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Abstract—In this paper, we consider a problem in which
distributively extracted features are used for performing
inference in wireless networks. We elaborate on our pro-
posed architecture, which we herein refer to as ”in-network
learning”, provide a suitable loss function and discuss
its optimization using neural networks. We compare its
performance with both Federated- and Split learning; and
show that this architecture offers both better accuracy and
bandwidth savings.

I. Introduction

The unprecedented success of modern machine learning
(ML) techniques in areas such as computer vision [1], neu-
roscience [2], image processing [3], robotics [4] and natural
language processing [5] has lead to an increasing interest
for their application to wireless communication systems and
networks over recent years. However, wireless networks
have important intrinsic features which may require a deep
rethinking of ML paradigms, rather than a mere adaptation
of them. For example, while in traditional applications of
ML the data used for training and/or inference is generally
available at one point (centralized processing), it is typically
highly distributed across the network in wireless communi-
cation systems. Examples include user localization based on
received signals at base stations (BS) [6], [7], network anomaly
detection and others.

A prevalent approach would consist in collecting all data
at one point (a cloud server) and then training a suitable ML
model using all available data and processing power. This
approach might not be appropriate in many cases, however,
for it may require large bandwidth and network resources to
share that data. In addition, applications such as autonomous
vehicle driving might have stringent latency requirements
that are incompatible with the principle of sharing data. In
other cases, it might be desired not to share data for the sake
of not infringing user privacy.

A popular solution to the problem of learning distributively
without sharing the data is the Federated learning (FL) of [8].
This architecture is most suitable for scenarios in which
the training phase has to be performed distributively while
the inference (or test) phase has to be performed centrally
at one node. To this end, during the training phase nodes
(e.g., BSs) that possess data are all equipped with copies
of a single NN model which they simultaneously train on
their available local data-sets. The learned weight parameters
are then sent to a cloud- or parameter server (PS) which

Fig. 1: An example distributed inference problem.

aggregates them, e.g. by simply computing their average.
The process is repeated, every time re-initializing using the
obtained aggregated model, until convergence. The rationale
is that, this way, the model is progressively adjusted to
account for all variations in the data, not only those of the
local data-set. For recent advances on FL and applications
in wireless settings, the reader may refer to [9]–[11] and
references therein.

In this paper, we consider a different problem in which
the processing needs to be performed distributively not only
during the training phase as in FL but also during the
inference or test phase. The model is shown in Figure 1. In
this problem, inference about a variable Y (e.g., position of a
user) needs to be performed at a distant central node (e.g.,
Macro BS), on the basis of summary information obtained
from correlated measurements or signals X1, . . . ,XJ that are
gotten at some proximity nodes (e.g., network edge BSs).
Each of the edge nodes is connected with the central node
via an error free link of given finite capacity. It is assumed
that processing only (any) strict subset of the measurements
or signals cannot yield the desired inference accuracy; and,
as such, the J measurements or signals X1, . . . ,XJ need to be
processed during the inference or test phase (see Figure 2b).

The learning problem of Figure 1 was first introduced and
studied in [12] where a learning architecture which we name
herein “in-network (INL) learning”, as well as a suitable
loss function and a corresponding training algorithm, were
proposed (see also [13], [14]). The algorithm uses Markov
sampling and is optimized using stochastic gradient descent.
Also, multiple, possibly different, NN models are learned
simultaneously, each at a distinct node.
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In this paper, we study the specific setting in which
edge nodes of a wireless network, that are connected to a
central unit via error-free finite capacity links, implement the
INL of [12], [13]. We investigate in more details what the
various nodes need to exchange during both the training
and inference phase, as well as associated requirements in
bandwidth. Finally, we provide a comparative study with (an
adaptation of) FL and the Split Learning (SL) of [15].

Notation: Throughout, upper case letters denote random
variables, e.g., X; lower case letters denote realizations of
random variables, e.g., x; and calligraphic letters denote sets,
e.g.,X. Boldface upper case letters denote vectors or matrices,
e.g., X. For random variables (X1,X2, . . .) and a set of integers
J ⊆ N, XJ denotes the set of variables with indices in J .

II. Problem Formulation

Consider the network inference problem shown in Figure 1.
Here J ≥ 1 nodes possess or can acquire data that is relevant
for inference on a random variable Y. LetJ = {1, . . . , J}denote
the set of such nodes. The inference on Y needs to be done
at some distant node (say, node (J + 1)) which is connected
to the nodes that possess raw data through error-free links of
given finite capacities; and has to be performed without any
sharing of raw data. The network may represent, for example,
a wired network or a wireless mesh network operated in time
or frequency division.

