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Abstract—Low-resolution analog-to-digital converters (ADCs)
have emerged as an efficient solution for massive multiple-input
multiple-output (MIMO) systems to reap high data rates with
reasonable power consumption and hardware complexity. In
this paper, we analyze the performance of oversampling in up-
link massive MIMO orthogonal frequency-division multiplexing
(MIMO-OFDM) systems with low-resolution ADCs. Considering
both the temporal and spatial correlation of the quantization
distortion, we derive an approximate closed-form expression of
an achievable sum rate, which reveals how the oversampling
ratio (OSR), the ADC resolution, and the signal-to-noise ratio
(SNR) jointly affect the system performance. In particular, we
demonstrate that oversampling can effectively improve the sum
rate by mitigating the impact of the quantization distortion,
especially at high SNR and with very low ADC resolution.
Furthermore, we show that the considered low-resolution massive
MIMO-OFDM system can achieve the same performance as the
unquantized one when both the SNR and the OSR are sufficiently
high. Numerical simulations confirm our analysis.

Index Terms—Massive MIMO-OFDM, energy efficiency, low-
resolution ADCs, oversampling.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a cru-

cial physical-layer technology for current and future wireless

systems [1], which provides high spectral efficiency thanks

to the large number of antennas at the base station (BS) [2].

However, when massive MIMO is adopted at millimeter wave

and (sub-)THz frequencies [3], [4], its energy efficiency can

be severely burdened by the high power consumption of each

radio-frequency (RF) chain. In this respect, analog-to-digital

converters (ADCs) are the most power-hungry RF components,

as their power consumption increases exponentially with the

number of resolution bits [5]. For instance, high-speed ADCs

(e.g., operating at 1 Gsample/s) with high resolution (e.g., 8–

12 bits) can consume several Watts [6]. Therefore, adopting

low-resolution ADCs at the BS has been regarded as an

effective approach to reducing power consumption without

excessively compromising the performance [7], [8].

Despite the reduced power consumption, low-resolution

ADCs introduce a non-linear quantization distortion to the

signal, which cannot be eliminated by increasing the transmit

power. While adding more antennas at the BS can compensate

for the performance loss due to the quantization distortion [9]–

[11], it also raises the overall power consumption and hardware

complexity. On the other hand, temporal oversampling can

improve the sum rate in quantized massive MIMO systems

without increasing the number of antennas and RF chains [12].

Furthermore, oversampling enables higher-order modulation

over a 1-bit quantized single-antenna additive white Gaussian

noise (AWGN) channel [13]. In addition, it was shown in

[14] that the sum rate grows roughly logarithmically with the

oversampling ratio (OSR). Most of the aforementioned studies

consider narrowband or single-carrier systems and are not

readily applicable to wideband multi-carrier scenarios in gen-

eral. This is because the correlation of time-domain symbols

due to the low-resolution ADCs makes the frequency-domain

signal model for multi-carrier systems more involved [15].

Massive MIMO orthogonal frequency-division multiplexing

(MIMO-OFDM) systems with low-resolution ADCs and over-

sampling were studied by Üçüncü et al. in [16] under adjacent

channel interference (ACI). Specifically, this work analyzed

the performance with zero-forcing (ZF) combining and showed

that oversampling can improve the signal-to-interference-plus-

noise-and-distortion ratio (SINDR) and suppress the ACI in

both 1-bit and multi-bit quantized systems.

Inspired by [16], we perform a deeper analysis of how the

OSR, the ADC resolution, and the SNR collectively affect

the performance of uplink massive MIMO-OFDM systems

with low-resolution ADCs and oversampling, which was not

reported in [16]. We first present the frequency-domain signal

model for an uplink MIMO-OFDM system, which accounts

for the impact of low-resolution ADCs on the received time-

domain symbols. We then derive an approximate closed-

form expression of an achievable sum rate based on the

Bussgang decomposition, which considers the temporal and

spatial correlation of the quantization distortion. Our analysis

reveals that oversampling can significantly improve the sum

rate by mitigating the quantization distortion, especially at high

SNR and with very low ADC resolution (down to 1-bit). We

further demonstrate that the considered low-resolution massive

MIMO-OFDM system can achieve the same performance

as its unquantized counterpart when both the SNR and the

OSR are sufficiently high. Numerical simulations validate our

analysis and highlight the trade-off between the OSR and the

ADC resolution in terms of energy efficiency and hardware

complexity.

