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Abstract—Due to the finite bandwidth of practical wireless
systems, one multipath component can manifest itself as a discrete
pulse consisting of multiple taps in the digital delay domain.
This effect is called channel leakage, which complicates the
multipath delay estimation problem. In this paper, we develop a
new algorithm to estimate multipath delays of leaked channels
by leveraging the knowledge of pulse-shaping functions, which
can be used to support fine-grained WiFi sensing applications.
Specifically, we express the channel impulse response (CIR) as a
linear combination of overcomplete basis vectors corresponding
to different delays. Considering the limited number of paths
in physical environments, we formulate the multipath delay
estimation as a sparse recovery problem. We then propose a
sparse Bayesian learning (SBL) method to estimate the sparse
vector and determine the number of physical paths and their
associated delay parameters from the positions of the nonzero
entries in the sparse vector. Simulation results show that our
algorithm can accurately determine the number of paths, and
achieve superior accuracy in path delay estimation and channel
reconstruction compared to two benchmarking schemes.

Index Terms—channel leakage, multipath delay estimation,
pulse shaping, sparse recovery

I. INTRODUCTION

In the past years, WiFi has evolved beyond its initial role

of providing connectivity among wireless devices to also

encompass the capability of sensing surrounding environments

[1], [2]. This new trend has facilitated various applications

such as indoor localization, human gesture recognition, and

vital sign detection, making WiFi a key enabling technology

in the era of the Internet of things. In current WiFi systems,

orthogonal frequency division multiplexing (OFDM) is used

to combat frequency-selective fading. The channel frequency

response in WiFi OFDM systems is often referred to as

channel state information (CSI) in the sensing area. Recently,

several tools have been developed to extract the CSI from

commodity WiFi devices [3], [4]. These complex-valued CSI

can provide fine-grained information of the environment, and

has been widely used in WiFi sensing.

In the field of indoor localization, the path delay is a key

parameter to determine the position of a target because it

This research was supported in part by project #MMT 79/22 of the Shun
Hing Institute of Advanced Engineering, The Chinese University of Hong
Kong. The authors would like to thank Soung Chang Liew for his insightful
discussions on channel sparsity and the impacts of pulse shaping.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Fig. 1. Illustration of the channel leakage effect with a path delay of 20 ns

and a sampling period of 50 ns. A truncated raised-cosine filter with a roll-off
factor of 0.05 and a length of 16 is used. In WiFi systems, packet detection
is performed by a cross-correlation operation to identify the instance with
the greatest signal strength. Therefore, the first tap corresponds to the sample
with the largest amplitude in the pulse, and the taps preceding this point are
shifted to the end of the CIR. As a result, the absolute delay information is
lost due to the packet detection.

reflects the distance between the target and a WiFi device.

However, it is nontrivial to obtain an accurate estimate of

the path delays from CSI. In wireless systems, pulse shaping

and matched filtering are performed at the transmitter and the

receiver, respectively. Due to the limited system bandwidth,

when the delay of a physical path is a non-integer multiple of

the sampling period, the multipath component in the discrete

delay domain will manifest itself as a pulse consisting of

multiple taps, instead of a single tap. This effect is called

channel leakage [5]. An example of the channel impulse

response (CIR) with the leakage effect is illustrated in Fig. 1,

in which the system has a sampling period of T = 50 ns while

a path arrives at τ = 20 ns. Consequently, a pulse consisting

of 16 taps is produced.

Based on the above observation, a significant problem arises

if two taps within the same pulse are recognized as two

physical paths with distinct delays. This situation can lead

to severe degradation of the localization accuracy, especially

in multipath-aided applications such as [6]. Although existing

subspace-based methods [7] can directly estimate the delay

parameters from the frequency domain and circumvent the

above issue, these algorithms rely on the underlying as-

sumption of using an ideal pulse shaping filter with a flat

frequency response on data subcarriers. However, practical

pulse functions have a finite time duration, incurring ripples in

the passband and thus breaking the fundamental assumptions

of those subspace-based methods. In [8], the authors developed
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an atomic norm-based approach to estimate the channel and

further obtain the multipath parameters by incorporating the

effect of pulse shaping. However, their algorithm focuses on

single-carrier systems and also imposes stringent requirements

on the pulse parameters of the widely-used raised-cosine filter,

largely limiting their practical applications.