More formally, the processing at node j ∈ J is a mapping

φ j : X j −→ [1 : 2C j ]; (1)

and that at node (J + 1) is a mapping

ψ : [1 : 2C1 ] × . . . × [1 : 2CJ ] −→ Ŷ. (2)

In this paper, we choose the reconstruction set Ŷ to be the
set of distributions on Y, i.e., Ŷ = P(Y); and we measure
discrepancies between true values of Y ∈ Y and their
estimated fits in terms of average logarithmic loss, i.e., for
(y, P̂) ∈ Y × P(Y)

d(y, P̂) = log
1

P̂(y)
. (3)

As such the performance of a distributed inference scheme(
(φ j) j∈J , ψ

)
is evaluated as

∆ = H(Y) − E
[
d(Y, Ŷ)

]
. (4)

In practice, in a supervised setting, the mappings given
by (1) and (2) need to be learned from a set of training data
samples {(x1,i, . . . , xJ,i, yi)}ni=1. The data is distributed such that
the samples x j := (x j,1 . . . , x j,n) are available at node j for j ∈ J
and the desired predictions y := (y1 . . . yn) are available at
node (J + 1).

III. In-network Learning
We parametrize the possibly stochastic mappings (1)

and (2) using neural networks. This is depicted in Figure 2.
The NNs at the various nodes are arbitrary and can be chosen
independently – for instance, they need not be identical as
in FL. It is only required that the following mild condition,

which as will become clearer from what follows facilitates the
back-propagation, be met

J∑
j=1

(Size of last layer of NN j) = Size of first layer of NN (J+1).

(5)
A possible suitable loss function was shown to be given by [13]

L
NN
s (n) =

1
n

n∑
i=1

log QφJ (yi|u1,i, . . . ,uJ,i)

+
s
n

n∑
i=1

J∑
j=1

(
log Qφ j (yi|u j,i) − log

(Pθ j (u j,i|x j,i)

Qϕ j (u j,i)

))
, (6)

where s is a Lagrange parameter and for j ∈ J the distri-
butions Pθ j (u j|x j), Qφ j (y|u j), QφJ (y|uJ ) are variational ones
whose parameters are determined by the chosen NNs using
the re-parametrization trick of [16]; and Qϕ j (u j) are priors
known to the encoders. For example, denoting by fθ j the NN
used at node j ∈ J whose (weight and bias) parameters are
given by θ j, for regression problems the conditional distribu-
tion Pθ j (u j|x j) can be chosen to be multivariate Gaussian, i.e.,
Pθ j (u j|x j) = N(u j;µθj ,Σ

θ
j ). For discrete data, concrete variables

(i.e., Gumbel-Softmax) can be used instead.
The rationale behind the choice of loss function (6) is that

in the regime of large n, if the encoders and decoder are not
restricted to use NNs under some conditions 1 the optimal
stochastic mappings PU j |X j , PU, PY|U j and PY|UJ are found
by marginalizing the joint distribution that maximizes the
following Lagrange cost function [13, Proposition 2]

L
optimal
s = −H(Y|UJ ) − s

J∑
j=1

[
H(Y|U j) + I(U j; X j)

]
. (7)

where the maximization is over all joint distributions of the
form PY

∏J
j=1 PX j |Y

∏J
j=1 PU j |X j .

A. Training Phase
During the forward pass, every node j ∈ J processes mini-

batches of size, say, b j of its training data-set x j. Node j ∈ J
then sends a vector whose elements are the activation values
of the last layer of (NN j). Due to (5) the activation vectors
are concatenated vertically at the input layer of NN (J+1). The
forward pass continues on the NN (J+1) until the last layer of
the latter.

The parameters of NN (J+1) are updated using standard
backpropgation. Specifically, let LJ+1 denote the index of the
last layer of NN (J+1). Also, let, for l ∈ [2 : LJ+1], w[l]

J+1, b[l]
J+1 and

a[l]
J+1 denote respectively the weights, biases and activation

values at layer l for the NN (J + 1); and σ is the activation
function. Node (J + 1) computes the error vectors

δ[LJ+1]
J+1 = ∇

a
[LJ+1]

J+1

L
NN
s (b) � σ′(w[LJ+1]

J+1 a[L(J+1)−1]
f + b[LJ+1]

J+1 ) (8a)

δ[l]
J+1 = [(w[l+1]

J+1 )Tδ[l+1]
J+1 ] � σ′(w[l]

J+1a[l−1]
J+1 + b[l]

J+1) ∀ l ∈ [2,LJ+1 − 1]
(8b)

1The optimality is proved therein under the assumption that for
every subset S ⊆ J it holds that XS −
− Y −
− XSc . The RHS of (7)
is achievable for arbitrary distributions, however, regardless of such
an assumption.



