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Abstract—Reconfigurable intelligent surface (RIS) technology
has recently emerged as a spectral- and cost-efficient approach
for wireless communications systems. However, existing hand-
engineered schemes for passive beamforming design and op-
timization of RIS, such as the alternating optimization (AO)
approaches, require a high computational complexity, especially
for multiple-input-multiple-output (MIMO) systems. To over-
come this challenge, we propose a low-complexity unsupervised
learning scheme, referred to as learning-phase-shift neural net-
work (LPSNet), to efficiently find the solution to the spectral
efficiency maximization problem in RIS-aided MIMO systems. In
particular, the proposed LPSNet has an optimized input structure
and requires a small number of layers and nodes to produce
efficient phase shifts for the RIS. Simulation results for a 16× 2
MIMO system assisted by an RIS with 40 elements show that
the LPSNet achieves 97.25% of the SE provided by the AO
counterpart with more than a 95% reduction in complexity.

Index Terms—Reconfigurable intelligent surface, RIS, IRS,
MIMO, machine learning, passive beamforming.

I. INTRODUCTION

Reconfigurable intelligent surface (RIS) technology has
recently been shown to be a promising solution for substan-
tially enhancing the performance of wireless communications
systems [1]. An RIS is often realized by a planar array
comprising a large number of reconfigurable passive reflecting
elements that can be configured to reflect incoming signals by
a predetermined phase shift. Theoretical analyses have shown
that an RIS of N elements can achieve a total beamforming
gain of N2 [2] and an increase in the received signal power
that increases quadratically with N [3], [4].

An important research direction for RIS-assisted communi-
cations systems is how to optimize the RIS reflecting coef-
ficients to maximize the spectral efficiency (SE), e.g., [5]–
[12]. Yang et al. [6] jointly optimize the transmit power
allocation and the passive reflecting coefficients for an RIS-
assisted single-input-single-output (SISO) system. By contrast,
the work in [7]–[10] considers multiple-input-single-output
(MISO) systems assisted by RISs with continuous [7], [8] or
coarsely quantized phase shifts [9], [10]. Efficient alternating
optimization (AO) methods are developed in [11], [12] for
the SE maximization problem of RIS-aided multiple-input-
multiple-output (MIMO) systems.

Machine learning (ML) has recently attracted much atten-
tion for wireless communication systems [13]–[15], and partic-
ularly for RIS, e.g., [16]–[21]. The work in [16], [17] considers
SISO systems where the RIS contains some active elements.
While a deep neural network (DNN) is used in [16], the
work in [17] exploits advances in deep reinforcement learning
(DRL). Their solutions can approach the upper bound achieved
with perfect channel state information (CSI). However, the
introduction of active elements at the RIS causes additional
hardware costs and power consumption. DRL is also exploited
to optimize the RIS in assisting a system with a single-antenna
user in [18], and for MIMO channels without a direct base
station (BS) – mobile station (MS) link [19]. Gao et al. [20]
propose a DNN-based passive beamforming (PBF) design,
but only for a single-antenna user. Ma et al. [21] exploit
federated learning (FL) to enhance the PBF performance and
user privacy, but again for a simplified system with a single-
antenna BS and no direct link to the MS.

Unlike the aforementioned studies on ML-based PBF, we
consider a more general RIS-aided MIMO system in this
paper. Furthermore, both the direct BS-MS and the reflected
BS-RIS-MS links are taken into consideration, which imposes
significantly more difficulty in the optimization of the ML
models. In particular, the ML model needs to be optimized so
that the signals through the different links add constructively at
the MS. This implies another challenge, in that a large amount
of information must be extracted by the ML model from the
extremely high-dimension input data. Furthermore, unless an
exhaustive search is performed, it is challenging to develop
supervised learning-based ML models due to the unavailability
of data labels. Fortunately, these challenges can be overcome
by the findings in our paper. Specifically, by formulating the
SE maximization problem and studying the AO solution, we
discover an informative input structure that enables a DNN,
even with a single hidden layer and an unsupervised learn-
ing strategy, to generate efficient phase shifts for PBF. The
proposed DNN-based PBF scheme, referred to as a learning-
phase-shift neural network (LPSNet), is numerically shown to
perform very close to the AO method in [11] with a substantial
complexity reduction.