In this paper, we leverage the knowledge of the pulse shape

and propose a new algorithm for multipath delay estimation.

Since the CIR can be regarded as a superposition of multiple

pulses shifted by different delays, we discretize the delay

parameter into a set of grid points and formulate a sparse

recovery problem using overcomplete basis vectors composed

of discretized pulses shifted by the delays in the grid. We

apply the sparse Bayesian learning (SBL) method [9] to update

the weights of the basis vectors. The delay parameters of the

physical paths can be automatically identified from the posi-

tions of nonzero weights, without requiring additional complex

algorithms (e.g., [10]) to determine the number of paths.

It is worth noting that the effect of pulse shaping has

been investigated in conventional sparse channel estimation

works (e.g., [5], [11]). Indeed, the orthogonal matching pursuit

(OMP)-based method proposed in [11] can be adapted to

address the problem in this paper. Nevertheless, as shown in

Section IV, the method achieves inferior performance for delay

estimation due to its greedy nature, even when the number of

paths is given.

II. SIGNAL MODEL

We consider a physical multipath channel in the delay

domain

hp(τ) =

L−1
∑

ℓ=0

αℓδ(τ − τℓ), (1)

where L is the number of paths, while αℓ and τℓ are the

complex amplitude and the delay of the ℓ-th path, respectively.

A composite channel incorporating the effect of pulse shaping

can be expressed as

h(τ) = hp(τ) ⊗ gt(τ) ⊗ gr(τ) = hp(τ) ⊗ g(τ)

=

L−1
∑

ℓ=0

αℓg(τ − τℓ),
(2)

where ⊗ denotes the convolution operation, gt(τ) and gr(τ)
are the pulse shaping filter at the transmitter and the matched

filter at the receiver, respectively, and g(τ) , gt(τ) ⊗ gr(τ).
In this paper, we consider a truncated raised-cosine pulse

function, i.e., g(t) = sinc
(

t
T

) cos(πβt

T )
1−( 2βt

T )2
w
(

t
LpT

)

, where T is

the sampling period, β is the roll-off factor, sinc(t) = sin(πt)
πt

is the sinc function, and w(t) is a window function such that

w(t) = 1 for |t| ≤ 1 and w(t) = 0 otherwise. Discretizing the

composite channel in (2), we have1

hn = h(nT ) =

L−1
∑

ℓ=0

αℓg(nT − τℓ), n = 0, · · · , N − 1, (3)

1Unlike in Fig. 1, we do not account for the delay shift because we can
always shift the taps at the end of the CIR back to the beginning.

where N corresponds to the maximum delay spread of the

composite channel. The leakage effect is evident from (3) as

the energy of a path leaks to multiple taps in a pulse, making it

challenging to figure out the exact delay of the physical path.

For a WiFi OFDM system with K subcarriers, the frequency

response of the composite channel on subcarrier k is given by

Hk =

N−1
∑

n=0

hne
−j2πkn/N , k = 0, · · · ,K − 1. (4)

In practical WiFi systems, only a subset of subcarriers are

used to transmit data/pilot symbols. For example, in IEEE

802.11a, the 0-th subcarrier is left unused due to the strong DC

interference, and subcarriers indexed from 27 to 37 are also

excluded to avoid interference from neighboring channels. In

this paper, we estimate multipath delays from the CSI on those

subcarriers available for data/pilot transmission.