(a) Training phase (b) Inference phase

Fig. 2: In-network learning for the network model of Figure 1

δ[1]
J+1 = [(w[2]

J+1)Tδ[2]
J+1], (8c)

and then updates its weight- and bias parameters as

w[l]
J+1 → w[l]

J+1 − ηδ
[l]
J+1(a[l−1]

J+1 )T, (9a)

b[l]
J+1 → b[l]

J+1 − ηδ
[l]
J+1, (9b)

where η designates the learning parameter 2.

Fig. 3: Illustration of the Forward and Backward passes
for an example in-network learning with J = 2.

Remark 1. It is important to note that for the computation of the
RHS of (8a) node (J + 1), which knows QφJ (yi|u1i, . . . ,uJi) and
Qφ j (yi|u ji) for all i ∈ [1 : n] and all j ∈ J , only the derivative of
L

NN
s (n) w.r.t. the avtivation vector aLJ+1

J+1 is required. For instance,
node (J+1) does not need to know any of the conditional variationals
Pθ j (u j|x j) or the priors Qϕ j (u j).

The backward propagation of the error vector from node
(J + 1) to the nodes j, j = 1, . . . , J, is as follows. Node (J + 1)
splits horizontally the error vector of its input layer into J sub-
vectors with sub-error vector j having size L j, the dimension of
the last layer of NN j [recall (5) and that the activation vectors
are concatenated vertically during the forward pass]. See
Figure 3. The backward propagation then continues on each
of the J input NNs simultaneously, each of them essentially
applying operations similar to (8) and (9).

2For simplicity η and σ are assumed here to be identical for all NNs.

Remark 2. Let δ[1]
J+1( j) denote the sub-error vector sent back from

node (J + 1) to node j ∈ J . It is easy to see that, for every j ∈ J ,

∇
a

Lj
j

L
NN
s (b j) = δ[1]

J+1( j) − s∇
a

Lj
j

 b∑
i=1

log
(Pθ j (u j,i|x j,i)

Qϕ j (u j,i)

) ; (10)

and this explains why node j ∈ J needs only the part δ[1]
J+1( j), not

the entire error vector at node (J + 1).

B. Inference Phase
During this phase node j observes a new sample x j. It uses

its NN to output an encoded value u j which it sends to the
decoder. After collecting (u1, · · · ,uJ) from all input NNs, node
(J + 1) uses its NN to output an estimate of Y in the form of
soft output QφJ (Y|u1, . . . ,uJ). The procedure is depicted in
Figure 2b.

Remark 3. A suitable practical implementation in wireless settings
can be obtained using Orthogonal Frequency Division Multiplexing
(OFDM). That is, the J input nodes are allocated non-overlapping
bandwidth segments and the output layers of the corresponding
NNs are chosen accordingly. The encoding of the activation values
can be done, e.g., using entropy type coding [17].

C. Bandwidth requirements
In this section, we study the requirements in bandwidth

of our in-network learning. Let q denote the size of the entire
data set (each input node has a local dataset of size q

J ), p = LJ+1
the size of the input layer of NN (J + 1) and s the size in bits
of a parameter. Since as per (5), the output of the last layers
of the input NNs are concatenated at the input of NN (J + 1)
whose size is p, and each activation value is s bits, one then

needs
2sp

J
bits for each data point – the factor 2 accounts for

both the forward and backward passes; and, so, for an epoch

our in-network learning requires
2pqs

J
bits.

Note that the bandwidth requirement of in-network learn-
ing does not depend on the sizes of the NNs used at the
various nodes, but does depend on the size of the dataset.
For comparison, notice that with FL one would require
2NJs, where N designates the number of (weight- and bias)
parameters of a NN at one node. For the SL of [15], assuming
for simplicity that the NNs j = 1, . . . , J all have the same size



ηN, where η ∈ [0, 1], SL requires (2pq + ηNJ)s bits for an entire
epoch.