II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider downlink transmission between a BS and MS
that are equipped with Nt and Nr antennas, respectively. The
communication is assisted by an RIS with N passive reflecting
elements. Let Hd ∈ CNr×Nt , Ht ∈ CN×Nt , and Hr ∈ CNr×N

denote the BS-MS, BS-RIS, and RIS-MS channels, respec-
tively, and let Φ = diag{α1, α2, . . . , αN} denote the diagonal
reflecting matrix of the RIS. The RIS coefficients are assumed
to have unit-modulus, i.e., αn = ejθn ,∀n, and, thus, it only
introduces phase shifts θn ∈ [0, 2π),∀n to the impinging
signals. Let x ∈ CNt×1 be the transmitted signal vector. We
focus on the design of the PBF and assume a uniform power
allocation, i.e., E

{
xxH

}
= PBSINt

, where PBS is the transmit
power at the BS. The MS receives the signals through the
direct channel and via the reflection by the RIS. Therefore,
the received signal vector at the MS can be expressed as

y = Hdx + HrΦHtx + n = Hx + n, (1)

where H , Hd + HrΦHt is the combined effective channel,
and n ∼ CN (0, σ2INr ) is complex additive white Gaussian
noise (AWGN) at the MS.

B. Problem Formulation

Based on (1), the SE of the RIS-aided MIMO system can
be expressed as [11]

SE ({αn}) = log2 det(INr
+ ρHHH), (2)

where {αn} = {α1, α2, . . . , αN} is the set of the phase shifts
at the RIS that needs to be optimized, and ρ = PBS

σ2 . The PBF
design maximizing the SE can be formulated as

(P0) maximize
{αn}

SE ({αn}) (3a)

subject to |αn| = 1,∀n. (3b)

The objective function SE ({αn}), given in (2), is nonconvex
with respect to {αn}, and the feasible set for (P0) is noncon-
vex due to the unit-modulus constraint (3b). Therefore, (P0) is
intractable and is difficult to find an optimal solution. Efficient
solutions to (P0) can be solved by the AO [11], [12] or pro-
jected gradient descent (PGD) [22] methods. However, these
algorithms require an iterative update of {αn}. In particular,
to obtain the phase shifts in each iteration, computationally
expensive mathematical operations are performed, and as a
result these algorithms have high complexity and latency. In
the next section, we propose the low-complexity LPSNet to
find an efficient solution to (P0).

III. DNN-BASED PBF AND PROPOSED LPSNET

A. DNN-based PBF

Instead of employing a high-complexity algorithm (e.g., AO
or PGD), a DNN can be modeled and trained to solve (P0),
i.e., to predict {αn}. Because |αn| = 1,∀n, the coefficients

{αn} are completely specified only by their real-valued phase
shifts {θn}. Hence, (P0) is equivalent to

(P) maximize
{θn}

SE ({θn}) , (4)

whose solution is found by a DNN in this work.
Let h̄ be a vector containing the CSI parameters (i.e., the

information in Hd, Ht, and Hr). The phase shifts learned by
a DNN can be mathematically modeled as

{θ̂n} = fNN

(
h̄
)
, (5)

where fNN(·) represents the non-linear mapping from h̄ to
{θ̂n} performed by the DNN. The efficiency and structure
of fNN significantly depend on the input. Therefore, properly
designing h̄ is one of the first and most important tasks in
modeling fNN. Let h̄0 be the input vector constructed from
the original CSI (i.e., entries of Hd, Ht, and Hr), i.e.,

h̄0 , vec (Hd,Ht,Hr) , (6)

where vec(·) is a vectorization. Obviously, h̄0 contains the
required CSI for a conventional hand-engineered algorithm to
solve (P0). However, h̄0 does not possess any structure or
meaningful patterns that the DNN can exploit. Furthermore,
if a very deep DNN is used, the resulting computational
complexity may be as high as that of the conventional schemes,
making it computationally inefficient. Our experimental results
obtained by training DNNs with the input h̄0 show that the
DNNs cannot escape from local optima even after extensive
fine tuning. This motivates us to select more informative
features as input of the proposed DNN.