III. SBL-BASED DELAY ESTIMATION

In this section, we first leverage the knowledge of the pulse

shape to formulate multipath delay estimation as a sparse

recovery problem by discretizing the delay parameters into

grid points, and then propose an SBL-based approach to

estimate the delay parameters of the physical paths.

A. Problem Formulation

Denote hd = [h0, · · · , hN−1]
T and hf =

[H0, · · · , HK−1]
T . The relationship between hf and hd

can be written as

hf = F0:N−1hd, (5)

where F0:N−1 is a partial discrete Fourier transform (DFT)

matrix composed of the first N columns of a complete DFT

matrix F of size K , with the (m,n)-th entry of F given

by Fm,n = e−j2πmn/N . As mentioned in Section II, only a

portion of the frequency response is available. Therefore, the

measured CSI can be expressed as

y = FI,0:N−1hd + n, (6)

where y is the measured CSI, I is the index set of subcar-

riers used for data/pilot transmission, FI,0:N−1 is a matrix

composed of |I| rows of F0:N−1 corresponding to the used

subcarriers, and n is the complex Gaussian-distributed mea-

surement error with zero mean and variance σ2.

Taking into account the knowledge of the pulse shape, hd

can be further written as

hd = Āᾱ, (7)

where Ā ∈ R
N×L and its (n, ℓ)-th entry is given by Ān,ℓ =

g(nT − τℓ), and ᾱ = [α0, · · · , αL−1]
T . Motivated by the

expression in (7), we can discretize the delay parameter into

a set of fine-grained grid points as τ = [0, · · · , (M − 1)Tg]
T ,

where Tg is the resolution of the grid, M is the number

of grid points, and (M − 1)Tg is the maximum potential

delay spread of the physical paths. Then, we can construct a



dictionary matrix A ∈ R
N×M with its (n,m)-th entry given

by An,m = g(nT −mTg), and (7) can be approximated as

hd ≈ Aα. (8)

In (8), when the delay of a path falls on a specific grid point,

the corresponding entry in α will be nonzero. Due to the

limited number of paths in the physical environment, there

are only a small fraction of nonzero entries in α. In other

words, α is sparse. Substituting (8) into (6), we have

y ≈ FI,0:N−1Aα+ n = Bα+ n, (9)

where B , FI,0:N−1A. Next, our objective is to recover α

from y given B. After α is obtained, we can determine the

delay parameters from the positions of its nonzero entries.

B. Delay Estimation

In this part, we estimate α in (9) using an SBL-based

method [9], which is a statistical approach for sparse signal

estimation, and has been shown to be less susceptible to

structural error and convergence error compared to other

sparse recovery algorithms [12].

To proceed, we assign a complex Gaussian prior distribution

to α:

p(α|γ) =
M−1
∏

m=0

CN (αm; 0, γ−1
m ) =

M−1
∏

m=0

γm
π

e−γm|αm|2 , (10)

where γ = [γ0, · · · , γM−1]
T , CN (x;µ,Σ) represents the

probability density function of a complex Gaussian random

vector (or a random variable in the scalar case) with mean µ

and covariance matrix Σ. Since γ is not known a priori, we

adopt a Gamma hyperprior model because it is the conjugate

prior to the Gaussian distribution in (10):

p(γ) =
M−1
∏

m=0

Gamma(γm; a, b) =
M−1
∏

m=0

ba

Γ(a)
γa−1
m e−bγm ,

(11)

where Gamma(γ; a, b) is the probability density function of

a Gamma-distributed variable γ with shape parameter a and

rate parameter b, and Γ(·) is the Gamma function. In general,

the parameters a and b should take small values to make the

hyperprior model non-informative. On the other hand, based

on (9), the likelihood function is given by

p(y|α, β) = CN (y;Bα, β−1I) =
β|I|

π|I|
e−β‖y−Bα‖2

2 , (12)

where β = 1
σ2 , and I is an identity matrix. We assign another

Gamma distribution to β since it is also unknown:

p(β) = Gamma(β; c, d) =
dc

Γ(c)
βc−1e−dβ. (13)

The joint probability density of all the involved variables can

be written as

p(y,α,γ, β) = p(y|α, β)p(α|γ)p(γ)p(β). (14)

With the probabilistic model established, we need to jointly

estimate the posterior distributions of α, γ and β given y from

(14). The sparsity pattern of α can then be reflected from the

estimate of γ. Specifically, when γm is large, αm is forced to

be around zero; when γm is small, αm is likely to be large.

