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Abstract—Wireless Sensor Networks (WSNs) are widely used
for environmental sensing, where numerous low-complexity sen-
sors are deployed to collect and partially process measure-
ments. The data is then transmitted to a computing center
for information fusion and estimation. Integrated Sensing and
Communications (ISAC) is a recent approach that enables
simultaneous sensing and data transmission by designing the
waveform, architecture, and protocol. This approach has the
potential to improve real-time computing and spectral utilization
in WSNs. In this paper, we propose a frequency-modulated
continuous-wave (FMCW)-based waveform for ISAC, which is
cheaper and more suitable for WSNs than other waveforms. We
use a pulse-by-pulse modulation scheme to embed communication
symbols across all pulses, minimizing the averaged mean square
error (AMSE) of these symbols. Additionally, we design the
combiner matrix of the computing center in the presence of
channel uncertainty. Numerical experiments are conducted to
evaluate the effectiveness of the proposed approach.

Index Terms—FMCW, integrated sensing and communications,
wireless sensor network, target estimation

I. INTRODUCTION

The Internet of Things (IoT) has revolutionized the way
devices with sensing, computation, and communication capa-
bilities interact and coordinate, paving the way for applications
such as smart cities and industry 4.0. At the heart of this
transformation lies wireless sensor networks (WSNs), which
serve as the foundation of IoT by facilitating communication
and sensing among a large number of distributed sensors
[1], [2]. Typically, the traditional approach of dividing the
sensing-communication process into separate stages results in
decreased real-time performance and resource utilization.

To address these limitations, the integrated sensing and
communication (ISAC) technique has emerged as a promis-
ing solution in the context of beyond 5G (B5G) and 6G
technologies. ISAC enables simultaneous sensing and com-
munication in the same spectrum by cleverly designing dual-
function waveforms, such as orthogonal frequency-division
multiplexing (OFDM)-based waveforms. Numerous studies in
the open literature have explored the use of OFDM-based
waveforms for ISAC. To name a few, the OFDM-based dual-
function waveform design considered in [3] boils down the
the digital and analog precoding design corresponding to the
double-phase-shifter structure. In [4], to achieve a favorable
performance trade-off between radar and communications,
the powers of OFDM subcarriers are optimized in a time-
frequency region of interest. The recent work [5] proposes a
method, by dividing the OFDM subcarriers into shared and
private ones, to obtain coarse angle estimates first and then

fine-tunes the estimates on the private subcarriers. It is worth
mentioning that the OFDM signals has been applied in WSNs
[6]–[8] which primarily focused on data transmission and
estimation.

The emerging ISAC technology has also been anticipated to
be applied in the WSN as clearly stated in the recent survey
[9]. Nevertheless, WSN applications have unique characteris-
tics that differentiate them from traditional cellular communi-
cation systems and require tailored solutions for ISAC. First,
WSNs often have massive sensor deployments with limited
capabilities per sensor to keep costs low, such as single anten-
nas and simple receivers. Second, the data transmitted between
sensors and the computing center is frequent and lightweight,
such as in target localization where only target coordinates
need to be sent. These factors make frequency-modulated
continuous-wave (FMCW) waveform a suitable candidate for
many WSN scenarios. There have been some studies in the
literature exploring the use of FMCW waveform for ISAC
in different scenarios. In [10], the index modulated FMCW
waveform on a sparse array is proposed. The work [11] studied
the phase coded FMCW analytically and verified its efficacy
for sensing and communication purposes experimentally.

In this paper, we investigate the usage of FMCW-based
waveform for ISAC in the context of WSNs. Specifically,
we propose a system where sensors emit pulse trains, with
each pulse being a FMCW signal embedded with communica-
tion symbols for simultaneous data transmission. To enhance
communication performance, the inter-pulse modulation and
the combiner at the computing center are also jointly de-
signed, which is mathematically formulated as minimization
of average mean squared error (MSE). Correspondingly, an
alternating method is derived, in which each subproblem can
be solved optimally with closed form solutions.

II. INFORMATION-EMBEDDED FMCW AND ISAC MODEL

As shown in Fig. 1, we consider an ISAC system for
the WSN application such as target estimation, where M
sensors will illuminate the target and communicate with a
computing center. Each sensor is assumed to be low-cost and
lightweight-computing, and hence a single antenna is equipped
for transmitting and receiving signals. In the transmit signals,
the information is embedded and captured by the computing
center, which is equipped with Nc antennas.
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Fig. 1. ISAC in the IoT Application.