The bandwidth requirements of the three schemes are
summarized and compared in Table I for two popular
neural networks, VGG16 (N = 138, 344, 128 parameters) and
ResNet50 (N = 25, 636, 712 parameters) and two example
datsets, q = 50, 000 data points and q = 500, 000 data points.
The numerical values are set as J = 500, p = 25088 and η = 0.88
for ResNet50 and 0.11 for VGG16.

Federated
learning

Split
learning

In-network
learning

Bandwidth requirement 2NJs
(
2pq + ηNJ

)
s

2pqs
J

VGG 16
50,000 data points 4427 Gbits 324 Gbits 0.16 Gbits

ResNet 50
50,000 data points 820 Gbits 441 Gbits 0.16 Gbits

VGG 16
500,000 data points 4427 Gbits 1046 Gbits 1.6 Gbits

ResNet 50
500,000 data points 820 Gbits 1164 Gbits 1.6 Gbits

TABLE I: Bandwidth requirements of INL, FL and SL.

IV. Experimental Results
We perform two series of experiments. In both cases, the

used dataset is the CIFAR-10 and there are five client nodes.

A. Experiment 1
In this setup, we create five sets of noisy versions of the

images of CIFAR-10. To this end, the CIFAR images are first
normalized, and then corrupted by additive Gaussian noise
with standard deviation set respectively to 0.4, 1, 2, 3, 4.

For our INL each of the five input NNs is trained on a
different noisy version of the same image. Each NN uses a
variation of the VGG network of [18], with the categorical
cross-entropy as the loss function, L2 regularization, and
Dropout and BatchNormalization layers. Node (J + 1) uses
two dense layers. The architecture is shown in Figure 4. In
the experiments, all five (noisy) versions of every CIFAR-10
image are processed simultaneously, each by a different NN
at a distinct node, through a series of convolutional layers.
The outputs are then concatenated and then passed through
a series of dense layers at node (J + 1).

Fig. 4: Network architecture. Conv stands for a convolu-
tional layer, Fc stand for a fully connected layer.

For FL, each of the five client nodes is equipped with the
entire network of Figure 4. The dataset is split into five sets of

equal sizes; and the split is now performed such that all five
noisy versions of a same CIFAR-10 image are presented to
the same client NN (distinct clients observe different images,
however). For SL of [15], each input node is equipped with an
NN formed by all fives branches with convolution networks
(i.e., all the network of Fig. 4, except the part at Node (J + 1));
and node (J + 1) is equipped with fully connected layers at
Node (J + 1) in Figure 4. Here, the processing during training
is such that each input NN concatenates vertically the outputs
of all convolution layers and then passes that to node (J + 1),
which then propagates back the error vector. After one epoch
at one NN, the learned weights are passed to the next client,
which performs the same operations on its part of the dataset.

Figure 5a depicts the evolution of the classification accu-
racy on CIFAR-10 as a function of the number of training
epochs, for the three schemes. As visible from the figure,
the convergence of FL is relatively slower comparatively.
Also the final result is less accurate. Figure 5b shows the
amount of data needed to be exchanged among the nodes
(i.e., bandwidth resources) in order to get a prescribed value
of classification accuracy. Observe that both our INL and SL
require significantly less data exchange than FL; and our INL
is better than SL especially for small values of bandwidth.

(a) Accuracy vs. # of epochs.

(b) Accuracy vs. bandwidth cost.

Fig. 5: Comparison of INL, FL and SL for Experiment 1



Fig. 6: Used NN architecture for FL in Experiment 2

B. Experiment 2

In Experiment 1, the entire training dataset was partitioned
differently for INL, FL and SL (in order to account for the
particularities of the three). In this second experiment, they
are all trained on the same data. Specifically, each client
NN sees all CIFAR-10 images during training; and its local
dataset differs from those seen by other NNs only by the
amount of added Gaussian noise (standard deviation chosen
respectively as 0.4, 1, 2, 3, 4). Also, for the sake of a fair
comparison between INL, FL and SL the nodes are set to
utilize fairly the same NNs for the three of them (see, Fig. 6).

(a) Accuracy vs. # of epochs.

(b) Accuracy vs. bandwidth cost.

Fig. 7: Comparison of INL, FL and SL for Experiment 2.

Figure 7b shows the performance of the three schemes
during the inference phase in this case (for FL the inference
is performed on an image which has average quality of the

five noisy input images for INL and SL). Again, observe the
benefits of INL over FL and SL in terms of both achieved
accuracy and bandwidth requirements.

Remark 4. INL has desirable features, among which that it is easily
amenable to extensions to arbitrary networks, including networks
that involve hops. This will be reported elsewhere.
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