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ABSTRACT

Robust and versatile localization techniques are key to the
success of the next industrial revolution. Yet, it is uncertain
which combination of sensors will be the most robust and
valuable. Thus, we present a versatile and reproducible mea-
surement system incorporating a manifold number of state-
of-the art sensors to compare and fuse the raw input data. It
is shown that some techniques show very good results on
the same scenario and data-set, but fall apart on translating
to a slightly different scenario. In general we show that the
vanilla approach to fuse the raw data achieves reasonable re-
sults in the generalization domain, demonstrating that radio
frequency (RF) localization techniques in combination with
an inertial measurement unit (IMU) could result in a very
robust and promising candidate for solving this challenging
task.

1 INTRODUCTION

Robust and versatile indoor positioning systems (IPSs) are
key to the success of the next industrial revolution [1, 2]. It
can be seen as an key enabler for a wide range of applications
such as indoor navigation, smart factories, or it could even
provide a basic security functionality in distributed Internet
of Things (I0T) sensor networks [3-5]. In general IPSs will
incorporate a manifold of different sensors, to enhance the
different systems and creating a practical system. Although
IPSs are currently holding back fully autonomous factories
due to their reliability regarding their accuracy;, it is uncertain
which combination of sensors will be the most efficient in
terms of cost and usability.

Different robust IPS techniques have emerged ranging
from trilateration [6] over angle-of-arrival [7] to recent deep
learning (DL) approaches [8]. All of them demonstrate promis-
ing results in large parts of a given area, but suffer in specific
parts of the environment. Therefore approaches to fine-tune
Neural Networks (NNs) [9] or advanced fusion techniques
[10, 11] were proposed.

Yet, to the best of our knowledge we are the first to present
a data-set containing a manifold of off-the-shelf RF, magnetic
and IMU localization techniques being compared in a fair,
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and neutral manner allowing us to analyze and rate the dif-
ferent techniques. Thus, this work emphasises on how to
automatically generate a large data-set in different scenar-
ios and compare various approaches for fusion. We demon-
strate the feasibility of synchronizing the data over Network
Time Protocol (NTP) and Message Queuing Telemetry Trans-
port (MQTT) protocols and verify the sanity of our measure-
ment data using classical localization techniques. Moving
towards robust positioning systems a vanilla state-of-the-art
DL approach on each of the modalities demonstrate the ap-
plicability of these systems. Further we consider a raw-data
fusion method using DL for enhancing the overall localiza-
tion performance in all scenarios.

Due to their underlying structure, DL approaches tend
to focus heavily on a specific scenario, losing generality
and the ability to be transferred to other domains. Thus,
we measure two seperate data-sets within one day, with a
slightly different setup and try to predict from one to the
other. We demonstrate that this is in general possible but
with a certain amount of loss.

To sum up this paper main contributions are:

e presenting a method to create automatically a large
amount of labeled data in a plug and play fashion,
extending to a manifold of sensors

e a data-set containing synchronized sensor readings
for various techniques ultra-wideband (UWB)-range,
channel state information (CSI), received signal strength
indicator (RSSI), magnetic information, Odometry data

e IMU is shown to be a very valuable element for raw-
data fusion, as its independent of the environment

e CSI and IMU data fused together show the best gener-
alisability and enabling efficient IPS.

2 POSITIONING SYSTEMS

Tackling the challenging task of indoor localization a mani-
fold of techniques have been proposed, built and tested, yet
a clear vision, as e.g. available in outdoor scenarios like the
global positioning system (GPS), is missing. These proposed
techniques can be classified into three classes: (1) RF-based
localization techniques, e.g. CSI or UWB; (2) Inertial tracking,



e.g. exploiting inertial sensors and (3) camera/infrared/laser
based techniques, e.g. Light Detection and Ranging (LiDaR).
Resulting from the fact that IoT devices demand battery
lives over multiple months/years, these techniques have to
be lightweight or computational heavy algorithms have to
be shifted out, e.g. to an edge cloud, allowing for more com-
plex and diverse techniques, ranging from trilateration over
fingerprinting techniques to advanced NN structures.

However, all of these techniques suffer from different defi-
ciencies; RF based techniques can experience outages, while
inertial tracking drifts over time and camera/LiDaR systems
are expensive and suffer under low lighting conditions and
blockage. Thus, in general a robust Simultaneous Localiza-
tion and Mapping (SLAM) algorithm using multiple sensors
to create precise maps is missing. To tackle this challenge
multiple fusion approaches were envisioned ranging from
Kalman filter over particle filter to conditional random fields,
all allowing to fuse the data in a raw or processed format. As
localization algorithms typically are hand-crafted towards
their application, the common method is to fuse the data
not in the raw but in a pre-processed fashion. We consider
here the typical, yet broadly used, classical techniques and
introduce a straightforward and simple fusion method at the
raw data level.