A. Information-Embedding FMCW Pulses

The m-th sensor emits the FMCW signal, and its baseband
form is defined as

um (t) = rect
(
t− TPRI/2

TPRI

)
ejβmt2 , (1)

where TPRI is the pulse repetition interval (PRI) and βm is the
chirp rate, rect (·) represents the rectangular envelope centered
at t = TPRI/2 with the width TPRI . Assuming that K pulses
will be transmitted by the m-th sensor in a single coherent
processing interval (CPI), which is given by

sm (t) =

K−1∑
k=0

cmxm [k]um (t− kTPRI) e
j2πfct, (2)

where fc is the carrier frequency. In light of pulse agility, a
means to incorporate a communication function into the radar
emission, we modulate the transmit waveform on a pulse-to-
pulse basis by cmxm [k] ,∀k = 0, . . .K− 1, and cm is known
to the sensor as the communication symbol to be sent to the
computing center and is encoded on all the K pulses.

B. Sensing Model

Considering the moving target is with range Rm and veloc-
ity νm with respect to the m-th sensor, the received echo at

the m-th sensor is

rm (t)

=σmsm (t− τm) +
∑

m′ ̸=m

σm′sm′ (t− τm′)

=σm

K−1∑
k=0

cmxm [k]um (t− kTPRI − τm) ej2πfc(t−τm)+

∑
m′ ̸=m

K−1∑
k=0

σm′cm′xm′ [k]um′ (t− kTPRI − τm′) ej2πfc(t−τm′ ),

(3)
where τm = 2Rm

c + 2νmt
c = τm,r + τm,d. After the downcon-

version, the baseband signal is

ym (t)

=rm (t) e−j2πfct

=σmcm

K−1∑
k=0

xm [k]um (t− kTPRI − τm) e−j2πfcτm+

∑
m′ ̸=m

σm′cm′

K−1∑
k=0

xm′ [k]um′ (t− kTPRI − τm′) e−j2πfcτm′ ,

(4)
which is further dechirped by mixing with the source chirp to
generate the intermediate-frequency signal

zm (t)

=σmcm

K−1∑
k=0

xm [k] e−j2πτm[βm(t−kTPRI)+fc]+

∑
m′ ̸=m

σm′cm′

K−1∑
k=0

xm′ [k] e−j2πτm′ [βm(t−kTPRI)+fc].

(5)

Therefore, the receiver output for each pulse will be a function
of both fast and slow time and can be written as

zm (n, k)

=σmcmxm [k] e−j2π(βmτm,r+fm,d)
n
fs e−j2πfm,dkTPRI+∑

m′ ̸=m

σm′cm′xm′ [k] e−j2π(βmτm′,r+fm′,d) n
fs e−j2πfm′,dkTPRI

≈σmcmxm [k] e−j2πβmτm,r
n
fs e−j2πfm,dkTPRI+∑

m′ ̸=m

σm′cm′xm′ [k] e−j2πβmτm′,r
n
fs e−j2πfm′,dkTPRI

(6)
where t = n

fs
+ kTPRI , fs is the sampling frequency, n =

1, 2, ..., Ns with Ns being the number of samples fs in one
chirp.

Remark 1: The first term in equation (6) accounts for the
target range-Doppler information with respect to the m-th
sensor while the other terms are the interference caused by
other sensors. After applying the 2D-FFT on the data matrix
zm (n, k), the range-Doppler image will contain M target
points. Generally, The true target information can be inferred
correctly at the computing center by considering all range-
Doppler information of all sensors.



Remark 2: To eliminate the above-mentioned interference
perfectly, it is accessible to incorporate the time division
multiple access (TDMA) techniques [12]. Since all the sensors
are single-antenna, applying the TDMA on all distributed
sensors will inherently avoid the transmit power loss in the
TDMA MIMO radar considered in [12].

C. Communication Model

For the communication model, after the downconversion
and dechirp, by the combiner A, the estimate of the symbols
{cm}Mm=1 is modeled as

ĉt = AH

(
M∑

m=1

hmsm (t) + nc (t)

)
∈ CM×1, (7)

where A is the combiner, and hm is the channel vector from
the m-th sensor to the EC, and nc (t) is the Gaussian noise
with nc (t) ∼ N

(
0, δ2nI

)
.

