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Abstract—We propose a hybrid joint source-channel coding
(JSCC) scheme, in which the conventional digital communication
scheme is complemented with a generative refinement component
to improve the perceptual quality of the reconstruction. The input
image is decomposed into two components: the first is a coarse
compressed version, and is transmitted following the conventional
separation based approach. An additional component is obtained
through the diffusion process by adding independent Gaussian
noise to the input image, and is transmitted using DeepJSCC.
The decoder combines the two signals to produce a high quality
reconstruction of the source. Experimental results show that the
hybrid design provides bandwidth savings and enables graceful
performance improvement as the channel quality improves.

Index Terms—Semantic communication, joint source-channel
coding, diffusion model, wireless network.

I. INTRODUCTION

The fast increasing demand for wireless transmission of
high-resolution image and video signals poses a challenge to
current communication systems, as emerging applications such
as metaverse, augmented/virtual reality (AR/VR), Internet-
of-things (IoT), vehicular-to-everything (V2X), require more
robust transmission and realistic reconstruction of video in a
fast-varying wireless communication environment with limited
bandwidth resources. State-of-the-art (SOTA) digital commu-
nication systems are designed based on Shannon’s source-
channel separation theorem [1], which implies that there is
no loss of optimality by applying separate source coding
followed by channel coding, in the asymptotic infinite block
length regime and for ergodic source and channel statistics.
In reality, these idealized assumptions are rarely met [2]; and
therefore, the separation-based digital communication systems
do not operate at the theoretical optimal [3], especially in
the finite block-length regime [4]. Moreover, separation-based
digital communication suffers from sudden quality drop when
the channel (signal-to-noise ratio) SNR drops below a certain
threshold, known as the “cliff effect”, which requires operating
well below the instantaneous channel capacity over time-
varying wireless channels.

Joint source-channel coding (JSCC) has long been studied
as an alternative approach to improve the end-to-end per-
formance in practical systems. Indeed, JSCC predates sepa-
ration based digital transmission approaches, as analog and
frequency modulation (AM/FM) are JSCC schemes based on
direct modulation of the continuous-time input signal onto the

carrier waveform. Later, also in the discrete-time communica-
tion framework, JSCC has been shown to outperform purely
separate approaches in image and video transmission tasks,
particularly in the limited bandwidth scenarios and to provide
more resilience to channel variations [2], [5]. More recently,
in the context of semantic communications [6], deep learning
based JSCC methods, e.g., DeepJSCC, have shown remarkable
results thanks to their ability to learn the mapping directly
from the training data (for both source and channel) [7]–
[13]. Unlike the separation-based digital transmission schemes,
JSCC-based methods directly map the image pixel values
to channel input symbols. Through end-to-end training, the
encoder and decoder pair learn to operate under various
channel conditions.

The hybrid communication scheme proposed in this paper
envisions a system that inherits the advantages of both digital
and joint encoding schemes. By integrating the JSCC-based
communication into the digital communication infrastructure,
which has already been widely deployed, this method aims
to provide bandwidth savings while delivering content with
higher perceptual quality more robustly over unreliable wire-
less channels. We send a low-resolution digitally compressed
version of the input image first by following the conventional
separation-based digital communication approach. Then, we
send a refinement component obtained through the diffusion
process using DeepJSCC [7], to improve the perceptual quality
of the reconstructed image. Inspired by the success of a class
of image generation techniques known as diffusion models
[14], [15], in particular, the score-based diffusion models
[16], [17], the refinement information is obtained by slowly
adding white noise to the signal such that the source distri-
bution is transformed to a Gaussian shape after the Markov
chain of diffusion steps. Compared to other image generation
methods, notably generative adversarial networks (GANs),
diffusion based image generation exhibits better image sample
quality [18]. Moreover, since the diffusion process results in
an approximately Gaussian signal, we exploit the optimality
of ‘analog/uncoded’ transmission of Gaussian sources over
Gaussian channel [19], and transmit this part using JSCC.
Experimental results show that using the same bandwidth and
power resources, compared to using only digital transmission,
the proposed method achieves performance gain in terms of
the reconstruction quality while also providing graceful im-
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Fig. 1: Illustration of the proposed hybrid image transmission scheme. The upper part shows the digital transmission component,
where a coarse compressed version Z of the input image X is digitally transmitted over the wireless channel. By applying
diffusion steps, the noisy version of the source signal XT is extracted, which approximately follows a Gaussian distribution.
The lower part in the figure shows JSCC of XT over the channel. The two signals Ẑ and X̂T are then combined to generate
reconstruction Y using the reverse diffusion steps. The digital stream ensures a reasonable accuracy under distortion metrics,
while the refinement stream aims to improve the perceived visual quality.

provement of the performance as the channel SNR increases,
while the quality of the pure digital transmission does not
increase once the compression rate is fixed.