B. Proposed Efficient Input Structure

To design a better-performing input structure for fNN, we
first extract the role of each individual phase shift θn in
SE ({θn}). Let rn be the nth column of Hr and tHn be the nth
row of Ht, i.e., Hr = [r1, . . . , rN ] and Ht = [t1, . . . , tN ]H .
Furthermore, for ease of notation, define H̄(0) , Hd and
θ0 , 0. Since Φ is diagonal, one has

H = Hd +

N∑
n=1

ejθnrntHn =

N∑
i=0

ejθiH̄(i), (7)

where H̄(n) , rntHn , n = 1, . . . , N . Consequently, SE ({θn})
can be recast in an explicit form

SE(θn) = log2

∣∣An + ejθnBn + e−jθnBHn
∣∣ , (8)

where

An , INr
+ ρ

 N∑
i=0,i6=n

ejθiH̄(i)

 N∑
i=0,i6=n

ejθiH̄(i)

H

+ ρH̄(n)H̄
H
(n), (9)

Bn , ρH̄(n)

 N∑
i=0,i6=n

ejθiH̄(i)

H

, (10)



n = 1, . . . , N . It is observed that neither An or Bn involves
θn. This means that if all variables {θi}Ni=0,i6=n are fixed, An
and Bn are determined, and θn can be found by [11]

θn = arg{λ(A−1n Bn)}, (11)

where λ(A−1n Bn) denotes the sole non-zero eigenvalue of
A−1n Bn [11]. This implies that the information necessary to
obtain θn is contained in A−1n Bn, which can be computed if
the values {H̄(i)} are available, as observed in (9) and (10).
We summarize this important result in the following remark.

Remark 1: In a DNN predicting the phase shifts {θn} of
the RIS, the input vector should contain the coefficients of
{H̄(i)}. More specifically, it can be constructed as

h̄ = vec
({

R
(
H̄(i)

)}
,
{
I
(
H̄(i)

)})
∈ R2NtNr(N+1)×1, (12)

where R(A) and I(A) represent the real and imagine parts of
the entries of A, respectively. There are N+1 matrices H̄(i) ∈
CNr×Nt . Thus, h̄ consists of 2NtNr(N + 1) real elements.

Some interesting observations can be made from (7) and
(12), as noted in the following remark.

Remark 2: The efficient input structure of Remark 1 is
constructed from the pairwise products of the N columns of
Hr and the N rows of Ht. This is of interest because there
are various ways to extract/combine the information from the
entries of Ht and Hr. Based on Remark 1, it is reasonable to
expect that the raw CSI h̄0 is not readily exploited by the DNN
to learn our regression model successfully. Furthermore, Hd,
i.e., {H̄(0)} in (12), contributes to h̄ with its original entries,
and no manipulation is required.

In addition, we note that although additional mathematical
operations are required to obtain {H̄(i)}, they are just low-
complexity multiplications of a column and a row vector and
matrix additions. Therefore, generating the proposed input
structure requires low computational complexity, but it has a
significant impact on the learning ability and structure of the
DNN employed for PBF, as will be shown in the next section.

C. Proposed LPSNet

Here we propose a learning-phase-shift neural network,
referred to as LPSNet, for solving the PBF problem (P) in (4).
We stress that the informative input structure in (12) plays a
deciding role in the efficiency of the LPSNet. Specifically, h̄
in (12) already contains the meaningful information necessary
to obtain {θn}. The network structure, training strategy, and
computational complexity of LPSNet are presented next.

1) Network Structure: LPSNet has a fully-connected DNN
architecture, and like any other DNN model, it is optimized
by fine-tuning the number of hidden layers and nodes, and the
activation function. However, thanks to the handcrafted feature
selection, the LPSNet can predict {θn} efficiently with only a
small number of layers. Through fine-tuning, we have found
that only a single or a few hidden layers with N nodes in each
is sufficient to ensure satisfactory performance. As a result,
the size of the input layer is 2NtNr(N + 1) (i.e., the size of
h̄), while both the hidden and output layers include N nodes.
Furthermore, we have found that Sigmoid activation functions

at both the hidden and output layers can provide better training
of the LPSNet than other activation functions. With such
a shallow network, the complexity of LPSNet is very low.
Moreover, we have found that to optimize the LPSNet, fine-
tuning can be done by slightly increasing the number of hidden
layers and nodes, e.g., for large MIMO systems. For example,
to predict the phase shifts of an RIS equipped with N = 40
elements assisting an 8 × 2 MIMO system, a single hidden
layer with N nodes can guarantee an efficient training, while
for a 16× 2 MIMO system, two hidden layers, each deployed
with N nodes, is sufficient (see Table I). For other systems,
it is recommended to begin fine-tuning with such a proposed
simple network to avoid overfitting.

