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Abstract—We consider channel estimation in systems equipped
with a reconfigurable intelligent surface (RIS). In order to illu-
minate the additional cascaded channel as compared to systems
without a RIS, commonly an unaffordable amount of pilot
sequences has to be transmitted over different phase allocations
at the RIS. However, for a given base station (BS) cell, there
exist immanent structural characteristics of the environment
which can be leveraged to reduce the necessary number of
phase allocations. We verify this observation by a study on
discrete Fourier transform (DFT)-based phase allocations where
we exhaustively search for the best combination of DFT columns.
Since this brute-force search is unaffordable in practice, we pro-
pose to learn a neural network (NN) for joint phase optimization
and channel estimation because of the dependency of the optimal
phase allocations on the channel estimator, and vice versa. We
verify the effectiveness of the approach by numerical simulations
where common choices for the phase allocations and the channel
estimator are outperformed. By an ablation study, the learned
phase allocations are shown to be beneficial in combination with
a different state-of-the-art channel estimator as well.

Index Terms—Reconfigurable intelligent surface, channel esti-
mation, phase optimization, convolutional neural network.

I. INTRODUCTION

RIS-aided systems are enabling enhanced communication

performance and are thus considered to be a key technology

in 6G systems [1]. Having accurate estimates of both the

direct and the cascaded channel including the RIS is crucial.

Since the RIS only consists of passive elements, processing the

impinging waves is not possible. Consequently, no separate

channel estimation can be conducted at the RIS. To fully

illuminate the cascaded channel, a large number of training se-

quences has to be transmitted over different phase allocations

at the RIS. However, the transmission of these long training

sequences drastically diminishes the available time for data

transmission and hence decreases the achievable rate. Since the

number of training phase allocations scales both in the number

of RIS elements and in the number of pilot sequences for a

MIMO system, it is generally considered to be unaffordable

to fully illuminate the cascaded channel [2].

A variety of approaches for phase optimization and channel

estimation is considered in the literature. An on/off strategy

was proposed in, e.g. [3], where the direct and the cascaded

channels are estimated subsequently, which is known to be

suboptimal [4]. As shown in [4], [5], the DFT matrix is
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the optimal phase allocation matrix when employing the

least squares (LS) estimator for full illumination. Unfortu-

nately, the optimal phase allocations are unknown in general

for the minimum mean square error (MMSE) channel estima-

tor or when having reduced phase allocations. Therefore, some

prior works have considered phase optimization or reduction

for specific instances. The work in [6] discusses optimization

of discrete phase shifts, and [7] investigates joint pilot and

phase optimization for the MMSE estimator in the full illu-

mination case. In [8], a projected gradient descent algorithm

for optimizing the phase allocation matrix is proposed which

only holds for a sparse geometry-modeled channel. An element

grouping strategy was proposed in [9] whose disadvantage is

the loss of degrees of freedom at the RIS. To summarize,

none of the existing prior works considers phase reduction

and optimization jointly for a generally unknown and arbitrary

complex channel distribution which we consider in this paper.

Contributions: We investigate the optimization of phase

shifts at the RIS for channel estimation inside a specific BS

cell, especially for a reduced number of phase allocations. To

analyze the potential of phase optimization with respect to a

given radio propagation environment, we perform a study on

reduced DFT-based phases where we exhaustively search for

the best combination of DFT columns as phase matrix, which

is shown to be heavily dependent on the considered scenario.

Motivated by this observation, we propose a NN which

jointly learns the phase matrix and the channel estimator. The

first part of the NN emulates the observed signal by interpret-

ing the angles of the reduced phase matrix as parameterizable

weights. The phase matrix module by design fulfills the unit

magnitude constraint enforced by the passive nature of the

RIS elements that is problematic in classical RIS optimization

algorithms. This allows to adjust the reduced phase matrix

to the propagation scenario by training. The second part of

the NN consists of a convolutional neural network (CNN) for

channel estimation. We show in numerical experiments that the

proposed approach outperforms DFT-based and random phase

allocations together with state-of-the-art channel estimators.

We further perform an ablation study to evaluate the properties

of the optimized phase allocations, i.e., the performance with

respect to a different channel estimator.

