined based on prior knowledge of
the relation between MV and FV, or it can be directly learned
from the environment via unsupervised machine learning tech-
niques. In particular, SFI can be obtained using a Bayesian
formulation and considering the joint probability distribution
fy,6(y, 0) referred to as generative model for the MV and FV.
If no prior information is available for the FV 6, the SFI is
proportional to the generative model, i.e., L, (0) < fy o(y, 0).

3RAT-dependent and RAT-independent observations can be reasonably
assumed statistically independent given the UE position regardless of the
specific technology.

An estimate fy,e(y, 0) of the generative model can be inferred
employing density estimation techniques based on measure-
ments and features (™ = [y(™) #™)] collected in the
environment of interest, where m € Np = {1,2,..., Np} and
Np is the number of collected data. A well-known and widely
adopted density estimation technique is Gaussian mixture
model (GMM) fitting [25]. In GMM fitting, the generative
model can be written as

Newm

Ful@) ="

i=1

Wisﬁ(w;ui,zi) ®)

where Ngn is the number of Gaussian distributions com-
posing the mixture, m; the weight of the ¢-th distribution
(satisfying the constraint fiGlM m = 1), and p(x; py, X;)
represents a multidimensional Gaussian distribution with mean
vector p; and covariance matrix ;. The optimal values
in maximum likelihood sense for m;, u; , and 3; can be
obtained applying expectation-maximization algorithm on the
measured data {x(™},,cnr, [25].4 Once the generative model
is estimated from the collected data, it can be used to estimate
the UE position. In particular, every time a new MV y
is available, the generative model is evaluated in order to
determine the associated SFI, i.e., L3(0) fy,e(g,e), and
then used in (6) and (7).

IV. CASE STUDY

Consider an IOO area of 120 meters by 50 meters according
to [17] in which a varying number of UEs are randomly
located and where Nps = 12 5G gNBs and Nap = 6 Wi-
Fi APs are deployed as in Fig. 1. In such a scenario, results in
terms of ECDF of the horizontal localization error for hybrid
localization in 5G ecosystem are presented. In particular, the
performance of SVE-based methods for individual 5G and
Wi-Fi measurements, SI-based methods for individual 5G
and Wi-Fi measurements, as well as results fusing of such
measurements via SI framework, are compared.

For 5G network, DL-TDOA measurements obtained from
the PRS are considered. The PRS is simulated at waveform
sample level according to the details given in Sec. II following
[17]. The gNBs transmitting power is 24 dBm and the localiza-
tion performance is evaluated considering two different PRS
bandwidths and carrier frequencies: i) 50 MHz at 2 GHz; and
ii) 100 MHz at 4 GHz. DL-TDOA measurements are obtained
via crosscorrelation between the transmitted and the received
PRS as in [22]. In order to improve the accuracy, the received
PRS is averaged over three different transmissions, each
composed of L = 12 symbols with comb size K = 6. The
noise figure at the UE side is of 5dB. The propagation channel
between the gNBs and the UEs is simulated using Quadriga
channel simulator for the IOO channel model parameters [26],
[27]. On the other hand, Wi-Fi related measurements consist
of range estimates for the distance between the UEs and the
APs. The range estimates are obtained considering the true

4Pre-processing can also be applied to the data {:c(m) }meny in order to
obtain better density estimates, e.g., data sphering [24].
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Fig. 2. ECDF of the horizontal localization error for the different SVE-based
and Sl-based localization techniques considered in the case of 50 MHz PRS
bandwidth at 2 GHz.

distance between the UE and AP plus a range estimation
error. Such range estimation error is modeled according to
the experimental results in [28] which are based on TOF
measurements. The measurements are obtained using off-the-
shelf components operating on a fixed channel of the 2.4 GHz
ISM band and running a 802.11 b/g custom firmware. In
particular, the measurements gathered in the scenario referred
to as Testbed I in [28] are used to generate range errors
for the AP-UEs distances. Testbed I in [28] presents similar
characteristics in terms of dimensions and mix of line-of-
sight and non-line-of-sight conditions with the considered
IOO scenario. The fitting distribution is chosen as a Gamma
distribution with parameters o = 1.1 and 8 = 3.35.> The
ranging based on TOF measurements presents a median error
of 2.4 meters and an 80-percentile error of 5.3 meters.