2) Training Strategy: For offline training, we propose em-
ploying an unsupervised training strategy [20]. We note that,
on the other hand, if supervised training is used, labels ({θn})
have to be obtained using a conventional high-complexity
method such as AO [11] or PGD [22]. To avoid this high com-
putational load, unsupervised training is adopted for training
the LPSNet so that it can maximize the achievable SE without
the labels {θn}. To this end, we set the loss function to

Loss({θ̂n}) = − log2 det(INr + ρtrainHtrainHH
train), (13)

where ρtrain is randomly picked from the range [−ρ0, ρ0] dB,
and Htrain = Hd,train + Hr,trainΦ̂Ht,train. Here, Hd,train,
Ht,train, and Hr,train are obtained by scaling Hd, Ht, and
Hr by their corresponding large-scale fading coefficients so
that their entries have zero-mean and unit-variance. This pre-
processing is also applied to obtain the input data in h̄.
In other words, h̄ is obtained from Hd,train, Ht,train, and
Hr,train rather than Hd, Ht, and Hr. Furthermore, Φ̂ =

diag{ejθ̂1 , . . . , ejθ̂N }, where {θ̂n} are the outputs of the LP-
SNet, as given in (5). During training, the weights and biases
of the LPSNet are optimized such that Loss is minimized, or
equivalently, SE is maximized.

3) Online LPSNet-based PBF: Once LPSNet has been
trained, it is ready to be used online for PBF. At first, h̄
is constructed from the CSI based on Remark 1. Then, the
LPSNet takes h̄ as the input for output {θ̂n}, which are
then transformed to the reflecting coefficients {α̂n}, with
α̂n = cos θ̂ + j sin θ̂,∀n. At this stage, the PBF matrix is
obtained as Φ = diag{α̂1, . . . , α̂N}.

4) Computational Complexity Analysis: Let L denote
the number of hidden layers of LPSNet. LPSNet requires
a complexity of O(NrNtN) for constructing the input
h̄, O(NrNtN

2) for the first hidden layer, and O(N2)
for subsequent hidden layers and the output layer. There-
fore, the total complexity of the proposed LPSNet is
O(max(NrNtN

2, LN2)). When L < NrNt, the complexity
of LPSNet is O(NrNtN

2). This should be the case since we
found that LPSNet requires a small L to produce efficient
phase shift values; for example in Table I, it is seen that only
1 or 2 hidden layers are required.

For comparison, the computational complexity of the AO
method in [11] is O

(
NrNt(N +M)K + ((3N3

r + 2N2
rNt +

N2
t )N + NrNtM)I

)
where M = min(Nr, Nt), K is the



Table I. LPSNets employed for 8× 2 and 16× 2 MIMO systems.

MIMO system No. of
hidden layers

No. of nodes
in hidden layers Batch size

8× 2 MIMO 1 N 10 samples
16× 2 MIMO 2 N ×N 20 samples

number of random sets {αn} initializing the AO method, and
I is the number of iterations. Since I is polynomial over Nr,
Nt, and N as pointed out in [11], the total complexity of
the AO method is at least quadratic in Nr, cubic in Nt, and
quadratic in N . The complexity of LPSNet is only linear in Nr
and Nt, and quadratic in N . Therefore, LPSNet is less compu-
tationally demanding than the AO method. The computational
complexity for each iteration of the PGM method in [22] is
O(2NNtNr + 2N2

t Nr + 3
2NtN

2
r + N3

r + NrN + NtN +
3N+ 3

2N
3
t ). Similarly, when the number of iterations is large,

the PGM method is also more computationally expensive than
LPSNet.

IV. SIMULATION RESULTS

In this section, we numerically investigate the SE perfor-
mance and computational complexity of the proposed LPSNet.
We assume that the BS, MS, and RIS are deployed in a
two-dimensional coordinate system at (0, 0), (xMS, yMS), and
(xRIS, 0), respectively. The path loss for link distance d is
given by β(d) = β0(d/1m)ε, where β0 is the path loss at
the reference distance of 1 m, and ε is the path loss exponent
[2], [11]. Following [2], [11], [12], we assume a Rician fading
channel model for the small-scale fading of all the involved
channels, including Hd, Ht, and Hr. For more details on
the the small-scale fading, please refer to [2], [11], [12]. We
consider two systems, namely, 8×2 MIMO and 16×2 MIMO,
both of which are aided by a RIS with N = 40 reflecting ele-
ments. The bandwidth is set to 10 MHz, and the noise power
is −170 dBm/Hz [11]. Let ε(·) and κ(·) respectively denote
the path loss exponent and Rician factor of the corresponding
channel H(·). We set {εd, εt, εr} = {3.5, 2, 2.8} [2], and due
to the large distance and random scattering on the BS-MS
channel, we set κd = 0 [2]. By contrast, to show that the
proposed LPSNet can generalize to perform well for various
physical deployments of the devices, in the simulations the RIS
is randomly located on the x−axis, at a maximum distance of
100m from the BS. Then, the MS is randomly placed 2m away
from the RIS. This setting implies that the MS is near the RIS,
as widely assumed in the literature [2], [11]. Consequently, κt
and κr are both randomly generated. This procedure applies
to the generation of both the training and testing data sets.

