
Machine Learning-enhanced Receive Processing
for MU-MIMO OFDM Systems

Mathieu Goutay∗‡, Fayçal Ait Aoudia∗, Jakob Hoydis†, and Jean-Marie Gorce‡
∗Nokia Bell Labs, Paris-Saclay, 91620 Nozay, France

†NVIDIA, 06906 Sophia Antipolis, France
‡Université de Lyon, INSA Lyon, Inria, CITI, 69100 Villeurbanne, France

{mathieu.goutay, faycal.ait_aoudia}@nokia.com, jhoydis@nvidia.com, jean-marie.gorce@insa-lyon.fr

Abstract—Machine learning (ML) can be used in various
ways to improve multi-user multiple-input multiple-output (MU-
MIMO) receive processing. Typical approaches either augment
a single processing step, such as symbol detection, or replace
multiple steps jointly by a single neural network (NN). These
techniques demonstrate promising results but often assume
perfect channel state information (CSI) or fail to satisfy the
interpretability and scalability constraints imposed by practi-
cal systems. In this paper, we propose a new strategy which
preserves the benefits of a conventional receiver, but enhances
specific parts with ML components. The key idea is to exploit
the orthogonal frequency-division multiplexing (OFDM) signal
structure to improve both the demapping and the computation
of the channel estimation error statistics. Evaluation results show
that the proposed ML-enhanced receiver beats practical baselines
on all considered scenarios, with significant gains at high speeds.

I. INTRODUCTION

Future generations of wireless networks will need to handle
the growing demand for connectivity. At the physical layer,
multi-user multiple-input multiple-output (MU-MIMO) is a
promising technique to increase the number of users that can
be served simultaneously. Linear methods are often used to
decrease the computational complexity of the receive process-
ing, but they achieve poor performance on realistic channels.
It is therefore crucial to find new solutions that both satisfy
the constraints of practical deployments and the performance
requirements of future wireless communication systems.

Motivated by the successes of machine learning (ML) when
applied to the physical layer [2], two ML-based approaches
have been proposed to improve MIMO reception. The first
one consists in augmenting a single processing step of a
conventional MIMO receiver using a neural network (NN).
This strategy has been applied to separately improve channel
estimation [3], [4], equalization [5–7], and demapping [8].
Although encouraging results have been shown, the proposed
solutions usually require perfect channel state information
(CSI), remain too complex for practical deployments, or are
designed for single-input single-output (SISO) systems only.

The second approach is to replace multiple receive compo-
nents by a single NN. For example, [9] demonstrates strong
results by replacing the channel estimation, equalization, and
demapping steps by a convolutional neural network (CNN)

Work carried out while J. Hoydis was with Nokia Bell Labs.

coupled with a so-called transformation layer. The main ad-
vantage is that the NN is directly optimized to improve the
accuracy of the estimated bits, but the counterpart is that the
number of connected users is dictated by the NN architecture.

In this paper, we introduce a new strategy which aims to
combine the advantages of both approaches while avoiding
their shortcomings. The key idea is to use several ML compo-
nents to enhance specific parts of a conventional MU-MIMO
architecture. More precisely, the orthogonal frequency-division
multiplexing (OFDM) signal structure is exploited by multiple
CNNs to improve two receive processing steps. The first one is
the computation of the channel estimation error second order
statistics, that the CNNs are able to learn during training. The
second one is the demapping, which is carried out by a CNN
processing the entire OFDM time-frequency grid instead of
individual resource elements. All CNNs are jointly optimized
to maximize the information rate of the transmission [10].

The proposed ML-enhanced receiver is benchmarked
against two conventional receivers, the second one having
perfect CSI. A 3GPP-compliant channel model was consid-
ered, with two pilot configurations and users moving at speeds
ranging from 0 to 130 kmh−1. The results indicate that the
ML-enhanced receiver beats the baseline on every considered
scenario and enables gains that increase with the user speeds.

Notations : We denote by Ta,b ∈ CNc×Nd (ta,b,c ∈ CNd ,
ta,b,c,d ∈ C) the matrix (vector, scalar) formed by slicing the
tensor T ∈ CNa×Nb×Nc×Nd along the first two (three, four)
dimensions. The notation T(k) indicates that the quantity at
hand is only considered for the kth user, and v9a is the vector
v without its ath element. IN is the N × N identity matrix
and 1N×M is the N ×M matrix with all elements set to 1.