II. PROBLEM FORMULATION

We consider image transmission over a wireless channel
with limited bandwidth and a transmitter power constraint.
Consider images of height H , width W , and C color channels.
The input image is represented by a real-valued vector x ∈
Rn, where n = H ·W ·C. The transmitter maps the input image
x into a complex-valued vector v ∈ Ck to be transmitted
over the noisy channel. The ratio ρ = k/n is defined as the
bandwidth ratio in the JSCC literature, which indicates the
average number of channel symbols available for each source
symbol. We use capital letters such as X to denote random
variables, lower-case letters such as x to denote corresponding
(vector) instances. In practice, an average power constraint is
also imposed on the transmitter: 1/kE[V V ∗] ≤ 1. Let v̂ ∈ Ck

denote the channel output corrupted by channel noise. The
receiver estimates the input image based on v̂. Let x̂ ∈ Rn

denote the reconstructed image at the receiver. The quality of
the reconstruction is measured by some specified distortion
measure between the original image and the reconstruction.
The goal of wireless image transmission is to design a system
that optimizes the performance of the reconstruction under
limited bandwidth and power resources.

A. Separation-Based Digital Transmission

In current digital transmission systems, image compression
and channel coding are separately performed. The source-
encoded data is transmitted through the wireless channel after
channel coding and modulation. Images are first compressed
using established codecs such as JPEG and JEPG2000, which
consist of sequentially applying some transform coding to

the image pixels, e.g., discrete cosine transform (DCT) or
discrete wavelet transform (DWT), followed by quantization
and entropy coding. Channel coding follows immediately, as
an ideal source coding is not resilient to channel errors. SOTA
channel codes include Turbo, low density parity check (LDPC)
and polar codes. These codes are known to perform close to
the Shannon capacity in the large blocklength regime. The
encoded bitstream is then mapped to some discrete input
constellation, such as 16-QAM and 64-QAM, which maps
the bit sequence to complex-valued channel symbols to be
transmitted over the wireless channel.

The receiver reverses these procedures by first demod-
ulating and decoding the channel code, trying to mitigate
any impact of the channel noise, and the decompressor is
applied afterwards to reconstruct the original input image. The
demodulator, channel decoder, and decompressor are chosen
to match the forward modules in the encoding process. The
source and channel coding rates and the modulation scheme
are chosen jointly according to the channel condition and the
source characteristics to minimize the end-to-end distortion,
which is caused by both the errors over the channel and the
quantization in source coding.

III. HYBRID TRANSMISSION FRAMEWORK

In this section, we will introduce the proposed hybrid
transmission scheme that benefits from both the accuracy of
the separation-based digital communication system and the
efficiency and robustness of the JSCC scheme.

A. Model Description

A diagram of the system model is shown in Fig. 1. Consider
the input signal X with sample space consisting of images
(real-valued vectors) in Rn. In the hybrid framework, the
signal X is decomposed into the pair (Z,XT ) = fθ(X),



Fig. 2: The neural network architecture of the JSCC encoder and decoder.

where Z represents a generic compressed version of X such
that H(Z) ≪ H(X0), i.e., the number of bits required to
represent Z is much smaller than that for X .

The coarse compressed component z is transmitted in the
conventional digital manner (e.g., LDPC code + 16-QAM) to
obtain a complex-valued channel input vd = fd(z) ∈ Ckd ,
where kd is the dimension of the channel input for digital
transmission.