For SVE-based approach, LS algorithm is employed to infer
the UE location based on 5G DL-TDOA measurements and
Wi-Fi range measurements [23]. LS algorithm represents a
good baseline to perform performance comparison as reported
in 3GPP technical report [17]. For SI-based approach, the
DL-TDOA measurements and distance differences are con-
sidered as MV and FV for 5G technology, respectively, while
range estimates based on TOF measurements and distances are
considered as MV and FV for Wi-Fi technology, respectively,
as described in Sec. III. A GMM as in (8) with Ngmy = 5
mixture components is used as generative model for both
DL-TDOA and ranging measurements. The model is validated,
i.e., GMM parameters are learned and the localization per-
formance evaluated, via a k-fold cross-validation procedure
[29], where &k = 10, over 1000 different UEs and channel
instantiations. For SI-based localization employing a single

SA Gamma distribution with shape parameter o and scale pa-
rameter [ for a random variable x is defined as f(z;a,8) =
(B8°T () ~tz>~1 exp{—2/B}, where I'(-) is the Gamma function.
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Fig. 3. ECDF of the horizontal localization error for the different SVE-based
and SI-based localization techniques considered in the case of 100 MHz PRS
bandwidth at 4 GHz.

technology, UE location is inferred via (6), while hybrid
localization is carried out via (7), where the maximum value
is obtained via an exhaustive search over the monitored area
with a step size of 0.05 meters.°

Fig. 2 shows the ECDF of the horizontal localization error
for the different localization techniques considered in the case
of 50 MHz PRS bandwidth at 2 GHz: 5G SVE-based localiza-
tion; Wi-Fi SVE-based localization; 5G SI-based localization;
Wi-Fi SI-based localization; and SI-based localization with
data fusion between 5G and Wi-Fi measurements. It can be
observed that SI-based localization offers a significant perfor-
mance improvement with respect to SVE-based localization. In
particular, at the 90-th percentile the SI-based approach shows
an improvement of approximatively 6 meters and 2 meters
compared to SVE-based approach for the individual 5G and
Wi-Fi localization, respectively. It can also be observed that,
the fusion of 5G DL-TDOA measurements and WI-Fi TOF
measurements using the SI-based approach further improves
the localization accuracy. In particular, at the 90-th percentile
data fusion provides an improvement of approximatively
2meters with respect to the single technology localizations.
At the same percentile, the improvement offered by data
fusion compared to 5G and Wi-Fi SVE-based localization is
approximatively 8 meters and 4 meters, respectively.

Fig. 3 shows the ECDF of the horizontal localization error
for the different localization techniques considered in the case
of 100 MHz PRS bandwidth at 4 GHz: 5G SVE-based localiza-
tion; Wi-Fi SVE-based localization; 5G SI-based localization;
Wi-Fi SI-based localization; and SI-based localization with
data fusion between 5G and Wi-Fi measurements. It can be
observed that, SI-based localization for 5G further improves

A smaller step size would increase the localization accuracy at the cost of
a higher latency and simulation time. Depending on the accuracy and latency
constraints, the step size parameter can be optimized.
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the localization accuracy compared to SVE-based approach.
At the 90-th percentiles, SI-based localization provides an
improvement of approximatively 5meters compared to the
SVE-based approach. It can also be observed that the data
fusion of 5G and Wi-Fi measurements still provides a per-
formance improvement compared to the single technology
case despite 5G Sl-based localization performs significantly
better compared to Wi-Fi SI-based localization. At the 90-th
percentile, the improvement provided by the data fusion is
approximatively 1 meter compared to individual 5G SI-based
localization.

V. FINAL REMARK

This paper developed a soft information (SI)-based approach
for accurate localization in the 5th generation (5G) ecosystem.
In particular, the fusion of 3rd Generation Partnership Project
(3GPP) and non-3GPP measurements through SI framework
is presented. Results are shown for a case study in a 3GPP
indoor environment where downlink time difference of arrival
measurements obtained from 5G technology and range mea-
surements obtained from Wi-Fi technology are considered. It is
shown that data fusion via SI significantly outperforms single-
value estimate (SVE)-based localization for both technologies
and improves the performance compared to SI-based local-
ization with single technology. SI-based localization provides
better performance compared to classical SVE-based local-
ization, especially in harsh wireless environments, and pro-
vides an unified framework to efficiently fuse heterogeneous
measurements. Therefore, SI-based localization is a promising
solution to provide accurate localization in 5G ecosystem.
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