Therefore, we can find the delay of a path from the position

where γm takes a small value. It is worth mentioning that the

Gaussian prior model in (10) and its hyperprior in (11) are

used only to enhance the sparsity, and the actual distribution

of the multipath amplitudes is not necessarily identical to the

assumed prior.

Since the posterior distribution of the involved variables is

difficult to compute directly, we use the variational inference

approach [13] to approximate it. The variational inference as-

sumes that the joint posterior distribution can be factorized as

p(α,γ, β|y) ≈ q(α)q(γ)q(β). (15)

In other words, the variables are mutually independent. By

maximizing a lower bound of the likelihood function, the

logarithm of the approximated posterior distribution of each

variable can be expressed as [13]

ln q(zi) =

∫

ln p(y,α,γ, β)
∏

j 6=i

q(zj)dzj + const., (16)

where zi represents one of the variables α, γ or β, and

“const.” is a constant irrelevant to zi. The expression in (16)

implies an iterative implementation of the variational inference

algorithm, because the posterior distribution of one variable

depends on the expressions of all the others. Given that explicit

expressions of the posterior distributions in the real-valued

case have been provided in [13], the results for the complex

channel model can be obtained by making modifications to

these expressions, as presented below:

• The posterior distribution of α is complex Gaussian with

the covariance matrix Σ and mean vector µ given by

Σ = (〈β〉BHB+D)−1, µ = 〈β〉ΣBHy, (17)

where 〈·〉 is the expectation operation with respect to the

posterior distribution, and D = diag{〈γ〉}, which is a

diagonal matrix with 〈γ〉 = [〈γ0〉, · · · , 〈γM−1〉]T on its

diagonal.

• The posterior distribution of γm (m = 0, · · · ,M − 1) is

a Gamma distribution with the shape parameter ãm and

rate parameter b̃m expressed as

ãm = a+ 1, b̃m = b+ 〈|αm|2〉, (18)

where 〈|αm|2〉 = |µm|2 + Σm,m, with µm and Σm,m

defined as the m-th entry of µ and the m-th diagonal

entry of Σ, respectively. The posterior expectation of γm
is then given by 〈γm〉 = ãm/b̃m.

• The posterior distribution of β is also a Gamma distri-

bution with the shape parameter c̃ and rate parameter d̃
expressed as

c̃ = c+ |I|, d̃ = d+ 〈‖y −Bα‖22〉, (19)

where 〈‖y − Bα‖22〉 = ‖y − Bµ‖22 + tr(BΣBH) with

tr(·) denoting the trace of a matrix. Similar to γm, the

posterior expectation of β is given by 〈β〉 = c̃/d̃.



The computational complexity of the SBL-based algorithm

primarily arises from the matrix inverse in Σ, which is of order

O(M3) in each iteration. We can use the Woodbury inversion

identity to reduce the computational burden [9]:

(〈β〉BHB+D)−1

= D−1 − 〈β〉D−1BH(I+ 〈β〉BD−1BH)−1BD−1.
(20)

Consequently, the complexity of the matrix inversion is re-

duced to O(|I|3). Since M ≫ |I| in this paper, the matrix

multiplication will then dominate the complexity, which is

O(M2|I|). Furthermore, as the algorithm progresses, we can

prune some basis vectors whose corresponding values of

〈γm〉 are significantly large. Specifically, we remove the m-th

column of B and the m-th entry of α if 〈γm〉 is larger than

a threshold.