Trilateration
Trilateration was one of the first localization techniques
allowing to pinpoint a user in a mobile network with a coarse
accuracy. This technique is commonly used in GPS devices
and has been heavily improved over time.

Fig. 1 depicts the basic concept of trilateration. Hereby the
three distances dy, d;, d; are estimated through measuring
time of flights between the target and the different anchors.
The estimated distances can be represented as circles around
the anchors, which intersect in the best case in only a single
point, the target location x, y. For a more simplified solution
the anchor 0 is used as reference point, e.g. (xo, o) is set to 0
by shifting the remaining coordinates by the point, resulting
in

2 _ 2 2
dO - xtarget + ytarget

2 2 2
dl = (xtarget — X1 — xO) + (ytarget - yl - yO)

2 2 2
d; = (xtarget — Xz —xp)° + (ytarget =Yz = Yo)

As the distance measurements are noisy the circles usually
are not intersecting in a single point and thus a different ap-
proach needs to be applied, by first intersecting two circles;
forming a line, which can be intersected with the remaining
circle. This, will execute trilateration well, even if the circles
do not intersect perfectly. Fingerprinting:

Fingerprinting is a method to localize a target in a well
defined-environment, where a map is created in an initial
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Figure 1: Trilateration example

training phase to be used in the deployment phase to locate
the target. Thus, a cumbersome training phase creating an N
dimensional vector per position is key for the success of this
technique. In the deployment phase the measured N dimen-
sional vector is correlated to the data set. Then either the
closest trained vector or an interpolation between the closest
trained vectors is used to estimat the position. Due to the
huge amount of overhead, this technique is slow, very sus-
ceptible to changes of the environment and not considered
in most cases.
Deep Learning positioning:
DL techniques are getting more and more applied in many
different applications ranging from image classification to
speech detection. Its main feature is to map an input space
to an output space over an regression or classification task,
where classical models are either too complex, too susceptible
for different impairments or too computational heavy. Thus
in this case a non-linear transformation
f(')
m — (X,9),
has to be learned, which maps the input measurement vector
m to a discrete position, depending on the hyperparameters
©. Thus allowing for a system learning the environment and
the underlying structure of the measurements.
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Figure 2: NN archiitectureioptimiz;i and searched via
AutoML tools.
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Fig. 2 depicts the NN architecture searched via the auto
machine-learning (AutoML) tool from Microsoft [12]. The
hyperparameters were also optimized via this tool, allowing
for a defined comparison for each technique'. This NN will
be used throughout the remaining paper with optimized ker-
nel/pool/stride/dense sizes based on the input measurements
using the tool [12].

3 MEASUREMENT SYSTEM

The success for DL in vision and audio based techniques was
achieved only by leveraging the large datasets being already
available for classical algorithms. For creating a highly used
data-set for IPS, we introduce a versatile measurement setup,
allowing us to add in a plug-and-play fashion any kind of
Sensor.
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Figure 3: Versatile measurement system.

Fig. 3 depicts the flexible and versatile measurement plat-
form for automatically creating a large amount of labelled
data. It is based on a vacuum cleaner robot including a two-
dimensional LiDaR, ultrasonic distance sensors, wheel-tick
sensors, multiple infrared (IR) sensors, and an IMU. These
modalities are fused together—via a Kalman filter-based
SLAM algorithm—to generate pseudo-groundtruth for our
subsequent experiments. The SLAM accuracy is better than
1 cm, as per the evaluation conducted by Hoffmann et al. [6].
This level of accuracy satisfies the requirements of most
localization applications.

In general we are creating the system by using: (1) an robot
for the pseudo-groundtruth, (2) a platform mounted on top
of the robot to host additional sensors, (3) a MQTT broker
with a database for data acquisition, and (4) an NTP server
for time synchronisation between various sensors. In terms
of hardware, the platform was fabricated inhouse from 3D
printed parts and a LEGO building plate. On the software side,
a MQTT broker and a NTP server form the core of the data
acquisition system. Specifically, each sensor synchronises its
time-clock with the local NTP server, which allows for an
accuracy below 1 ms [13]. The synchronised measurements

1The hyper-parameters and layer sizes will be distributed with the dataset

are then streamed to the MQTT broker. By virtue of MQTT
and the back-end database, our sensor system is modular
and extensible.
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Figure 4: Build up of measurement platform consist-
ing of: A roborock vacuum cleaner; a building plat-
form; a modality of sensors and a power-bank.