II. SYSTEM AND CHANNEL MODEL

We consider a RIS-aided single-input multiple-output

(SIMO) system where we denote the direct channel between
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a single-antenna mobile terminal (MT) and an M -antenna BS

by h0 ∈ C
M . The channel between the RIS with L passive

elements and the MT is denoted by h1 ∈ CL, whereas

the channel between the RIS and the BS is denoted by

H2 ∈ CM×L. The received uplink signal is then given by

y′ = h0 +H2Φh1 + n′ (1)

where Φ = diag(v) ∈ CL×L comprises the unimodular phase

shift coefficients at the RIS elements and n′ ∼ NC(0, σ
2
I)

is additive white Gaussian noise (AWGN). Due to the passive

elements at the RIS, the amplitudes of the reflected signals

are not changed. Hence, vℓ = ejθℓ with the angle θℓ ∈ [0, 2π)
and unit-magnitude entries |vℓ| = 1 for ℓ = 1, . . . , L. With

H = [h0,h
T
1 ⊛H2] ∈ CM×L+1, where ⊛ denotes the Khatri-

Rao product, the system in (1) can be written as y′ = Hv′+n′

where v′ = [1,vT]T, see e.g., [5].

Note that h1 and H2 of the cascaded channel H2Φh1

cannot be estimated explicitly [5]. Therefore, Nv different

phase allocations are considered, that are collected in V =
[v′

1, . . . ,v
′
Nv

], to illuminate the channel. This yields

Y = HV +N ∈ C
M×Nv (2)

as the training sequence where the Nv different observations

are collected as the columns of Y . After vectorization, we get

y = (V T ⊗ I)h+ n = Ah+ n ∈ C
MNv , (3)

with the vectorized expressions h = vec(H), y = vec(Y ),
n = vec(N), and the observation matrix A = V T ⊗ I,

where ⊗ denotes the Kronecker product. We define the

signal-to-noise ratio (SNR) as SNR = 1/σ2 where we nor-

malize the channels to E[‖h‖22] = M(L+ 1).
For the construction of a scenario-specific channel dataset,

we use the QuaDRiGachannel simulator [10]. We consider an

urban macrocell (UMa) scenario following the 3GPP 38.901

specification, where the BS is placed at a height of 25m and

covers a sector of 120°. The RIS is placed opposite to the BS

with a distance of 500m at the same height. Note that, opposite

to the MT with possibly non-line-of-sight (NLOS) channels,

the channel between RIS and BS has line-of-sight (LOS)

condition. We want to highlight that, although the position

of the BS and RIS is fixed, the corresponding channel is

not constant within the dataset but slightly changes according

to the UMa conditions. The generated channels are post-

processed to remove the path gain.

III. REFERENCE METHODS

A. Channel Estimation

We briefly introduce the Gaussian mixture model (GMM)

and the conditional mean estimator (CME) based

thereon from [11], [12]. A GMM with K components

is a probability density function (PDF) of the form

f
(K)
h (h) =

∑K

k=1 p(k)NC(h;µk,Ck) consisting of a

weighted sum of K Gaussian PDFs. Given data samples,

an expectation-maximization (EM) algorithm can be used to

fit a K-components GMM [13, Sec. 9.2]. In [11], [12], a

CME is formulated based on a GMM, which is proven to

asymptotically converge to the true CME when K grows

large. The estimator is formulated as a convex combination of

linear minimum mean square error (LMMSE) terms, given

as

ĥ(K) =

K
∑

k=1

p(k | y)(µk +CkA
HC−1

y,k(y −Aµk)) (4)

where the responsibilities p(k | y) are computed by

p(k | y) =
p(k)NC(y;Aµk,Cy,k)

∑K

i=1 p(i)NC(y;Aµi,Cy,i)
(5)

with Cy,k = ACkA
H + σ2

I, cf. (3). In order to reduce the

online computational complexity of the estimator, structural

features of the covariances can be utilized, cf. [14], which is

out of the scope of this paper.