After the algorithm converges, the grid points corresponding

to the remaining basis vectors can be used as the estimate of

delay parameters. If the number of the remaining basis vectors

exceeds a predetermined value Lmax, we select a subset of

Lmax delay estimates with the smallest values of 〈γm〉. Then,

we further choose the delay estimates that are separated by

at least ∆τ from each other. All the above procedures are

summarized in Algorithm 1.2 If the complex amplitudes of the

paths are of interest as well, we can fix the delay estimates

and reexecute the algorithm until convergence. The posterior

mean of α can then be used as an accurate estimate of the

path amplitudes. As a consequence, a “cleaned” version of the

CSI data can also be reconstructed.

Algorithm 1 SBL-Based Multipath Delay Estimation

Input: Measured CSI y, hyperparameters a, b, c, d, the delay grid
resolution Tg , the threshold for deleting a basis vector η, and the
spacing for delay selection ∆τ .
Output: The delay estimates T .
Initialization: The delay estimates T = {0, · · · , (M − 1)Tg} ,

{τ̂0, · · · , τ̂M−1}, the matrix B, 〈γm〉 = a/b for all m, and 〈β〉 =
c/d.
while stopping criterion not met do

Compute the posterior distribution of α using (17).
Compute the posterior distribution of γ using (18).
Compute the posterior distribution of β using (19).

Delete {τ̂m : 〈γm〉 > ηmin{〈γm′〉}
|T |−1

m′=0
} from T .

Reconstruct B and γ using T .
end while
if |T | > Lmax then

Retain only Lmax elements in T with small values of 〈γm〉.
end if
Order {〈γm〉}

|T |−1

m=0
such that 〈γm0

〉 ≤ · · · ≤ 〈γm|T |−1
〉.

for i = 1 : |T | − 1 do
if |τ̂mi

− τ̂m0
| ≤ ∆τ or · · · or |τ̂mi

− τ̂mi−1
| ≤ ∆τ then

Delete τ̂mi
from T .

end if
end for

2The stopping criterion for the while loop is defined by either reaching the
maximum number of iterations or attaining a relative change in the estimated
path amplitudes below a threshold, which will be given in Section IV.

IV. SIMULATIONS

In this section, the performance of the proposed multipath

delay estimation algorithm is evaluated through simulations.

We use the MATLAB WLAN Toolbox to generate multipath

channels. The system bandwidth is 20MHz, corresponding

to a sampling period T = 50 ns. Out of a total number of

K = 64 subcarriers, 52 are used for data/pilot transmission

with indices from 1 to 26 and from 38 to 63. The length of the

cyclic prefix is set to 32, which is the same as the length of

the delay-domain composite channel. We use a raised-cosine

pulse function with the roll-off factor ρ = 0.05, truncated to a

nonzero duration of 16T . In other words, Lp = 8. The number

of paths is 3 with delay parameters being set as 24 ns, 65 ns
and 103 ns. Note that the delay difference between adjacent

paths is smaller than the sampling period. The signal-to-noise

ratio (SNR) is defined as the ratio between the power of the

first path to the variance of the measurement error σ2, and the

power of each subsequent path is 5 dB smaller than that of

its previous one. For any unspecified parameters, we use the

default settings in MATLAB. In the proposed delay estimation

algorithm, the grid resolution is set to Tg = 1ns. Hence, the

number of grid points is M = 850. The hyperparameters in the

Gamma distribution are given by a = b = c = d = 1× 10−6,

and we initialize 〈αm〉 = a/b and 〈β〉 = c/d. A threshold of

η = 1 × 105 is chosen for deleting a basis vector. After the

iterations, we set Lmax = 10 and ∆τ = 5 ns for further delay

selection.