We leverage a Roborock S50 from Xiaomi as base ro-
bot platform shown in the build-up figure 4. The robotic
platform streams its pseudo-ground-truth positions to the
MQTT broker with a 5Hz update rate. A power-bank of
10Ah is used to power the sensors. We utilise IMU modules
from Adafruit [14] equipped with Bosch BNOO055 inertial
chipsets [15]. Each IMU module is connected to an ESP32
2.4 GHz WiFi chip-set over an I2C interface. The UWB sys-
tem consists of three anchors and one tag using the DW1000
chip-set. All of them are using the band 5 with 500 MHz
bandwidth. The WiFi CSI and RSSI is achieved by using two
ESP32 listening to the pilot WiFi signals of the surround-
ing anchors. The anchors are all ESP32 creating traffic by
constantly pinging the Fritzbox router.

3.1 Pseudo groundtruth

Fig. 5 depicts the measurement area within a flat’s floor-plan
located in Stuttgart, Germany. The robot trajectories are
highlighted in blue. The floor-plan has been automatically
created by the robotic SLAM algorithm as described above.
The measurement campaign was conducted over a single day
creating one data-set in the morning and another data-set
in the evening. Coordinate translation of the SLAM pseudo
ground-truth is needed in order to compensate for all sensor
positions, as the robot can spin around at a certain location
moving the sensors on a circular trajectory. In order to cor-
rect for these effects, we devised the following. Firstly, the
coordinate system of the SLAM calculates the position based
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Figure 5: Measurement paths and anchor placements
in the flat.

on an anchor point located at the front of the robot. The
anchor point is translated to the geometrical center of the
robot. The SLAM ground-truth coordinates (x ,,,, Y 1) a01d
orientation ¢ ,,, are referenced to the robot coordinate sys-
tem. Denoted by (%, Js.an) and (;§SL A We get a translated
reference coordinate and orientation system, respectively.
Then the offset angle @, ., and coordinates (X, ... ,» Ysensorc)
of the sensor were measured. Finally, the measured values
are used to translate the position of the sensor to the global
coordination system, according to

— 2

2
rSensor,l’ - xSensor,t’ + ySensor,t’
v — ¥ j((ZgSLAM +¢Sensor,t’)
xSensor,( - xSLAM + Re{rSensor,Z € (1)
s — j(‘7§SLA1\4+¢s s ,l’)
Ysensor,e = Ysram + Im{rSensor,f € e

Tab. 1 depicts the two available measurement data-sets
used for analyzing sensor fusion and positioning algorithms.We
have repeated the same measurement twice to understand if
the algorithms generalize or not. Thus, a system trained on
Dataset 1 should be able to infer the position on the Dataset 2.
The difference between the two data-sets is is not exactly the
same measurement through slightly changing the building
plate while adding additional sensors. This will give a strong
indication on the robustness and versatility of the system.

] Parameter \ Dataset 1 \ Dataset 2
Time Run 160.17 min 141.0 min
Path Covered 1975.28 m 1733 m
Data Morning Afternoon
Nb. CSI Anchor 13 (ESP) 13 (ESP)
Nb. UWB Anchor 3 (DW1000) 3 (DW1000)
Nb. IMU 1 (Bosch BNOO05) | 1 (Bosch BNOO05)
Nb. Cameras 0 1 (Pi Stereo Hat)
Labels 2D LiDaR 2D LiDaR
Update Rate CSI 7.50 Hz 8.5Hz
Update Rate UWB 9Hz 7Hz
Update Rate IMU 76.93Hz 76.93Hz
Nb points CSI 34417 46584
Nb. points UWB 52152 28239
Nb. points IMU 747853 656640
Data ESP CSI + RSSI CSI + RSSI
Data UWB Range + Power Range + Power
Data IMU 9-DoF +Odo 9-DoF +Odo

Table 1: Two measured datasets used for localization
fusion.
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Figure 6: Importance of RSSI calibration for trilatera-
tion based on distance.

Emphasizing that this is raw data directly streamed from
the sensor, we highlight the necessity of calibration and
fusing the sensors correctly, like in an actual deployment
(comp. Fig. 6). Hereby the RSSI per node was used to estimate
the distance to the target and the three closest RSSI sources
were used to do trilateration. It turns out that the RSSI in
this setup performs the best if every RSSI measurement is
enhanced by 20dB allowing for a more robust trilateration.

4 RESULTS

A practical localization system in general requires to achieve:
(1) at least in 99% an distance error to be smaller than 1 m;
(2) being able to handle small changes in the environment,
e.g. translating from one data-set to another. First, the gen-
eral performance of the single algorithms is evaluated; then
we investigate sensor fusion and finally the we analyze the
generalizability over time.
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Figure 7: Performance of classical methods on the
Dataset 1.