II. CHANNEL MODEL

We consider a MU-MIMO system where Nk single-antenna
users transmit OFDM signals to a base station (BS) comprising
Nm antennas. The signals are transmitted over Nt OFDM
symbols and Nf subcarriers, and the overall time-frequency
grid is called resource grid (RG) and is illustrated in Fig. 1a.
A resource element (RE) refers to one cell of the RG, and a
group of 12 adjacent subcarriers is called a resource block.
The channel corresponding to one RE (f, t) is denoted by
Hf,t ∈ CNm×Nk , and is a slice of the 4-dimensional tensor
H ∈ CNf×Nt×Nm×Nk containing the channel coefficients of

ar
X

iv
:2

10
6.

16
07

4v
1

 [
cs

.I
T

]
 3

0
Ju

n
20

21

(a) Channel nomenclature. (b) 1P and 2P pilot patterns.

Fig. 1: Pilots are arranged on the RG following two distinct
patterns, where the numbers represent different transmitters.

the entire RG. Following similar notations, the signal vectors
sent by the users and received by the BS are respectively
denoted by xf,t ∈ CNk and by yf,t ∈ CNm . M denotes the
modulation order of the transmission. The channel transfer
function on the RE (f, t) is expressed as

yf,t = Hf,txf,t + nf,t (1)

where nf,t ∼ CN (0, σ2INm
) is the noise vector with a power

σ2 assumed equal for all users and all REs. It is assumed that
all users have perfect power control such that the mean energy
corresponding to a single user and receiving antenna is equal to
one, i.e., E

[
|hf,t,k,m|2

]
= 1. The signal-to-noise ratio (SNR)

of the transmission is defined as SNR = 10 log
(

1
σ2

)
[dB].

Users both transmit data signals and pilot signals, the latter
being assumed equal to one and are used by the BS to estimate
the channel. Two pilot patterns are considered in this work,
referred to as 1P and 2P, and depicted in Fig. 1b. Each user k
sends pilots on a set of REs denoted by P(k), and the number
of OFDM symbols and subcarriers used to carry such pilots
are respectively denoted by NPt

and NPf
. For example, if only

one resource block is considered and the 1P pilot pattern is
used, then P(1) = {(1, 3), (3, 3), (5, 3), (7, 3), (9, 3), (11, 3)},
NPt

= 1, and NPf
= 6 (see Fig. 1b). The REs used by one

user to transmit pilots are not used by the other users such
that the pilots do not suffer from interferences.

III. CONVENTIONAL RECEIVER ARCHITECTURE

A. Channel estimation

The first step performed by a conventional receiver is to
estimate the channel. As the pilots are orthogonal, channel
estimation can be carried out separately for each user. The
channel covariance matrix providing the spatial, temporal, and
spectral correlation between all REs carrying pilots is denoted
by Σ ∈ CNPf

NPtNm×NPf
NPtNm . This covariance matrix can

be estimated by gathering a large dataset of received pilot
signals, in contrast to the covariance between all REs that is
usually not available in practice. To obtain the channel estimate
Ĥ

(k)

P(k) of user k at REs carrying pilots, a well known estimator
is the linear minimum mean squared error (LMMSE) filter:

vec
(
Ĥ

(k)

P(k)

)
= Σ

(
Σ + σ2I

)−1
vec
(
Y

(k)

P(k)

)
(2)

Fig. 2: Conventional channel estimation.

where Y
(k)

P(k) ∈ CNPf
×NPt×Nm is the tensor of received

pilots for user k. The channel estimates for all REs are
computed by first linearly interpolating the estimates from REs
carrying pilots in the frequency dimension, and then using
for each other REs the estimates computed at their nearest
interpolated resource element (NIRE). It is also possible to
leverage temporal linear interpolation when the 2P pilot pattern
is used. The tensor of channel estimates for user k is denoted
by Ĥ(k) ∈ CNf×Nt×Nm , and the tensor of channel estimates
for all users Ĥ ∈ CNf×Nt×Nk×Nm is obtained by stacking all
Ĥ(k). The tensor of corresponding channel estimation errors
is denoted by H̃ ∈ CNf×Nt×Nk×Nm .

The spatial channel estimation error covariance is

Ef,t :=

Nk∑
k=1

E
(k)
f,t =

Nk∑
k=1

E
[
h̃
(k)
f,t h̃

(k)H

f,t

]
∈ CNm×Nm (3)

for the RE (f, t), which is the sum of the spatial covariances
E

(k)
f,t computed for each user. These covariance matrices only

reflect the correlations between antennas, and not between
different OFDM symbols or subcarriers. They are estimated on
REs carrying pilots for each user independently, and shared by
the groups of REs delimited by thick lines in Fig. 1b following
a nearest-pilot approximation. The estimated error covariance
for a RE (f, t) is denoted by Êf,t ∈ CNm×Nm . The estimation
procedure is shown in Fig. 2 and is further detailed in [11].