II. SYSTEM MODEL

We consider an uplink massive MIMO system where a BS

equipped with M antennas receives signals from the U single-

antenna user equipments (UEs). The OFDM is assumed over

a wideband channel to deal with the frequency selectivity.
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Specifically, let ∆f = 1
Tu

be the subcarrier spacing, where

the OFDM symbol duration Tu is assumed to be fixed. Let

fk = fc +
(
k + 1− Nc+1

2

)
∆f , k = 0, . . . , Nc − 1 denote

the k-th subcarrier frequency, where fc is the center carrier

frequency. Among the total Nc subcarriers, K subcarriers

are employed for signal transmission, while other Nc − K

subcarriers are employed for oversampling [15]. Let s̃u[k]
be the transmit symbol of the u-th UE at subcarrier k with

E
[
|s̃u[k]|2

]
= 1, k = 0, . . . ,K − 1. Note that s̃u[k] = 0 for

k = K, . . . , Nc − 1 when Nc > K . Because the sampling

frequency is fs = Nc∆f while the transmission bandwidth of

signals is Bw = K∆f , the OSR is defined as β = Nc

K
. Hence,

β = 1 and β > 1 indicate the Nyquist sampling and the

oversampling scheme, respectively. The time-domain symbol

is obtained by Nc-points inverse discrete Fourier transform

(IDFT), which can be expressed as

su[n] =

√
p√
Nc

Nc−1∑

k=0

s̃u[k]e
j 2πnk

Nc , n = 0, . . . , Nc − 1, (1)

where n represents the index of the time-domain symbol, and

p denotes the average transmit power. At the receiver, the

time-domain signals are first downconverted to the baseband

and transformed back to the frequency domain by Nc-points

discrete Fourier transform (DFT).

Let s[n] = [s1[n], . . . , sU [n]]
T

and s̃[k] =
[
s̃1[k], . . . ,

s̃U [k]
]T

, where s̃u[k] is the frequency-domain signal transmit-

ted by the u-th UE, and su[n] is given in (1). The discrete-time

received signal at time sample n at the BS is given by

r[n] =

D−1∑

d=0

H[d]s[n− d] +w[n], (2)

where D = βD0 with D0 being the maximum num-

ber of delay taps under Nyquist sampling, and H[d] =
[h1[d], · · · ,hU [d]] ∈ CM×U denotes the channel matrix at the

d-th time delay with hu[d] representing the channel between

the u-th UE and the BS. Here, w[n] represents the AWGN

vector and w[n] ∼ CN (0, σ2
nI), where σ2

n denotes the AWGN

power. By taking the DFT of both sides of (2), the frequency-

domain received signal is expressed as

r̃[k] =
√
pH̃[k]s̃[k] + w̃[k], k = 0, . . . , Nc − 1, (3)

where r̃[k] = 1√
Nc

∑Nc−1
n=0 r[n]e−j 2πnk

Nc , w̃[k] =
1√
Nc

∑Nc−1
n=0 w[n]e−j 2πnk

Nc , and H̃[k] =
[
h̃1[k], . . . , h̃U [k]

]

with h̃u[k] =
∑D−1

d=0 hu[d]e
−j 2πdk

Nc . Note that r̃[k] = w̃[k] for

k = K, . . . , Nc − 1 as s̃[k] = 0 in these cases.