A LMMSE estimator is evaluated as baseline using a cell-

wide sample covariance matrix C = 1
N

∑N

n=1 hnh
H
n with

N = 19 · 104 training samples to compute

hsample cov. = CAH(ACAH + σ2
I)−1y. (6)

Finally, the LS estimator is ĥLS = A†y = (V †⊗I)y, where

V † is the pseudoinverse of V .

B. Phase Allocations

A simple choice for the phase allocations is to use random

phase shifts for every MT. We therefore construct a phase

matrix by sampling i.i.d. Gaussian realizations from NC(0, 1)
per entry and dividing each entry by its absolute value to fulfill

the unit magnitude constraint. Note that these phase allocations

might be difficult to implement in a practical system because

of the very limited processing ability at the RIS.

Since DFT-based phases are optimal in the full-illumination

case for the LS estimator [4], [5], we evaluate the use of a

DFT submatrix for reduced phase allocations, i.e., the m,nth

entry is given as V sub-DFT
m,n = exp((m−1)(n−1)j2π/Nv) with

m = 1, . . . , L+ 1 and n = 1, . . . , Nv. Note that the columns

of the DFT submatrix are not orthogonal for Nv < L+ 1.

IV. DFT-BASED PHASE ALLOCATION STUDY

In this section, we investigate the potential of the phase

allocation optimization based on a DFT grid. We consider a

BS with a uniform linear array (ULA) consisting of M = 8
antennas serving single-antenna MTs supported by a RIS with

L = 4 × 4 = 16 elements. Instead of full illumination

with L + 1 phase allocations at the RIS we set Nv = 8 in

order to simulate a reduced phase allocation situation. We

then exhaustively search for the best combination of eight

columns drawn from the full (L+1)-dimensional DFT matrix

for 10, 000 uniformly sampled MTs in the BS cell. Note

that this procedure is infeasible in practical systems since

in general
(

L+1
Nv

)

combinations of DFT columns have to be

tested for every MT which drastically increases for higher

numbers of RIS patches. In the considered case this already

yields
(

17
8

)

= 24, 310 combinations. For each MT, we choose
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Fig. 1: Histogram of the occurrence of the DFT columns in

the exhaustive search approach for different RIS configurations

with M = 8, L = 16, and Nv = 8 at a SNR of 40dBm.

the combination which yields the best channel estimation

performance based on the GMM estimator introduced in

Section III-A at an SNR of 40dBm. The histogram in Fig.

1 shows how often each DFT column occurs relatively in the

exhaustive search of DFT column combinations over all MTs

for two different scenarios.

In the first scenario, the RIS array is placed in parallel to

the BS array where it can be observed that especially the

first and last DFT columns occur more frequently in the best-

performing combinations. On average, the best combination

of DFT columns for this scenario is {1, 2, 3, 4, 14, 15, 16, 17}.

In contrast to that, for a scenario where the RIS has a

downtilt of 30◦, the middle DFT columns occur primarily in

the best combinations and {3, 5, 6, 7, 8, 9, 10, 11} is the best

combination on average.

The conclusions of this study are twofold. First, we have

seen that there is great potential for optimizing the phases

since for a given setting, some DFT columns are much more

important than others. Second, we showed that the optimiza-

tion of the phase allocations heavily depends on the considered

scenario. We further evaluate the optimization based on the

DFT grid in the numerical experiments section where we

compare this exhaustive brute-force search approach to our

proposed optimization procedure.

V. LEARNING-BASED JOINT PHASE OPTIMIZATION AND

CHANNEL ESTIMATION

In Section IV, we have seen that the choice of the phase

allocation matrix is depending heavily on the underlying

system setup, i.e., the configuration of the RIS, as well as on

the propagation environment that induces structural properties

which can be exploited for reduced phase allocations. However,

on the one hand, the optimization procedure from Section IV

is infeasible in practice because of the combinatorial search,

on the other hand, it is limited to a search on the DFT grid

which may be sub-optimal in general.