B. Equalization and demapping

Once the channel has been estimated, the equalization step
aims to convert the MIMO channel on each RE into Nk
independent additive white Gaussian noise (AWGN) channels.
Linear equalizers such as LMMSE are widely used because of
their reasonable complexity. However, the standard LMMSE
operator requires the computation of a matrix inversion per
RE, which can be too computationally expensive in large
systems. Therefore, we leverage a grouped-LMMSE equalizer,
where a single operator Wf,t ∈ CNk×Nm is computed and ap-
plied to a group of REs spanning {Fb, . . . , Fe}×{Tb, . . . , Te},
as delimited in Fig. 1b. Assuming perfect knowledge of E,
such operator is computed as (see [11] for a derivation)

Wf,t =

 Fe∑
f ′=Fb

Te∑
t′=Tb

ĤH
f ′,t′


 Fe∑

f ′=Fb

Te∑
t′=Tb

Ĥf ′,t′Ĥ
H
f ′,t′ +Ef ′,t′ + σ2INm

−1

.

(4)

Fig. 3: ML-enhanced receiver architecture.

In order to obtain Nk AWGN channels, the equalized symbols
x̂f,t needs to be scaled such that x̂f,t,k = xf,t,k+zf,t,k, where
zf,t,k ∼ CN (0, ρ2f,t,k) includes the interference and noise of
user k. 1 The corresponding scaling matrix

Df,t =
((

Wf,tĤf,t

)
� INk

)−1
(5)

is thus applied to the equalized signals, i.e.,

x̂f,t = Df,tWf,tyf,t (6)

and the post-equalization noise variance ρ2f,t,k is given by

ρ2f,t,k =
wH

f,t,k

(
Ĥf,t,9kĤ

H
f,t,9k +Ef,t + σ2INm

)
wf,t,k

wH
f,t,kĥf,t,kĥH

f,t,kwf,t,k

. (7)

Log-likelihood ratios (LLRs) are obtained using a standard
AWGN demapper on each user k and RE (f, t) independently,
assuming a post-equalization noise variance of ρ2f,t,k. Finally,
Ef,t is often not available and is replaced by its estimate Êf,t.

IV. ML-ENHANCED RECEIVER ARCHITECTURE

A. Receiver training

The proposed ML-enhanced receiver is depicted in Fig. 3,
where the grayed elements represent trainable components.
In contrast to many related papers that optimize each receive
processing block separately, we chose to train all ML compo-
nents together to optimize the estimated LLRs. This approach
is more practical since it does not assume that ground-truth
channel measurements are available. The set of all trainable
parameters θ is optimized with stochastic gradient descent on
the binary cross-entropy loss and using batches of Bs samples:

L = − 1

Bs

Bs∑
s=1

Nk∑
k=1

∑
(f,t)∈D

M∑
m=1

log2

(
P̃θ

(
b
[s]
f,t,k,m|Y

[s]
))

(8)

where D denotes the set of REs carrying data, bf,t,k,m the mth

bit of user k on the RE (f, t), and the superscript [s] refers to
the sth sample in the batch. P̃θ(b

[s]
f,t,k,m|Y[s]) is the estimated

posterior probabilities on the bit b[s]f,t,k,m and is obtained by
applying the sigmoid function to the corresponding LLRs.
As detailed in [10], minimizing this loss is equivalent to
maximizing the sum of the achievable rates for all users.

B. ML-enhanced channel estimator

The NIRE approximation used by the conventional channel
estimator of Section III implies that the estimation of the

1This is not true in general as the interference and channel estimation errors
are not Gaussian distributed.

Fig. 4: ML-enhanced channel estimation of user k.

covariances Ef,t might be inaccurate at REs that are far from
pilots. This in turn causes the computation of Wf,t in (4) and
of ρ2f,t,k in (7) to be erroneous. In the following, we present a
suite of ML components, represented in grey in Fig. 4, that aim
to better predict these channel estimation error covariances.