Fig. 7 the cumulative distribution function (CDF) of the
distance error for several variants of a fingerprinting-based
(FP) method and two trilateration methods. It becomes ap-
parent that due to the limited number of UWB anchors the
trilateration succeeds only in 20 % of the cases, indicating
there is an area with a higher accuracy while the remain-
ing area is only poorly covered by three nodes. The RSSI
trilateration using the virtue of more nodes achieves a better
accuracy, yet still only in a similar range as commercial GPS
devices. The CSI fingerprinting methods fails, as the phase
of the anchors is not fixed and thus an arbitrary phase shift
between nodes is created. An advanced classical methods
might be able to track this, but this would exceed the scope
of this paper. The RSSI FP method gives a good indication
what can be achieved with a higher number of nodes in the
UWB system. This indicates a high likelihood for fusion of
methods to join the advantages of these methods and remove
unambiguous features.
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Figure 8: Performance of vanilla NN on the different
raw inputs from Dataset 1.

Fig. 8 depicts the results of the vanilla NN optimised us-
ing Neural Network Intelligence (NNI), where the CSI, IMU
(3D magnetic, 3D acceleration, 3D gyro) and UWB (range)
data is feed into the NN and optimized using a 90/10 split
between training and testing. It becomes apparent that the
UWB performance is better due to the ability to filter out
points with only one connect node allowing to use the mid-
dle as the estimate position, thus limiting the error. Moreover
the CSI method seems to be achieving better performance
than its classical pendant the fingerprinting method, due
to more information being available and finding a common

function for the features. Due to the magnetic fingerprint-
ing, the performance of the vanilla IMU NN seems to be
very solid. Note that tracking in this case is not possible, as
the data is shuffled. The tracking ability will be used in the
last section, by slicing a certain amount of time together. In
general the techniques achieve similar performances as the
classical methods but removing the outliers.

4.1 Fusion

To remove drift and to enhance performance the raw data of
the various techniques is stacked together and the effective
performance of a vanilla NN is estimated.
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Figure 9: Performance of the vanilla NN on the stacked
raw data.

Fig. 9 includes the IMU curve as reference (blue). Each
addition of further sensor data improves the system perfor-
mance as expected. In general the RSSI in combination with
the IMU data shows potential in removing the outliers in the
IMU system. The CSI in combination with the IMU shows
also reasonable results in average below than 10 cm and in
95% better than 1m accuracy. Yet, the best system comes
from the highest dimensional input, where the RSSI is com-
bined with the IMU and UWB system; allowing even in 99%
of the cases to be closer than 1 m. It becomes apparent that
joining sensors even in this vanilla case allows for a better
performance. Note: This is on the same data-set thus it does
not give an indication on the generalizability, which will be
investigated next.

4.2 Time stability (generalizability)
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Figure 10: Performance of the vanilla NN from the
morning to the evening data-set.



Fig. 10 demonstrates the performance of the NN being trained
on the Dataset 1 and evaluated on the Dataset 2. The solid
curve gives the self performance meaning on the same 90/10
split dataset and the dashed curve gives the generalizabil-
ity by evaluating without taking any data from Dataset 2
the performance. We show that the IMU system performs
very well being on exactly the same configuration, but small
changes in the position or the rotation removes any advan-
tage of the system. So a better generalization method needs
to be applied to make IMU data viable in itself. It can be seen
that the UWB system also did some form of over-fitting on
the actual data as it has a better lower part of the CDF, but
yet it achieves similar performance on the overall data-set,
showing that it generalized well. The best generalization is
achieved by the CSI approach were no over-fitting happened,
but only a small degradation of the curve occurred. It shows
that the measurement is reproducible and viable to do such
kind of experiments. The results indicate that we can use
a combination of sensor readings to achieve a reasonable
performance level.
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Figure 11: Performance of the fused methods trying to
predict from one data-set to another.

Fig. 11 depicts the performance of the fused techniques.
All RSSI based techniques although having performed well
on the first data-set, would require additional labels to stabi-
lize performance. Thus, these methods require continuous
updates to adjust to small changes in the scenario. In the
case of the CSI-based method in combination with the IMU
raw data it turns out that the curves exactly match, which
was already hinted in the previous results, where the drift of
the CSI was not as impacted as the other techniques. Thus
the combination of the IMU and CSI data seem to be a solid
combination for a reliable and robust positioning technique,
achieving on average around 10 cm of accuracy and in the
95% around 1m accuracy.

5 CONCLUSION

In this paper we have presented a versatile and robust mea-
surement system for creating large amount of labeled data for
the investigation of localization techniques. We demonstrate
that this dataset is viable for different fusion and mapping
techniques. Different classical localization methods are com-
pared with state-of-the-art NN approaches demonstrating
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that the NN techniques can handle outliers better than pre-
defined algorithms. A vanilla approach to fuse the raw-data
outputting the position is proposed. The CSI data combined
with the IMU data have shown high performance, indicating
the combination of those techniques to be a generalized high
quality localization technique.
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