Thus, we propose to utilize machine learning for joint

phase optimization and channel estimation via a specific NN

architecture in RIS-aided systems. In essence, we parametrize

the phase allocations of the matrix V . Due to the passiveness

online phase

H VNN

N

YNN
CNN Ĥ(VNN)

Fig. 2: Flowchart of the proposed NN architecture for joint

phase optimization and channel estimation. In the online phase

only the CNN is evaluated for a fixed VNN.

of the RIS which enforces the unit magnitude constraint, we

only train with respect to the angles of the phase matrix. In

particular, the phase matrix is constructed as

VNN = cos(Φ) + j sin(Φ) (7)

where Φ ∈ RL+1×Nv . A similar approach for the optimization

of a sensing matrix with a magnitude constraint was employed

in [15] which serves as a motivation for our considerations.

The training procedure is summarized as follows. The

parametrized phase matrix VNN given by (7) is multiplied with

a channel realization from the training dataset. Afterwards, we

artificially add AWGN, yielding an emulated observation YNN

following the model in (2). The emulated observation YNN

then serves as the input of a CNN which yields a channel

estimate Ĥ(VNN) at the output. Therefore, the complex-valued

input of the CNN is split into its real and imaginary part

as different convolution channels and each layer employs 2D

convolutions. Since the phase optimization and the training

of the CNN for channel estimation depend on each other, it

is not possible to separately update their parameters. Thus,

we jointly optimize the phase matrix VNN and the CNN

for which we exploit the efficient framework of NNs with

powerful gradient-based optimization techniques. As such, we

can interpret the phase matrix VNN as a layer with a specific

structure, cf. (7), of a larger NN that contains the CNN

as further layers. The described architecture is summarized

as a flowchart in Fig. 2. We utilize labeled data from the

constructed dataset, cf. Section II, to compute gradients with

the mean square error (MSE)

MSE = E[‖H − Ĥ(VNN)‖
2
F ] (8)

as cost function. Note that a single forward pass propagates

through both NN parts and, therefore, all network parame-

ters are updated simultaneously. After training, the optimized

phase allocations are given by (7) and the trained CNN is

extracted as the channel estimator.

We initialize the weights of the phase matrix randomly at

the beginning of the training and we perform a random hyper-

parameter search for the NN parameters, i.e., the batch size (∈
[25, 211]), activation functions (ReLU, Tanh, Sigmoid, SiLU,

ELU), batch normalization, learning rate (∈ [10−5, 10−1]),
number of kernels (∈ [16, 512]) and layers (∈ [3, 9]) for 3× 3
convolution kernels, where we choose the best setting over

100 random initializations.

The optimized phase matrix VNN after training is further

evaluated by an ablation study where it is used in combination
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Fig. 3: M = 8 ULA BS antennas, L = 4× 4 = 16 URA RIS

patches and single-antenna MTs with Nv = L+ 1.

with a different channel estimator, i.e., the GMM estimator

from Section III-A, instead of the trained CNN. Since the

resulting performance is better in comparison to the baseline

phase allocations (cf. Section VI), although the GMM estima-

tor is not jointly trained with the phase matrix, we conclude

that the optimized phase matrix VNN is beneficial for the whole

BS cell and exploits its structural properties.

The online computational complexity of the proposed CNN

estimator is determined by a single forward pass, which

depends on the chosen hyper-parameters, since the optimized

phase matrix VNN is fixed after training, cf. Fig. 2. Note that

we also employ the trained phase matrix VNN when using

the GMM estimator whose online complexity is given in [11],

[14].

VI. NUMERICAL RESULTS

We present numerical results for the described setting in

Section II. We utilize a dataset consisting of 19 · 104 data

samples for fitting the GMM with K = 128 components

and training the NN. Each method is evaluated using 104

samples which are not part of the training data. For all

plots, we evaluate the scenario with a parallel RIS with a

uniform rectangular array (URA) opposite to the BS with a

ULA since the results are qualitatively the same for both

depicted scenarios in Section IV. The curves labeled “LS”,

“sample-cov”, or “GMM” refer to the baseline estimators from

Section III-A, whereas “CNN joint” refers to the proposed

approach from Section V. The additional labeling “DFT”,

“rand”, “opt”, or “hist” refers to the choice of the phase

allocation matrix based on the DFT (sub)matrix or on random

allocations, cf. Section III-B, the optimized phase allocations

from the NN, cf. Section V, or the histogram based search

from Section IV, respectively.