Fig. 5 shows an example of the amplitudes and phases of
an error covariance matrix E

(k)
f,t . Predicting the complex coef-

ficient of Ef,t for all REs would be of prohibitive complexity
for a naive NN. To tackle this problem, we approximate every
element (x, y) of Ef,t with a complex power decay model:

ê
(k)
f,t,x,y = αf,tβ

|y−x|
f,t exp (jγ(y − x)) (9)

where αf,t and βf,t are parameters that control the scale
and the decay of the model, and are different for every RE
(f, t). We observed that the phase offset γ was close to π and
constant over the RG, and is therefore implemented as a single
trainable parameter that will be optimized according to (8).

To estimate αf,t and βf,t for all REs, we propose to use a
CNN, denoted by CNNE. This CNN has an output of dimen-
sion of Nf×Nt×2, corresponding to the two parameters being
predicted on the entire RG, and has four inputs of dimension
Nf×Nf , for a total input dimension of Nf×Nf×4. CNNs are
known to be translation invariant, however the predictions αf,t
and βf,t depend on the position (f, t) in the RG. Therefore,
vertical and horizontal positional information are given to
CNNE by the first two input matrices, that respectively have all

columns equal to
[
−Nf

2 , · · · ,−1, 1, · · · ,
Nf

2

]T
and all rows

equal to
[
Nt

2 , · · · ,−1, 1, · · · ,
Nt

2

]
. The third input is the SNR

of the transmission, given as SNR·1Nf×Nt
. The fourth input is

designed to provide information about the time and frequency
selectivity of the channel, since the NIRE approximation of
Ĥ(k) is likely to be less precise on fast-varying channels.

This time-variability information is in turn estimated by a
second CNN, denoted by CNNl. The goal of this CNN is to
extract a feature related to the Doppler and delay spread of
the transmission from the estimated channel at REs carrying
pilots. This feature is a single scalar denoted by l(k) ∈ R for

5 10 15

5

10

15
4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

(a) Amplitude

5 10 15

5

10

15
−2

−1

0

1

2

(b) Phase

Fig. 5: Example of amplitude and phase for E
(k)
f,t .

CNNl CNNDmp

Parameters filters kernel dilat. filters kernel dilat.
Conv2D 32 (1,1) (1,1) 128 (1,1) (1,1)
ResNet Layer 32 (3,2) (1,1) 128 (3,3) (1,1)
ResNet Layer 32 (5,2) (2,1) 128 (5,3) (2,1)
ResNet Layer 32 (7,2) (3,1) 128 (7,3) (3,2)
ResNet Layer 32 (5,2) (2,1) 128 (9,3) (4,3)
ResNet Layer 32 (3,2) (1,1) 128 (7,3) (3,2)
ResNet Layer - 128 (5,3) (2,1)
ResNet Layer - 128 (3,3) (1,1)
Conv2D 1 (3,2) (1,1) M (1,1) (1,1)
Output Layer Dense, units = 1 -

TABLE I: Architectures of the different CNNs.

user k, as shown in Fig. 4. CNNl has inputs of dimension
NPf

×NPt
× 2Nm, corresponding to the stacking of the real

and imaginary part of Ĥ
(k)

P(k) , and therefore outputs a single
scalar. Finally, l(k) is fed to CNNE as the matrix l(k) ·1Nf×Nt .
The architecture of all CNNs are detailed in Section IV-D.

C. ML-enhanced demapper

The sub-optimal channel estimation and equalization create
distortions in the equalized signals. As seen in Section III, a
conventional demapper processes each user and RE indepen-
dently. In this work, we take a different approach and propose a
new CNN-based demapper, denoted by CNNDmp, that operates
directly on the two-dimensional RG. The demapping is still
applied to each user independently (see Fig.3), preserving
the scalability of the conventional architecture, but the joint
processing of all REs allows CNNDmp to estimate and correct
the distortions present in the equalized signals. CNNDmp takes
six inputs, each of size Nf ×Nt. Similarly to CNNE, the first
two inputs are the positioning matrices, and the third input is
the SNR. The forth input contains the post-equalization noise
variances ρ2f,t,k for all REs (f, t). The fifth and sixth inputs
are the real and imaginary parts of the equalized symbols
X̂(k). The output of CNNDmp is of dimension Nf ×Nt ×M ,
corresponding to the LLRs of user k.