III. SIGNAL MODEL WITH QUANTIZATION

Assuming that the UEs employ high-resolution DACs, the

BS uses identical pair of low-resolution ADCs in each RF

chain for the in-phase and quadrature-phase signals. Focusing

on the performance impact of ADCs, we assume in our

analysis that all RF circuits other than the ADCs (e.g., local

oscillators, mixers, and power amplifiers) are ideal. We further

assume that the sampling rate fs of the ADCs at the BS is

the same as that of the DACs at the UE, and the system is

perfectly synchronized. Finally, we assume that the spectrum

of the output of ADCs is contained within
[
− fs

2 ,
fs
2

]
, i.e.,

without out-of-band emissions [15].

A. Quantization Modeling

We begin by defining the codebook of a scalar quantizer of b

bits as C = {c0, . . . , cNq−1}, where Nq = 2b is the number of

output levels of the quantizer. The quantization thresholds set

is T = {t0, . . . , tNq
}, where t0 = −∞ and tNq

= ∞ allows

inputs with arbitrary power. For signals with standard Gaussian

distribution, the Lloyd-Max algorithm can find the optimal C
and T that achieve the minimum square error (MSE) between

the input and output of the quantizer. Note that the Lloyd-

Max quantizer is generally non-uniform, and the optimal C
and T for 1–5 bits are given in [17, Table I]. Let Q(·)
denote the quantization function. For a complex signal x =
ℜ{x}+ jℑ{x}, we have Q(x) = Q(ℜ{x})+ jQ(ℑ{x}) with

Q(ℜ{x}) = cI(ℜ{x}), where I(ℜ{x}) = i ∈ {0, . . . , Nq − 1}
for ℜ{x} ∈ [ti, ti+1]; Q(ℑ{x}) is obtained in a similar way.

When the input signal of the quantizer is a vector, Q(·) is

applied elementwise.

The Bussgang decomposition allows to model a non-linear

input-output relation of a Gaussian signal as a linear transfor-

mation [18]. To model the quantization of the received signal

in (2) by the low-resolution ADCs, we first rewrite (2) as

r̄ = H̄s̄+ w̄, (4)

where r̄ =
[
r[Nc − 1]T , . . . , r[0]T

]T
, s̄ =

[
s[Nc − 1]T , . . . ,

s[0]T
]T

, and w̄ =
[
w[Nc − 1]T , . . . ,w[0]T

]T
. Furthermore,

H̄ ∈ CMNc×UNc is a block circulant matrix [16]. With the

Bussgang decomposition, z̄ = Q(r̄) can be expressed as

z̄ = B̄r̄+ η̄, (5)

where z̄ =
[
z[Nc − 1]T , . . . , z[0]T

]T
, and where η̄ =

[
η[Nc − 1]T , . . . ,η[0]T

]T
denotes the non-Gaussian distor-

tion vector that is uncorrelated to r̄. Here, B̄ represents the

Bussgang gain matrix. In the case of the same resolution

(b bits) ADCs at all the RF chains, B̄ reduces to a scalar

α = 1−γ, where γ denotes the inverse signal-to-quantization-

distortion ratio (SQR). Note that, for a given resolution, γ is

constant, which has been tabulated in [17]. Therefore, (5) is

equivalent to

z[n] = αr[n] + η[n], n = 0, . . . , Nc − 1. (6)

To facilitate the performance evaluation in the frequency

domain, the analysis continues by taking the DFT of both

sides of (6), yielding

z̃[k] = αr̃[k] + η̃[k]

= α
√
pH̃[k]s̃[k] + e[k], k = 0, . . . , Nc − 1, (7)

where z̃[k] = 1√
Nc

∑Nc−1
n=0 z[n]e−j 2πnk

Nc and η̃[k] =
1√
Nc

∑Nc−1
n=0 η[n]e−j 2πnk

Nc . Here, e[k] , αw̃[k] + η̃[k] con-

sisting of the AWGN and the quantization distortion is non-

Gaussian due to η̃[k].