Two benchmarks are considered in this paper: the space-

alternating generalized expectation-maximization (SAGE) al-

gorithm [14] and the OMP-based method [11]. The SAGE

algorithm is an iterative method to estimate multipath pa-

rameters and has been used in [6], [15] for WiFi sensing.

However, it neglects the channel leakage effect. For the OMP-

based method, it takes into account the pulse shaping function

and adopts a greedy approach to find the nonzero positions

in α. In theory, all three algorithms can overcome the low-

precision limitation resulting from the restricted sampling rate

of WiFi systems. We input the ground truth of the number of

paths into the two benchmarks, resulting in an upper bound

for performance evaluation. For the SAGE and our proposed

algorithms, the iteration is terminated when either the relative

change of the estimated path amplitudes is less than 1× 10−4

or the number of iterations reaches 1000, while the number of

iterations of OMP is fixed to L. All the results presented below

are obtained by averaging over 2000 simulations. The compu-

tational complexity of the SAGE, the OMP, and the proposed

algorithms are O(tLM |I|), O(LM |I|) and O(tM2|I|), re-

spectively, where t is the number of iterations actually used.

It should be noted that we use an exhaustive search method

to find the optimal delay estimate in the maximization step of

SAGE, the code of which is released by the authors of [15].

Despite a higher complexity, we will show that the proposed

algorithm can achieve markedly better performance than the

two benchmarks.

In Table I, we show the probability of correct estimation



TABLE I
PROBABILITY OF CORRECT ESTIMATION OF THE NUMBER OF PATHS

SNR 20 25 30 35 40

Probability 0.7475 0.8630 0.8990 0.9000 0.9145

MAE 0.2535 0.1370 0.1010 0.1020 0.0875
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Fig. 2. Comparison of the NRMSE of CSI.

and the mean absolute error (MAE) of the number of paths

of the proposed algorithm. As we can see, when the SNR

is high, our algorithm can correctly determine the number

of paths with a high probability and a low MAE. When the

SNR is not large enough, the power of some paths with large

delays could be even lower than the noise variance due to

the exponential decay. As a result, they cannot be detected

and the estimated number of paths is typically smaller than

the ground truth. In sensing applications, such weak paths are

usually discarded even if detected, because they cannot provide

reliable information about a target.

Fig. 2 and Fig. 3 compare the normalized root mean square

error (NRMSE) of the CSI reconstruction and the MAE of the

delay parameter estimation, respectively. Since the absolute

delay information is lost after the packet detection (see Fig.

1), we compute the estimation error of the delay difference

between the first and the second paths. We can see that the pro-

posed SBL-based algorithm outperforms the two benchmarks

under both metrics. In SAGE, the effect of pulse shaping is

neglected, and fake paths could be estimated, resulting in the

worst performance. Although the OMP-based method uses the

knowledge of the pulse shape, its greedy strategy can produce

an inaccurate delay estimate, especially when basis vectors

are highly correlated in our sparse model, and the estimation

error cannot be corrected in subsequent iterations, leading to

an inferior performance compared to the proposed method.

The above factors also prevent the performance improvements

of the two benchmarks as the SNR increases. In contrast,

the proposed algorithm not only takes into account the pulse

shaping function, but also adaptively updates the weights of

the delay grid points, and thus achieves the best performance.

V. CONCLUSIONS

This paper investigated the multipath delay estimation prob-

lem in leaked WiFi channels, in which a physical path may

produce multiple taps in the delay domain. We leveraged the

knowledge of the pulse shape and formulated a sparse recovery

problem using a dictionary matrix composed of discretized

pulses shifted by different delays. We used the SBL method

to solve this problem, and the path delay parameters can

be automatically identified from the nonzero positions of the
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Fig. 3. Comparison of the MAE of τ0 − τ1.

recovered sparse vector. Simulation results have shown that

our proposed algorithm can accurately estimate the number of

paths and outperforms two counterparts in terms of the RN-

MSE of CSI reconstruction and the MAE of delay estimation.
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