D. CNN architectures

CNNE, CNNl, and CNNDmp share similar architectures.
CNNE uses two convolutional 2D layers with 32 filters, kernel
sizes of (5, 3), dilation rates of (1, 1), zero-padding, and
rectified linear unit (ReLU) activation functions. Its output
layer is a convolutional 2D layer but with only two filters,
a kernel size and dilation rate of (1, 1), zero-padding, and
sigmoid activation function. Both CNNl and CNNDmp use
custom ResNet layers, inspired by [12], and composed of a
batch normalization layer, a ReLU, a separable convolutional
2D layer, and followed by the addition of the input, as shown
in Fig. 6. Separable convolutional 2D layers are known to be
more efficient than traditional convolutional layers [13]. The
architecture of CNNl and CNNDmp are detailed in Table I,
where all convolutional layers use zero-padding to keep con-
sistent dimensions. Varying kernel sizes and dilation rates were
used to increase the receptive field of the CNNs [9].

Fig. 6: Custom ResNet layer.

V. EVALUATIONS

A. Training and evaluation setup

The number of users and receive antennas were set to
Nk = 4 and Nm = 16, respectively. Each user was randomly
positioned between 15 and 150m of the BS in a 120° cell
sector. The users and BS heights were respectively set to
1.5m and 10m. Realistic channel realizations were generated
with QuaDRiGa version 2.0.0 using the 3GPP non-line of
sight (NLOS) urban microcell (UMi) channel model. The RGs
were composed of Nt = 14 OFDM symbols and Nf = 72
subcarriers (six resource blocks). The center frequency was
set to 3.5GHz and the subcarrier spacing to 15 kHz. A Gray-
labeled 16-QAM was used to transmit M = 4 bits per symbol.
Six ranges of user speed were considered: 0 to 15 kmh−1, 15
to 30 kmh−1, and 30 to 45 kmh−1 for the 1P pilot pattern, and
50 to 70 kmh−1, 80 to 100 kmh−1, and 110 to 130 kmh−1

for the 2P pilot pattern. We noticed that CNNl was not able to
extract useful information from the 1P pattern, and therefore
was not used in the corresponding training and evaluations.

Two separate sets were considered to train the ML-enhanced
receiver on the 1P and 2P pilot patterns. Both training sets
were made of 3000 RGs constructed from 1000 RGs of the
three users speed ranges for each pilot pattern. The receiver
parameters were randomly initialized, except for γ that was
initialized at π. The Adam optimizer was used for training,
with a batch size of Bs = 27 and a learning rate of 10−3.
During evaluations, a standard IEEE 802.11n low-density
parity-check (LDPC) code of length 1296 bit was used in con-
junction with 40 iterations of a conventional belief-propagation
decoder. To satisfy the perfect power allocation assumption,
the average energy per user and antenna on the RGs were
normalized such that

∑Nf

f=1

∑Nt

t=1 ||h
(k)
f,t ||22 = NfNtNm.

B. Simulation results

The proposed ML-enhanced receiver was compared against
two systems. The first one is the conventional receiver baseline
detailed in Section III. The second one, referred to as ‘Perfect
CSI receiver’, has the same architecture but has access to
perfect knowledge of the channel at REs carrying pilots and
to Ef,t at every RE, obtained from Monte-Carlo simulations.
Additional simulations were conducted for the 2P pilot pattern
using spectral and temporal interpolation for both the baseline
and the ML receiver. Finally, an ML receiver trained with only
Nk = 2 users was also evaluated with Nk = 4 users. The first
row of Fig. 7 presents evaluation results corresponding to the
1P pattern. It can be seen that at low speed (0 to 15 kmh−1),
the ML-enhanced receiver achieves a 0.8 dB gain over the
conventional receiver at a coded bit error rate (BER) of 10−3,
but is still 2.3 dB behind the perfect CSI receiver. Between
35 and 45 kmh−1, the conventional receiver saturates at high

Spectral interp. : Baseline ML receiver Perfect CSI

1P pattern : ML receiver trained with Nk = 2 2P pattern, dual interp. : Baseline ML rec.

−4 −2 0 2 4 6 8 10
10−5

10−4

10−3

10−2

10−1

SNR

B
E

R

(a) 1P pilot pattern at 0 to 15 kmh−1.

−4 −2 0 2 4 6 8 10

10−4

10−3

10−2

10−1

SNR

B
E

R

(b) 1P pilot pattern at 15 to 30 kmh−1.

−4 −2 0 2 4 6 8 10

10−3

10−2

10−1

SNR

B
E

R

(c) 1P pilot pattern at 30 to 45 kmh−1.

−4 −2 0 2 4 6 8 10

10−4

10−3

10−2

10−1

SNR

B
E

R

(d) 2P pilot pattern at 50 to 70 kmh−1.

−4 −2 0 2 4 6 8 10

10−4

10−3

10−2

10−1

SNR

B
E

R

(e) 2P pilot pattern at 80 to 100 kmh−1.