The complementary component XT is obtained by fol-
lowing a forward diffusion process, where X0 = X , and
Xt is corrupted from t = 0 to t = T using independent
additive Gaussian noise at each step, so that xT ∈ Rks

approximately follows a Gaussian distribution. Moreover, by
integrating convolutional layers into the neural network of the
diffusion model, the dimension of the data is reduced. This
final result of the diffusion process is transmitted directly over
the channel, by first pairing the real outputs to form complex
channel inputs. We denote the corresponding channel input
by vs ∈ Cks . Overall, the channel input is obtained by the
concatenation of the digital and diffusion-based joint encoded
components, V = [VdVs], for which the bandwidth ratio is
given by ρ = (kd + ks)/n. We also allocate the available
power between the two streams Vd and Vs to optimize the
performance.

Through end-to-end training, the decoder learns a reverse
diffusion process that recovers the signal at t = 0 from t = T .
So, after receiving (V̂d, V̂s), the receiver first recovers Ẑ and
X̂T , and then generates a reconstruction Y = gϕ(Ẑ, X̂T ),
where gϕ is a pre-trained neural network reversing a condi-
tional diffusion process.

B. Decomposition of the Source Signal
In principle, the compression Z can be obtained using an

arbitrary compression scheme. Arguably, the most common
image compression algorithm is the JPEG standard. When
applying the JPEG compression, the input image is first
divided into small tiles, then the DCT transform is applied,
and the resulting coefficients are quantized with a pre-defined
quantization table. The level of quantization can be chosen to
achieve different reconstruction qualities. When less number of
bits are used, the reconstructed image becomes more blurred.
In our setting, Z can be a coarse compression of X with very
low number of bits per pixel.

Recent research shows that the JSCC scheme combined with
a generative model for reconstruction can achieve significant

bandwidth reduction, while significantly improving the per-
ceptual quality of the reconstruction [20]. While a pretrained
generative model based on GANs is employed in [20], here
we will use a diffusion process, which has shown remarkable
generative capability in a series of recent papers [16], [17].

The forward diffusion process is undertaken to encode the
refinement information with the following Gaussian transition
kernel:

pt(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). (1)

Furthermore, Xt can be sampled directly according to the
cumulative kernal [15], such that

Xt =
√
ᾱtX0 +

√
1− ᾱtϵ, (2)

where ᾱt =
∏t

s=1(1− βs) and ϵ ∼ N (0, I).

C. Channel Transmission

The additive white Gaussian noise (AWGN) channel is
adopted in this work, as it has been widely used to represent
realistic wireless channel conditions. The channel input signals
are transmitted through the noisy channel with the following
transfer function

ηn(V ) = V + n, (3)

where n is the additive independent and identically distributed
(i.i.d.) Gaussian noise signal, n ∼ CN (0, σ2I), and σ2 is
the average noise power. We enforce a total average power
constraint such that

1

n
E[VdV

∗
d + VsV

∗
s ] ≤ 1. (4)

The quality of the communication channel is measured by the
average SNR, defined as SNR = 10 log10

1
σ2 .

Notably, since the signal XT approximately follows a
Gaussian distribution, it is expected that transmitting it over the
AWGN in an ‘analog/uncoded’ fashion is more efficient, since
it is known that the uncoded transmission of i.i.d. Gaussian
samples over an AWGN channel achieves the optimal perfor-
mance despite operating over a finite block lengnth [19]. Here,
instead of the channel coding/decoding and channel modu-
lation/demodulation, a pair of joint source-channel encoder
and decoder is trained in an end-to-end fashion, treating the
AWGN channel as a non-trainable layer represented by the
transfer function ηn with a range of SNR values.



PSNR/SSIM 18.77dB/0.76 20.47dB/0.82

PSNR/SSIM 19.91dB/0.77 21.85dB/0.84

PSNR/SSIM
(a) Original data X

21.13dB/0.81
(b) Digital part Ẑ

22.85dB/0.86
(c) Reconstruction Y

Fig. 3: Example of reconstructions of (a) original images
produced by (b) the baseline digital schemes that concatenate
JPEG image compression, LDPC code, and QAM modulation,
and (c) our hybrid scheme. From top to bottom, the rows
correspond to bandwidth compression ratios 1/4, 3/8, 5/8.

D. Neural Network Architecture

As shown in Fig. 2, for the diffusion model, we use the
common U-net architecture [21] with adaptations [16], which
consists of multiple 2D convolution layers. We use positional
embedding to encode the time step t. Each embedder block
consists of a goup norm, a sigmoid block, and a linear layer
that incorporates t and the conditional information from the
digital transmission.