Given that the goal is to estimate c = [c1, . . . , cM ]
T from

the K received samples {ĉk}Kk=1, we can formulate the model
as

ĉ = AH
K∑

k=1

(
M∑

m=1

hmcmxm [k] + nc [k]

)
∈ CM×1, (8)

where ĉ = [ĉ1, . . . , ĉM ]
T is the estimate of c, which implies

that A essentially combine all signals and yield the average of
{ĉt}. To consider the channel uncertainty, we further model
hm as

hm = hc
m +∆hm, (9)

where ∆hm ∼ N
(
0, ν2mI

)
being Gaussian channel uncer-

tainty independent with nc (t).
This model can be expressed as

ĉ = AHH̄Xc+AH∆HXc+AHñ, (10)

where X = Diag
(
xT
1 1, . . . ,x

T
M1
)
, H̄ = [h1, . . . ,hM ],

∆H = [∆h1, . . . ,∆hM ], c = [c1, . . . , cM ]
T ∼ N

(
0, δ2cI

)
and ñ =

∑K
k=1 nc [k] which follows ñc ∼ N

(
0,Kδ2nI

)
. It is

noted that the communication symbols c is the estimate of tar-
get location and radial velocity at previous round, which will
be received in the computing center for estimation refinement.
For example, when all the estimated ranges are collected in
the computing center, the target location can be refined in the
sense of minimizing MSE.

III. PROBLEM FORMULATION AND SOLVING APPROACH

A. Problem Formulation

Given the channel uncertainty ∆H , the MSE of the com-
munication symbols c is

MSE (∆H) = Tr
(
E
[
(ĉ− c) (ĉ− c)

H
])

, (11)

and further, the average MSE is defined as

AMSE = E [MSE (∆H)] . (12)

The derivation is straightforward and thus omitted, and the
final expression is

AMSE

=δ2cTr
(
AHH̄XXHH̄

H
A
)

− δ2cTr
(
AHH̄X +XHH̄

H
A
)

+
[
δ2cTr

(
V XXH

)
+Kδ2n

]
Tr
(
AHA

)
+ δ2cM,

(13)

where V = Diag
([
ν21 , . . . , ν

2
M

])
.

Thus, the problem is formulated as the minimization of
AMSE

minimize
A,{xm}

Tr
(
AHH̄XXHH̄

H
A−AHH̄X +XHH̄

H
A
)

+

(
Tr
(
V XXH

)
+K

δ2n
δ2c

)
Tr
(
AHA

)
subject to ∥xm∥2 = Pm,∀m = 1, . . . ,M

∥A∥2F = Pc.
(14)

The problem is nonconvex and variable-coupled in the objec-
tive function. In addition, from the formulation, we can see
that optimizing pulse modulation xm can improve the AMSE
performance while its effect on sensing is vague as shown in
equation (6).

B. Alternating Optimization
To solve this problem, we adopt the alternating optimization

method. For the fixed (X,p), the subproblem of A is

minimize
A

Tr
(
AHH̄XXHH̄

H
A−AHH̄X +XHH̄

H
A
)

+

(
Tr
(
V XXH

)
+K

δ2n
δ2c

)
Tr
(
AHA

)
.

(15)
The above problem is an unconstrained quadratic convex
problem in terms of the combiner matrix A, and hence
the optimal solution can be obtained by differentiating the
objective function with respect to A and setting it equal to
zero. It yields the closed-form expression for the optimal MSE
combining matrix as

A =

(
H̄XXHH̄

H
+ Tr

(
V XXH +K

δ2n
δ2c

)
I

)−1

H̄X.

(16)

For the fixed A, the subproblem of (X,p) is

minimize
{xm}

Tr
(
XHTX

)
− 2ℜ

{
Tr
(
GHX

)}
subject to ∥xm∥2 = Pm,∀m = 1, . . . ,M.

(17)

where T = H̄
H
AAHH̄ + Tr

(
AHA

)
V and G = H̄

H
A.