B. Achievable Sum Rate Analysis

Let G[k] = [g1[k], . . . ,gU [k]] ∈ CM×U be the combining

matrix of the k-th subcarrier at the BS. Thus, the post-



processing signal vector at subcarrier k is given by

x̂[k] = G[k]H z̃[k] =
√
pαG[k]HH̃[k]s̃[k] +G[k]He[k]. (8)

The u-th element of x̂[k] can be expressed as

x̂u[k] =
√
pαgu[k]

Hhu[k]su[k]
︸ ︷︷ ︸

desired signal

+
√
pα

U∑

j 6=u

gu[k]
Hhj [k]sj [k]

︸ ︷︷ ︸

interference

+ gu[k]
He[k]

︸ ︷︷ ︸

AWGN and
quantization

distortion

, (9)

and the resulting SINDR is

ζu[k] =
pα2|gu[k]

Hhu[k]|2

pα2
U∑

j 6=u

|gu[k]Hhj [k]|2 + gu[k]HCek
gu[k]

, (10)

where Cek
= E

[
e[k]e[k]H

]
= Cη̃k

+ α2σ2
nI and Cη̃k

=
E
[
η̃[k]η̃[k]H

]
. Treating the interference-plus-noise-and-

distortion term as a Gaussian random variable with the same

variance, we obtain an achievable sum rate as [9]

R =

K∑

k=1

U∑

u=1

∆f log2 (1 + ζu[k]) . (11)

It is observed that Cη̃k
is required to compute the sum rate

in (11). However, obtaining Cη̃k
may be challenging due to

the quantization distortion. Alternatively, we derive an approx-

imate closed-form expression in the following proposition.

Proposition 1 Cη̃k
can be approximated as

Cη̃k
≈ γ(1− γ)

(
p

Nc

K−1∑

k=0

diag
(

H̃[k]H̃[k]H
)

+ σ2
nI

)

, (12)

where we recall that γ represents the inverse SQR given

in [17], and p denotes the average transmit power. The

approximation in (12) becomes more accurate at low SNR or

at high SNR with a low OSR and a high ADC resolution.

Proposition 1 can be obtained through the DFT of the time-

domain correlation matrix Cr[ι] = E
[
r[n]r[n− ι]H

]
and

Cη[ι] = E
[
η[n]η[n− ι]H

]
as well as the approximation

Cη[0] ≈ γ(1 − γ)diag(Cr[0]) derived in [19]. The detailed

proof is omitted due to limited space. Note that Cη[ι] includes

the temporal and spatial correlations of the quantization dis-

tortion.

Using the result in (12), we can approximate Cek
as

Cek
≈ (1− γ)

(

γp

Nc

K−1∑

k=0

diag
(

H̃[k]H̃[k]H
)

+ σ2
nI

)

.

(13)

From (13), the SINDR can be rewritten as

ζu[k] ≈
|gu[k]

Hhu[k]|2
U∑

j 6=u

|gu[k]Hhj [k]|2 + gu[k]HCegu[k]

, (14)

where

Ce =
γ

(1− γ)β
He +

1

ρ(1− γ)
I (15)

with He = 1
K

∑K−1
k=0 diag

(

H̃[k]H̃[k]H
)

and ρ = p
σ2
n

. Note

that ρ denotes the SNR. We observe that the sum rate in (11)

based on (14) is jointly affected by three factors, i.e., the OSR,

the ADC resolution, and the SNR. We note some important

observations in the following:

1) With high ADC resolution, we have γ → 0, which yields

ζu[k] →
|gu[k]

Hhu[k]|2
U∑

j 6=u

|gu[k]Hhj [k]|2 + 1
ρ
‖gu[k]‖2

. (16)

Based on (16), we can readily obtain the sum rate

corresponding to the unquantized system.

2) It can be observed that increasing the OSR helps to

mitigate the quantization distortion, which results in a

higher sum rate. In particular, when the OSR increases

without bound, i.e., β → ∞, ζu[k] is limited by the SNR,

which is

ζu[k] →
|gu[k]

Hhu[k]|2
U∑

j 6=u

|gu[k]Hhj [k]|2 + 1
ρ(1−γ)‖gu[k]‖2

. (17)

This implies that, as the sum rate approaches the upper

bound constrained by the SNR, the advantages gained

from increasing the OSR become less significant.