The objective of the training is to obtain a high-quality
reconstruction y ∼ PY of the realization x0 ∈ Rn in the same
sample space at the decoder’s end. The quality of the recon-
struction is traditionally evaluated using distortion measures
such as the peak signal-to-noise ratio (PSNR). Other measures,
such as the structural similarity index (SSIM), and the learned
perceptual image patch similarity (LPIPS) have been shown to
better capture the perceptual quality of the construction, which
is a major focus of semantic communications [6].

In a recently developed theory of the rate-distortion-
perception trade-off [22]–[24], the perceptual quality is mea-
sured by the discrepancy between the probability distributions
of the input data and the reconstruction. In addition, the
semantic information XT can be viewed as a latent variable,
following the line of research in [25]. Therefore, the model is
trained to minimize the average distortion between the input X

(a) PSNR

(b) SSIM

(c) LPIPS

Fig. 4: Comparison of the proposed hybrid transmission
scheme trained under channel SNR = 10dB with the baseline
digital scheme evaluated using (a) PSNR (larger is better), (b)
SSIM (larger is better), and (c) LPIPS (smaller is better) over
various channel conditions with SNR = 10, 20, 30(dB).

and its reconstructions Y as well as the distance between the
input distribution PX and the output distribution PY capturing
the perceptual quality, i.e.,

min
θ,ϕ

λ1Ep(x,y)[d(X,Y )] + λ2L(PX , PY ), (5)

where d(·, ·) and L(·, ·) represent the distortion metric and
the perceptual loss. The digital transmission stream ensures
a reasonable accuracy of the reconstruction using distortion
metrics, while the forward and reverse diffusion processes op-
erates directly on the probability distributions, which improve
the perceived visual quality of the reconstruction.



IV. SIMULATION RESULTS

We evaluate the performance of the proposed hybrid digital-
semantic communication framework under difference channel
SNRs on the MNIST database, which contains 60,000 training
images and 10,000 testing images of hand-written digits. The
dimension of the images is N = 28 × 28 × 1 (height, width,
channels). The first column of Fig. 3 are examples of the
original images.

For the digital transmission stream, we concatenate the
JPEG compression with LDPC codes, QAM modulation, and
AWGN channel sequentially. We implemented combinations
of 4-QAM, 16-QAM, and 64-QAM modulation schemes and
LDPC codes with corresponding rates. Examples of recovered
images after compression, channel coding, modulation, and
their reversals are shown in the second column of Fig. 3. For
fair comparison, we stripped the header information for JPEG
when computing the source coding rates.

For the semantic transmission stream, we train the model on
the AWGN channel with SNR = 10dB. The batchsize during
the training is set as 64 and the learning rate is 1e−4. The
reconstructed images at the receiver combining the digital and
semantic datastreams are shown in the third column of Fig. 3.

We further test the pre-trained system under different chan-
nel conditions with SNR = 10, 20, 30(dB). The results are
presented in Fig. 4. At the same bandwidth compression level,
the hybrid scheme significantly improves the reconstruction
quality in terms of PSNR, SSIM, and LPIPS. In comparison
to the digital transmission scheme, when PSNR = 21, the
hybrid scheme provides a bandwidth reduction of 33.3%;
when SSIM = 0.83, the hybrid scheme provides a bandwidth
reduction of 47.2%. Moreover, when testing under different
channel SNRs (dashed lines), the performances do not suffer
from the “cliff effect”, which indicates an improved robustness
of the transmission under channel variation.

We note here that the current results are limited to the
MNIST dataset mainly due to the difficulty of training the neu-
ral network associated with the diffusion model. These should
be treated as promising initial results, and more complex
datasets using more efficient training techniques is currently
under investigation.

V. CONCLUSION AND FUTURE WORK

We propose a novel image transmission scheme that com-
bines the SOTA digital communication with the emerging
semantic communication utilizing recent developments in
diffusion-based generative modeling. The hybrid scheme pro-
vides bandwidth savings while providing graceful performance
improvement with channel SNR. There are several interesting
directions for future research. First, current hybrid framework
is designed for and evaluated on AWGN channels. Future
investigations will include extensions to other channel models,
including fading channels. Second, the proposed algorithm is
designed for image transmission. In principle, other types of
data, such as video and audio, can also be transmitted using
the same framework. Third, efficient algorithms for power

allocation between the digital and semantic signals with power
division rather than time division shall be investigated.
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