A. Full Illumination

In Fig. 3, we depict results for the case of full illumination,

i.e., Nv = L + 1 with M = 8 ULA BS antennas and L =
4× 4 URA RIS patches. In case of the LS estimator, the DFT

phase matrix is shown to be optimal, cf. [4], [5]. In contrast,

a randomly chosen phase matrix might be ill-conditioned in

general which results, in combination with the LS estimator,
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Fig. 4: M = 8 ULA BS antennas, L = 4× 4 = 16 URA RIS

patches and single-antenna MTs with Nv = 8.

in a normalized MSE that is larger than one. Therefore, it is

not shown in Fig. 3. When using the GMM or the sample-

covariance based estimator, the DFT phase allocations yield a

better performance as compared to random allocations.

Interestingly, it can be observed that the channel estimators

with the optimized phase matrix (“CNN joint” and “GMM

opt”) are able to outperform the DFT matrix in the low SNR

regime with a vanishing gap in the high SNR, where the LS

estimator is reasonable. This means that phase optimization is

in fact useful also for the full illumination case for low SNR

values. Furthermore, since the performance is very similar for

both the GMM and CNN estimator it can be concluded that

the optimized phase matrix is not only useful for the jointly

trained CNN, but is generally adapted to the scenario.

B. Reduced Phase Allocations

In Fig. 4, we show the same setting as in Section VI-A but

with a reduced number of Nv = 8 phase allocations, i.e., less

than 50% of the fully illuminated case. First, it can be observed

that the LS estimator performs poorly due to the under-

determined system. Since the random phases in combination

with the LS estimator show no performance gains, we leave out

this combination in the following. Second, the random phase

allocations outperform the sub-DFT allocations when using the

GMM or sample covariance estimator where the GMM esti-

mator performs significantly better than the sample covariance

estimator. Note that the performance of the sub-DFT phases is

not consistent for an increasing number of phases which can be

explained through the insights from Section IV. Finally, the

CNN and GMM estimator with optimized phase allocations

show a similar performance which is better than all baseline

methods, including the GMM based on the histogram search

method from Section IV. This demonstrates the great potential

of optimization for reduced phase allocations.

Fig. 5 depicts the same setting as before for a fixed SNR

of 40dBm with a varying number of phase allocations. Simi-

larly as before, the methods with optimized phase allocations

outperform all baseline algorithms. For the GMM estimator it
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Fig. 6: M = 16 ULA BS antennas, L = 8×8 = 64 URA RIS

patches and single-antenna MTs with SNR = 40dBm.

is possible to achieve a normalized MSE of 10−2 with only

Nv = 9 phase allocations, whereas more than Nv = 12 phase

allocations are needed to achieve the same MSE when having

random or DFT-based phase allocations. In the case of full

illumination, i.e., Nv = 17, the CNN and GMM estimators

with optimized or DFT-based phase allocations show the same

performance which is in accordance with Fig. 3.

Finally, in Fig. 6, we show results for a larger system setup

with M = 16 ULA BS antennas and L = 8 × 8 URA RIS

patches for a fixed SNR of 40dBm. It can be observed that es-

pecially the gap to the DFT-based phase allocations increases

drastically which perform poorly for this larger system setup.

Once again, the optimized phase allocations allow for drastic

performance gains, which is equivalent to requiring less phase

allocations to achieve the same estimation quality. In conclu-

sion, the optimization of the phase allocations has increasing

potential for larger systems which is in compliance with

the trend to massive multiple-input multiple-output (MIMO)

systems.

VII. CONCLUSION

In this work, we investigated the potential of optimizing

the reduced phase allocation matrix for channel estimation in

RIS-aided systems which tackles the problem of unaffordable

large pilot overhead for full illumination. With a study based

on a selection of DFT columns, we found that the system

setup drastically influences the choice of the optimal phase

allocations. We proposed a NN which jointly learns a phase

allocation matrix together with a channel estimator. The pro-

posed approach outperforms the baseline approaches over the

whole SNR range by a large margin. In addition, when using

the optimized phase allocation matrix for a different state-of-

the-art channel estimator, its performance is significantly in-

creased. This leads to the conclusion that the optimized phase

allocation matrix is able to leverage the inherent structure of

the BS’ environment to performance gains.
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