3) In addition, at high SNR, oversampling can effectively

improve the sum rate, especially with very low ADC res-

olution. In particular, when the SNR approaches infinity,

i.e., ρ → ∞, the second term of (15) approaches zero

and Ce → γ
(1−γ)βHe. Hence, we obtain

ζu[k] →
|gu[k]

Hhu[k]|2
U∑

j 6=u

|gu[k]Hhj [k]|2 + γ
β(1−γ)gu[k]HHegu[k]

, (18)

which is limited by the quantization distortion and can be

enhanced by increasing the OSR. Moreover, it is seen that

a lower ADC resolution yields a larger γ
β(1−γ) , resulting

in more significant performance enhancement due to

oversampling. This is because γ is inversely proportional

to the resolution and γ
1−γ

monotonically increases with γ.

On the other hand, at low SNR, the benefits of increasing

the OSR can be marginal because the second term of

(15), i.e., the AWGN, could outweigh the quantization

distortion.

4) When ρ → ∞ and β → ∞, we have

ζu[k] →
|gu[k]

Hhu[k]|2
U∑

j 6=u

|gu[k]Hhj [k]|2
, (19)

which yields an upper bound of (16) when ρ → ∞. This

implies that, with sufficiently large SNR and OSR, a 1-bit

quantized system can perform similarly to its unquantized

counterpart.

We summarize the above discussions in the following remark:
Remark 1 Oversampling can effectively improve the sum rate

of low-resolution systems, especially at high SNR. In general,

oversampling performs better at higher SNR and with lower

ADC resolution. In particular, when both the SNR and the

OSR are sufficiently large, the performance of the quantized

system approaches that of the unquantized one.
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(a) 1-bit ADCs.
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(b) 2-bit ADCs.
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(c) 3-bit ADCs.

Fig. 1. Achievable sum rate versus SNR with M = 64, U = 4, and K = 128.
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Fig. 2. Achievable sum rate versus SNR with M = 64, U = 4, and
K = 128.

IV. SIMULATION RESULTS

We consider the maximum ratio combining (MRC) to

evaluate the achievable sum rate, which is G[k] =

H[k]diag
(
H[k]HH[k]

)−1
. The delay-d channel between the

u-th UE and the BS is modeled as [20]

hu[d] =

√

M

L

L∑

ℓ=1

βu,ℓp(dTs − τu,ℓ)a(θu,ℓ), (20)

where βu,ℓ, τu,ℓ, and θu,ℓ denote the ℓ-th path gain, path

delay and angle-of-arrival, respectively. Here, p(t) represents

the pulse-shaping function following the same parameters as

in [20]. In the simulations, we assume βu,ℓ ∼ CN (0, 1),
τu,ℓ ∼ U

[
0, D0

Bw

]
with D0 = K

4 as in [21], and θu,ℓ ∼ U [0, 2π].
Here, U [a, b] represents the uniform distribution in the interval

[a, b]. The array steering vector is expressed as a(θ) =
1√
M

[
1, e−jπ sin(θ), . . . , e−j(M−1)π sin(θ)

]
. Furthermore, we set

fc = 140 GHz, ∆f = 10 MHz, K = 128, and L = 3 due

to the channel sparsity in the (sub-)THz band. The AWGN

power is σ2
n = N0∆f with N0 being the AWGN power

density. The following results are obtained by averaging over

103 independent channel realizations.

Fig. 1 shows the achievable sum rate versus the SNR with

1-bit, 2-bit, and 3-bit ADCs. Specifically, we consider: (a) the

sum rate obtained with ρ → ∞ and β → ∞ in (19) (“Total

Upper Bound”); (b) the sum rate of the unquantized system

in (16) (“Unquantized System”); (c) the approximate sum rate

in (14) (“Analytical Approx”); and (d) the sum rate in (18)
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Fig. 3. Achievable sum rate versus OSR with 1-bit ADCs, M = 64,
U = 4, and K = 128.

obtained with ρ → ∞ (“SNR Infinity Bound”). We make the

following observations from these figures. First, increasing the

ADC resolution leads to significant performance improvement,

and employing 3-bit ADCs allows to approach the sum rate

of the unquantized system. This agrees with the findings in

[11]. Second, increasing the OSR substantially enhances the

sum rate, especially at high SNR and with 1-bit ADCs, e.g.,

27% and 6% performance improvement at ρ = 20 dB for the

1-bit and 3-bit quantized system, respectively. However, the

performance improvement is marginal at low SNR cases due to

the large AWGN. Third, it can be observed from Figs. 1(a) and

1(b) that the 1-bit quantized system with β = 4 can achieve

a comparable sum rate to the configuration with 2-bit ADCs.