−4 −2 0 2 4 6 8 10

10−3

10−2

10−1

SNR

B
E

R

(f) 2P pilot pattern at 110 to 130 kmh−1.

Fig. 7: Uplink BER achieved by the different receivers with the 1P and 2P pilot patterns.

SNR while the gap between the ML-enhanced and perfect CSI
receivers is narrowing, leading to a gain of 2.5 dB at a BER
of 10−2. The ML receiver trained with a mismatched number
of users only suffers a small performance drop, demonstrating
the scalability of the ML scheme. The 2P pattern results shown
in the second row of Fig. 7 follow the same trend, with
increasing gains at higher speeds. In the 110 to 130 kmh−1

range, the ML-enhanced receiver even outperforms the perfect
CSI baseline, which suffers from strong channel aging that
the CNN demapper is able to mitigate. Using both spectral
and temporal interpolations reduces the gains provided by the
ML receiver, which can be explained by the better channel
estimates leading to less channel aging, but they still amount
to a 2.2 dB gap at a BER of 10−3 for the highest speeds. More
detailed uplink and downlink evaluation results can be found in
[11], including a more detailed analysis on the interpretability
and usefulness of each ML component.

VI. CONCLUSION

In this paper, we have enhanced a conventional MU-MIMO
receiver architecture using multiple CNNs to improve both the
computation of its channel estimation error statistics and of
the estimated bit probabilities. Compared to other approaches,
all ML components of the receiver are jointly optimized to
maximize the information rate of the transmission, which
does not require any ground truth measurements. Evaluation
results indicate that the ML receiver achieves gains across all
scenarios, and especially at high speeds, while preserving the
scalability and interpretability of conventional architectures.

REFERENCES

[1] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y. A. Zhang, “The
Roadmap to 6G: AI Empowered Wireless Networks,” IEEE Commun.
Mag., vol. 57, no. 8, pp. 84–90, Aug 2019.

[2] J. Downey, B. Hilburn, T. O’Shea, and N. West, “Machine learning
remakes radio,” IEEE Spectrum, vol. 57, no. 5, pp. 35–39, 2020.

[3] P. Dong, H. Zhang, G. Y. Li, I. S. Gaspar, and N. NaderiAlizadeh, “Deep
CNN-Based Channel Estimation for mmWave Massive MIMO Systems,”
IEEE J. Sel. Topics Signal Process., vol. 13, no. 5, pp. 989–1000, 2019.

[4] M. B. Mashhadi and D. Gunduz, “Pruning the Pilots: Deep Learning-
Based Pilot Design and Channel Estimation for MIMO-OFDM Sys-
tems,” preprint arXiv:2006.11796, 2020.

[5] K. Pratik, B. D. Rao, and M. Welling, “RE-MIMO: Recurrent
and Permutation Equivariant Neural MIMO Detection,” preprint
arXiv:2007.00140, 2020.

[6] H. He, C. Wen, S. Jin, and G. Y. Li, “A Model-Driven Deep Learning
Network for MIMO Detection,” in Proc. IEEE Global Conf. Signal Inf.
Process. (GlobalSIP), 2018, pp. 584–588.

[7] M. Khani, M. Alizadeh, J. Hoydis, and P. Fleming, “Adaptive Neural
Signal Detection for Massive MIMO,” arXiv:1906.04610, Jun 2019.

[8] O. Shental and J. Hoydis, “"Machine LLRning": Learning to Softly
Demodulate,” preprint arXiv:1907.01512, 2020.

[9] D. Korpi, M. Honkala, J. M. J. Huttunen, and V. Starck, “DeepRx
MIMO: Convolutional MIMO Detection with Learned Multiplicative
Transformations,” preprint arXiv:2010.16283, 2020.

[10] S. Cammerer, F. A. Aoudia, S. Dörner, M. Stark, J. Hoydis, and S. ten
Brink, “Trainable Communication Systems: Concepts and Prototype,”
IEEE Trans. Commun., vol. 68, no. 9, pp. 5489–5503, 2020.

[11] M. Goutay, F. Ait Aoudia, J. Hoydis, and J.-M. Gorce, “Machine Learn-
ing for MU-MIMO Receive Processing in OFDM Systems,” preprint
arXiv:2012.08177, 2020.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in Eur. Conf. Comput. vision. Springer, 2016, pp. 630–645.

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient Con-
volutional Neural Networks for Mobile Vision Applications,” preprint
arXiv:1704.04861, 2017.