Recall that X = Diag
(
xT
1 1, . . . ,x

T
M1
)
, the objective

function of problem (17) can be expressed as

Tr
(
XHTX

)
− 2ℜ

{
Tr
(
GHX

)}
=

M∑
m=1

tmxH
m11Hxm + xH

mgm + gH
mxm

(18)



TABLE I
SENSOR CONFIGURATIONS

Configurations Values

Central frequency fc [GHz] 60
Bandwidth B [GHz] 1.8
FMCW slope β [MHz/µs] 30
pulse repetition interval TPRI [µs] 60
pulse repetition count K 128
Sampling rates fs [MHz] 10
Fast time sampling number Ns 256
Location of Sensor 1 [m] (1, 1)
Location of Sensor 2 [m] (4, 8)
Location of Sensor 3 [m] (8, 0)

where tm is the m-th diagonal element of T , gm = −gm1
with gm being the m-th diagonal element of G. Thus, problem
(17) can be decoupled to be M independent problem as

minimize
xm

tmxH
m11Hxm + xH

mgm + gH
mxm

subject to xH
mxm = Pm,

(19)

By setting the gradient of the Lagrangian equal to zero, we
have

xm = −1

2

(
tm11H + ρmI

)−1
gm, (20)

where ρm is the Lagrange multiplier. Substituting it into the
constraint and then have

1

4
gH
m

(
tm11H + ρmI

)−1 (
tm11H + ρmI

)−1
gm = Pm

(21)
Denote the EVD of tm11H by UHΦU , where Φ =
Diag ([tm,1, . . . , tm,K ]) with

tm,k =

{
Ktm k = 1

0 k ̸= 1,

then equation (21) becomes, defining g̃m = Ugm,

1

4
g̃H
m (Φ+ ρmI)

−1
(Φ+ ρmI)

−1
g̃m = pm, (22)

which can be further expressed as

g (ρm) =
1

4

K∑
k=1

∣∣∣∣ g̃m,k

tm,k + ρm

∣∣∣∣2 − Pm = 0, (23)

where g̃m,k is the k-th element of g̃m. Similarly, g (ρm) is
monotonically decreasing and its root can be uniquely found
be bisection, following which we obtain the optimal xm.
Therefore, g (µ) is monotonically deceasing in the possible
region of solution, and any local solution is guaranteed to exist
and be unique, which can be found by bisection and Newton’s
method.

IV. SIMULATION RESULTS

In the simulation section, we will evaluate the performance
of sensing and communications by the proposed ISAC ap-
proach. The size of the whole test area is 10m by 10m. The
target location is randomly generated in the whole area and
its velocity is a random value within 5 m/s. The parameters
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Fig. 2. Case 1: Sensing performance and target estimation
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Fig. 3. Case 2: Sensing performance and target estimation

on FMCW pulse trains and testing scenarios are summarized
in Table I. Unless otherwise specified, the parameters utilized
in all simulation results remain consistent.

In Fig. 2, we present the sensing results on each sensor
by conducting the 2D-FFT on the receiving data for one pulse
train.We can see that the largest range-Doppler responses of all
sensors correspond to the target location and projected radial
velocity. After sending the sensing results to the computing
center, the target is estimated accurately.

Further, we consider another scenario where the target is far
away from one sensor as shown in Fig 3. It is observed that
the possible target location by sensor 1 is false, which leads
to the false estimation at the center by TOA localization.

Comparing the two examples, we find that the target
location has a non-negligible influence on the estimation
performance. We conduct a Monte-Carlo experiment, where
we generate the target location randomly for the central region
marginal region (i.e. inside and outside of the envelope defined
by the sensors). The result is presented in Fig. 5. It implies that
increasing the number of sensors and proper placement could
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be a solution to improve the overall performance as studies in
[13].

In Fig. 5, we have plotted the communication MSE as a
function of the total transmit power budget of the WSN. It
can be readily observed that, as expected, with an increase
in the total transmit power budget of the sensor, the com-
munication MSE decreases monotonically. Another intuitive
observation that can be deduced from the figure is that as the
channel uncertainty variance increases in the WSN, the MSE
performance tends to deteriorate.

V. CONCLUSIONS

This paper proposed an FMCW-based waveform for ISAC
in WSNs. This approach enables simultaneous sensing and
data transmission, potentially improving real-time computing
and spectral utilization in WSNs. The proposed pulse-by-pulse
modulation scheme embeds communication symbols across all
pulses, minimizing the AMSE of these symbols. Additionally,
our algorithm designed the combiner matrix for the EC in
the presence of channel uncertainty. Numerical experiments

are conducted to evaluate the effectiveness of the proposed
approach. The results show that the proposed approach is
effective and efficient, making it a suitable option for WSNs.
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