LPSNet is implemented and trained using Python with the
Tensorflow and Keras libraries and an NVIDIA Tesla V100
GPU processor. For the training phase, we employ the Adam
optimizer (with a decaying learning rate of 0.99 and a starting
learning rate of 0.001) and the loss function (13) with ρ0 =
30 dB. We train and test the performance of the LPSNets,
summarized in Table I, for two MIMO systems, namely 8 ×
2 MIMO and 16 × 2 MIMO. For the former, LPSNet has
only one hidden layer with N nodes, whereas for the latter,
two hidden layers, each with N nodes, are employed. The
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Fig. 1. Loss of LPSNet when using the proposed input h̄ and h̄0 for 8× 2
MIMO and 16× 2 MIMO systems.

batch sizes for training these LPSNets are 10 and 20 samples,
respectively, selected from a randomly generated data sets of
40,000 samples.

A. The Significance of Input Structure

In Fig. 1, we justify the efficiency of the proposed input
structure h̄ in (12) by comparing the resultant loss to that
offered by h̄0 in (6). It is observed for both the 8× 2 MIMO
(Fig. 1(a)) and 16× 2 MIMO (Fig. 1(b)) systems that, as the
epoch number increases, the loss value of the LPSNet with h̄
quickly decreases until reaching convergence, with almost no
or acceptable overfitting/underfitting. In contrast, when h̄0 is
used, LPSNet cannot escape from the local optima, providing
almost constant loss values (Figs. 1(c)). This is not overcome
even when we increase the learning rate to 0.002 and batch
size to 100 samples as in Fig. 1(d). The results in Fig. 1
demonstrate that the input structure plays a key role in the
learning ability of LPSNet, and the proposed informative input
structure h̄ enables LPSNet to be trained well for PBF even
with simple architectures.

B. SE Performance and Complexity of the Proposed LPSNet

In Fig. 2, the SE performance and computational complexity
of the proposed LPSNet are shown for 8×2 and 16×2 MIMO
systems. For comparison, we also consider the cases where
{θn} are either randomly generated, obtained based on the AO
method [11], or when RISs are not employed. The convergence
criterion of the compared AO method is set to ε ≤ 10−4,
where ε is the change in objective value after each iteration.
For both considered MIMO systems we see that the proposed
LPSNet performs far better than when using random phases
for the RIS or without RIS. It performs similarly to the AO
method but requires much lower complexity. For example, in
the 16×2 MIMO system, LPSNet achieves 97.25% of the SE
provided by the AO approach with more than a 95% reduction
in complexity.
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Fig. 2. SE and complexity of the proposed LPSNet compared to other
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Fig. 3. SE of the proposed LPSNet versus the positions of the MS for (a)
8× 2 and (b) 16× 2 MIMO systems with PBS = 40 dBm.

In Fig. 3, we show the SE of the considered schemes when
fixing xRIS = 100 m, xMS ∈ [80, 120] m, and PBS = 40 dBm.
Clearly, the LPSNet attains good performance over the entire
considered range of xMS, which demonstrates its ability to per-
form well regardless of the physical distances between devices.
This is because the training data have been pre-processed
to remove the effect of the large-scale fading. Furthermore,
LPSNet provides the highest SE at xMS = xRIS = 100 m, i.e.,
when the RIS and MS are closest to each other, in agreement
with the findings of [2], [23].

V. CONCLUSION

In this paper, we have considered the application of DNN to
passive beamforming in RIS-assisted MIMO systems. Specif-
ically, we formulated the SE maximization problem, and
showed how it can be solved efficiently by the proposed
unsupervised learning-based LPSNet. With the optimized input
structure, LPSNet requires only a small number of layers and
nodes to output reliable phase shifts for PBF. It achieves
almost the same performance as the AO method with con-
siderably less computational complexity. Furthermore, the
proposed unsupervised learning scheme does not require any
computational load for data labeling.
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