However, since the typical power consumption of ADCs can

be modeled as κfs2
b with κ being the constant associated with

the ADC quality [5], there is a trade-off between the OSR and

the ADC resolution in terms of energy efficiency and hardware

complexity.

Fig. 2 plots the achievable sum rate versus the SNR with

different OSRs and ADC resolutions, where the power con-

sumptions of ADCs are equated for three configurations based

on κfs2
b, namely: (i) b = 1 and β = 4; (ii) b = 2 and β = 2;

and (iii) b = 3 and β = 1. The results reveal that increasing

the resolution of ADCs is more effective than increasing the

OSR. Specifically, the configuration with b = 3 and β = 1
achieves the highest performance. Moreover, it is observed that

the system that employs 1-bit ADCs oversampled by a factor



of 4 can attain comparable performance to the 2-bit system

without oversampling. However, this comes at the cost of

double the energy expenditure. This observation is consistent

with the results reported in [16] regarding the bit error rate.

Nonetheless, we remark that 1-bit quantized systems have very

low hardware complexity (e.g., the automatic gain control used

in multi-bit quantized systems is no longer needed), which is

not taken into account in our numerical results.

Fig. 3 depicts the achievable sum rate versus the OSR with

1-bit ADCs. The sum rate obtained with (17) at β → ∞ is

referred to as “OSR Infinity Bound”. It is seen that oversam-

pling can substantially improve the sum rate at medium-to-

high SNR, while it only yields minor benefits for low SNR

scenarios. Furthermore, increasing the SNR and the OSR can

progressively bridge the performance gap between the 1-bit

quantized and the unquantized systems. This is due to the

system performance being jointly corrupted by the AWGN

and the quantization distortion. While improving the SNR

can overcome the AWGN, the resulting reduced randomness

makes the quantization distortion more significant. Therefore,

oversampling, which mitigates the quantization distortion, can

further enhance the system performance. As such, oversam-

pling is more effective at high SNR, as observed in Fig. 3.

Ideally, when β → ∞, the quantization distortion can be

entirely suppressed, and the performance is upper-bounded by

the SNR. However, it is observed that, for β ≥ 20, increasing

the OSR yields only minor gains. Therefore, determining

a reasonable OSR is crucial to achieve a suitable trade-off

between sum rate and energy efficiency, considering that the

power consumption of the ADCs increases linearly with the

sampling frequency.

V. CONCLUSION

We analyzed the impact of oversampling on the achievable

sum rate in an uplink massive MIMO-OFDM system with low-

resolution ADCs. Both the analytical and numerical results

demonstrated that oversampling can significantly improve the

sum rate of quantized systems by mitigating the quantization

distortion. In particular, oversampling gives higher gains at

higher SNR and with lower ADC resolution (especially down

to 1-bit). Furthermore, we showed that the system with low-

resolution ADCs can approach the performance of the unquan-

tized system when both the SNR and the OSR are sufficiently

high. Moreover, the results indicate the necessity to strike a

balance between the OSR and the ADC resolution in terms

of energy efficiency and hardware complexity. We note that,

although these results are obtained assuming single-antenna

UEs, they can be similarly derived for the scenario with multi-

antenna UEs. Furthermore, we observed similar results using

ZF combining, with the difference being that higher sum rate

improvements are achieved due to oversampling compared to

employing MRC. Future research may investigate the trade-

off between the OSR and the ADC resolution to maximize the

energy efficiency.
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